Comments to the preceding letter by Alderibigbe and Szekely

I have gone over the communication on "The Temperature Dependence of the Rate Constants K_1, K_2, and K_3 in the Langmuir-Hinshelwood Rate Relation for Carbon-Carbon Dioxide Reaction." The gasification rate must always be equal to $j_0\theta$. The thing which, of course, determines the gasification rate at a particular temperature is θ. The lower θ, the lower the gasification rate.

The gasification rate will only be equal to (or approach closely) $i\psi(1-\theta)P_{CO}$, when $j_0\theta > j_0p_{CO}$ or $j_0 > j_0p_{CO}$. This is, in fact, true if p_{CO} is small enough. But if p_{CO} is to be small at temperatures where gasification is proceeding at a significant rate, p_{CO} also needs to be small. In this case the gasification rate can be given by either

$$\text{Rate} = i\psi(1-\theta)P_{CO} = j_0\theta$$

and since θ is small

$$\text{Rate} = i\theta p_{CO} = j_0\theta.$$

In fact, we have shown in the Biederman et al. paper in Carbon 14, 311 (1976) that the equation, $\text{Rate} = i\theta p_{CO}$, is operative at low p_{CO} and, hence, low p_{CO} pressures. The equation, $\text{Rate} = j_0\theta$, must also be operative.

Therefore, I do not agree that when the forward step

$$\text{C}_1 + \text{CO}_2 \rightarrow \text{CO} + \text{C}(O)$$

is slow compared to $\text{C}(O) \rightarrow \text{CO}$ the over-all gasification rate is necessarily given by

$$(i) i = j_0 p_{CO}$$

that is, your eqn (8). As just discussed, it depends upon the relative rates of

$$j_0 p_{CO}$$

and

$$j_0 \theta.$$

In fact, this is what the conventional Langmuir-Hinshelwood rate expression for the C-CO$_2$ reaction is saying. Therefore, the fact that $E_1 > E_2$ does not necessarily invalidate the conventional form of the Langmuir-Hinshelwood rate expression.

Another way to look at it is that $K_{P_{CO}}$ will be < 1 if the rate $=i\theta p_{CO}$. In this case, eqn (9) reverts back to the standard form of the Langmuir-Hinshelwood equation.

Pennsylvania State University
Department of Materials Science and Engineering
University Park, PA 16802, U.S.A.

P. L. Walker, Jr.

Reply of the authors to the comments by P. L. Walker, Jr.

The preceding letter has certainly been thought provoking. We fully agree that the gasification rate must equal $j_0\theta$. However, it is rather less obvious that the gasification rate can equal or approach

$$i(1-\theta)P_{CO}, \text{i.e. eqn (8)}$$

in our paper only when

$$j_0\theta > j_0p_{CO} \text{ or } j_0 > j_0p_{CO}.$$

This is an important point, because it is crucial to the rest of the argument put forward in your letter. Let us consider the above contention in detail:

$$j_0 > j_0p_{CO} \text{ or } \frac{1}{P_{CO}} > \frac{i}{j_0 p_{CO}} = \frac{i}{j_0 p_{CO}} \frac{P_{CO}}{P_{CO}}$$

(1)

Upon examining Fig. 1 in the Strange and Walker article, it is seen that a linear relationship is being obtained between the gasification rate and the partial pressure of CO$_2$ (for fixed CO/CO_2 ratio) for the conditions given in Table 1. If we now proceed to substituting numerical values into eqn (2), e.g. using the entry corresponding to

$$T = 952^\circ C, P_{CO}/P_{CO_2} = 0.0975, P_{CO_2} = 80 \text{ Torr}$$

we find that under these conditions the quantities

$$\frac{i}{j_0 p_{CO}}$$

or

$$\frac{1}{P_{CO}} > \frac{i}{j_0 p_{CO}} \frac{P_{CO}}{P_{CO}}$$

(2)