A Study of the \(\text{C} + \text{H}_2 \) Reaction, Taking into Account \(\text{H}_2 \) Chemisorption

A.S. Fedoseev

D.I. Mendeleev Institute of Chemical Technology, Moscow, U.S.S.R.

Introduction

In previous communications we reported the mathematical models for the \(\text{C} + \text{H}_2\text{O} \) and \(\text{C} + \text{O}_2 \) reactions. We showed that the rate-controlling steps of the above-mentioned reactions were chemisorption of \(\text{H}_2\text{O} \) and disintegration of oxygen surface complexes respectively. In this paper we report a mathematical model for the \(\text{C} + \text{H}_2 \) reaction, taking into account \(\text{H}_2 \) chemisorption.

Theoretical Analysis

The apparent rate of the \(\text{C} + \text{H}_2 \) reaction is determined in the kinetic area, taking account of the variation in the gas volume:

\[
-P \frac{dx}{dt} = kF_k P_{H_2} \tag{1}
\]

where \(P \) is the total pressure in the system, \(x \) is the proportion by volume of unconverted \(\text{H}_2 \), \(K \) is the experimental rate constant, \(F_k \) is the external specific surface of the carbon \((m^2/m^3) \) and \(P_{H_2} \) is the partial pressure of \(\text{H}_2 \).

If chemisorption of \(\text{H}_2\text{O} \) is taken into account, the apparent rate of reaction is given by

\[
-P \frac{dx}{dt} = K' F_k \frac{b P_{H_2}}{1 + b P_{H_2}} \tag{2}
\]

where \(K' \) is the theoretical rate constant and \(\theta \) is the fraction of the carbon surface occupied by \(\text{H}_2 \), given by the Langmuir Equation

\[
\theta = \frac{b P_{H_2}}{K_a P_{H_2} + K_d} \tag{3}
\]

where \(K_a, K_d \) are rates of chemisorption and desorption of \(\text{H}_2 \) respectively, \(b = K/K_d \).

Using proposed mathematical model and experimental data following kinetic parameters of the \(\text{C} + \text{H}_2 \) reaction were obtained.
<table>
<thead>
<tr>
<th>T°K</th>
<th>K'</th>
<th>K_a</th>
<th>K_d</th>
<th>K_d'</th>
<th>b</th>
<th>b_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1133</td>
<td>2.28 10^{-6}</td>
<td>4.02 10^{-4}</td>
<td>6.87 10^{-6}</td>
<td>4.59 10^{-6}</td>
<td>58.44</td>
<td>87.51</td>
</tr>
<tr>
<td>1173</td>
<td>3.96 10^{-6}</td>
<td>4.75 10^{-3}</td>
<td>1.18 10^{-5}</td>
<td>7.91 10^{-6}</td>
<td>400.00</td>
<td>599.98</td>
</tr>
<tr>
<td>1213</td>
<td>5.74 10^{-6}</td>
<td>1.61 10^{-2}</td>
<td>1.72 10^{-5}</td>
<td>1.15 10^{-5}</td>
<td>933.47</td>
<td>1400.30</td>
</tr>
</tbody>
</table>

P = 0.13 Mpa

1133	1.06 10^{-3}	2.14 10^{-5}	4.25 10^{-3}	3.19 10^{-3}	5.00 10^{-7}	6.70 10^{-7}
1173	2.07 10^{-3}	3.69 10^{-5}	8.49 10^{-3}	3.40 10^{-3}	4.20 10^{-7}	6.03 10^{-7}
1213	3.13 10^{-3}	4.10 10^{-4}	9.34 10^{-3}	6.22 10^{-3}	3.05 10^{-4}	4.59 10^{-4}

P = 2.00 Mpa

References

469