Some Studies on Irradiation Creep of Graphite

J. E. Brocklehurst and R. G. Brown

(U.K.A.E.A. Reactor Materials Laboratory, Culcheth, Nr. Warrington, Lancs, England)

Studies of the irradiation induced creep of graphite in the reactor BR-2 have been described previously for a large number of specimens under constant compressive stress and a few tensile specimens. Further creep data have been obtained on specimens under constant tensile loads, and include those from specimens irradiated over a wider range of temperatures. Thermal annealing experiments of both tensile and compressive creep strain up to temperatures greater than $2000^\circ C$ have also been carried out.

It is shown that over a fast neutron dose range of 50×10^{20} n.cm$^{-2}$,

(i) near isotropic graphites from different sources have substantially the same creep behaviour.

(ii) there is no difference in creep strain between specimens irradiated at $650^\circ C$ and specimens irradiated at $400^\circ C$.

(iii) there is no significant difference between tensile and compressive creep behaviour over the dose range examined.

Specimens containing compressive and tensile creep strain do, however, show a different behaviour on thermal annealing. There is a large apparent recovery of compressive creep strain on annealing at temperatures greater than $2000^\circ C$, but a comparatively small recovery of tensile creep strain. These results are discussed in terms of current ideas on dimensional changes in graphite.