Does it make sense that alphaPrime should decrease, and nonlinearly so, with increasing temperature?
The value of α' decreased with increasing temperature, reflecting an increase in particle size due to the flocculation of clay particles caused by increasing temperature.

$$\alpha = \alpha' p^S$$

Specific cake resistance

$$\log \alpha = S \log p + \log \alpha'.$$

A plot of $\log \alpha$ vs $\log p$ yields a straight line with a slope of S, and an intercept at $p = 1$ of α'. Such a plot is shown in Fig. 7. According to the literature\(^2\) the value of S should vary from zero for rigid incompressible cakes such as fine sand, to 1.0 for highly compressible cakes. In Fig. 7, the value $S = 1.03$ fits the data well at all temperatures indicating a highly compressible cake. The
Does it make sense that alphaPrime should decrease, and nonlinearly so, with increasing temperature?

Argument OK?

Basic principles of sci/eng:
- As particle size increases, resistance should decrease... OK (Non-linearly?)
- Why does particle size increase with increasing temperature? Flocculation argument OK? Reference(s) needed?

‘Targeted’ literature search:
- “specific cake resistance” and ‘flocculation’ -etc.