The probe

Some material used from:

License: Creative Commons BY-NC-SA

For more information about using these materials and the Creative Commons license, see our Terms of Use.
EPMA - electron probe microanalysis

Probe signals

- Cathodoluminescence (CL)
- Characteristic X-ray
- Back-scattered electron (BSE)
- Secondary electron (SE)
EPMA - electron probe microanalysis

'New' signal - cathodoluminescence
visible and near-visible radiation

Application: identify impurities in semiconductors
EPMA - electron probe microanalysis

The instrument
EPMA - electron probe microanalysis

Measuring x-ray wavelengths

In Braggs' law, keep d constant (d is known)
use single crystal (remember monochromator)

\[\lambda = 2d \sin \theta \]

Measure \(\theta \) to get \(\lambda \) - identify & quantify element

Use curved single crystal for focusing
EPMA - electron probe microanalysis

Measuring x-ray wavelengths

Focusing or Rowland circle radius kept constant. Vary θ by translating crystal away from specimen & rotating. Counter moved to stay near focus point on circle.

$$n\lambda_1 = 2d \sin \theta_1$$

$$L_1 = n\lambda_1 . R/d$$
EPMA - electron probe microanalysis

Qualitative
- Identify and characterize phases (shape, size, surface relief, etc.)
- Elements present in each phase

Quantitative
- Complete chemical analysis on a sub-micro scale
- Elemental concentration mapping
EPMA - electron probe microanalysis

Interaction volume details
EPMA - electron probe microanalysis

Interaction volume

Depth increases with accelerating voltage
decreases with at. no.
EPMA - electron probe microanalysis

Interaction volume

Diameter increases with probe current
EPMA - electron probe microanalysis

Matrix corrections for quantitative x-ray analysis

For a each element:

\[
\frac{C}{C^\circ} \sim \frac{I}{I^\circ} = k
\]

or:

\[
\frac{C}{C^\circ} = k \cdot ZAF
\]

- \(C\) = concn in specimen
- \(C^\circ\) = concn in std
- \(I\) = intensity from specimen
- \(I^\circ\) = intensity from std
- \(ZAF\) = matrix corrections
- \(Z\) - at. no.
- \(A\) - absorption
- \(F\) - fluorescence
EPMA - electron probe microanalysis

Atomic no. correction

Function of electron backscattering factor & electron stopping power - depend upon the average at. nos. of unknown and standard

Varies with composition and accelerating voltage
EPMA - electron probe microanalysis

Absorption correction

\[I = I_0 \exp^{-\left(\mu \right) \left(\rho x\right)} = I_0 \exp^{-\left(\mu \right) \left(\rho z \csc \psi\right)} \]
EPMA - electron probe microanalysis

Absorption correction

\[A_i = \frac{f(\chi_i)}{f(\chi_i)^*} \]

Absorption function,

\[f(\chi_i) = \frac{I_i(\text{emitted})}{I_i(\text{generated})} \]

* sample

A varies with \(\mu \), takeoff angle, accelerating voltage

\(A_{\text{NiK}\alpha} \) in Fe-Ni alloy
EPMA - electron probe microanalysis

Fluorescence correction

electrons \rightarrow

primary fluorescent x-rays \rightarrow

secondary fluorescent x-rays
EPMA - electron probe microanalysis

Fluorescence correction

electrons \rightarrow

primary fluorescent x-rays \rightarrow

secondary fluorescent x-rays

Varies with composition and accelerating voltage

$F_{FeK\alpha}$ in Fe-Ni alloy
EPMA - electron probe microanalysis

Can't calculate ZAFs unless concns known. Use k values \((I/I^\circ = k)\) to estimate compositions of each element.

Then calculate ZAFs, and refine by iteration.
EPMA - electron probe microanalysis
Micro scale elemental analysis

Microprobe compositional line analyses for Zr–Ag–Cu and Ti–Ag–Cu on AlN reacted for 60 min at 1000 °C.
EPMA - electron probe microanalysis

Micro scale elemental analysis
EPMA - electron probe microanalysis

Micro scale elemental analysis
High strength concrete, Na elemental quantitative compositional map, mosaic combined stage and beam scan, 15 keV