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a b s t r a c t

Microcracks in brittle rocks affect not only the local mechanical properties, but also the poroelastic
behavior and permeability. A continuum coupled hydro-mechanical modeling approach is presented
using a two-scale conceptual model representing realistic rock material containing micro-fractures. This
approach combines a microcrack-based continuous damage model within generalized Biot poroelasticity,
in which the tensors of macroscopic elastic stiffness, Biot effective stress coefficient and of overall perme-
ability are directly related to microcrack growth. Heterogeneity in both mechanical and hydraulic prop-
erties evolves from an initially random distribution of damage to produce localized failure and fluid
transmission. A significant advantage of the approach is the ability to accurately predict the evolution
of realistic fracturing and associated fluid flow in permeable rocks where pre-existing fractures exert sig-
nificant control. The model is validated for biaxial failure of rock in compression and replicates typical
pre- and post-peak strength metrics of stress drop, AE event counts, permeability evolution and failure
modes. The model is applied to the simulation of hydraulic fracturing in permeable rocks to examine
the effects of heterogeneities, permeability and borehole pressurization rate on the initiation of fractur-
ing. The results indicate that more homogenous rocks require higher hydraulic pressure to initiate frac-
turing and breakdown. Moreover, both the fracturing initiation pressure and breakdown pressure
decrease with permeability but increase with borehole pressurization rate, and the upper and lower limit
of the initiation pressure are seen to be given by the impermeable (Hubbert–Willis) and permeable
(Haimson–Fairhurst) borehole wall solutions, respectively. The numerical results are shown to be in good
agreement with the experimental observations and theoretical results. This coupled damage and flow
modeling approach provides an alternative way to solve a variety of complicated hydro-mechanical
problems in practical rock engineering with the process coupling strictly enforced.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The role of fluids in the fracturing of crustal rocks is well estab-
lished and is fundamental to a variety of geological and engineer-
ing processes. These include forecasting the integrity of reservoirs
for underground CO2 sequestration or hazardous waste storage,
preventing water/gas outbursts into underground mines and
improving and optimizing hydraulic fracturing for well stimulation
in low permeability reservoirs [1], among others. The massive
hydraulic fractures produced in rocks during artificial stimulation
of underground reservoirs exert a profound influence on various
key mechanical and transport properties of the rock, including
the elastic modulus, anisotropy, elastic wave velocities and perme-
ability [2,3]. Therefore, an adequate understanding and quantifica-
tion of the fracture evolution and associated fluid flow behavior in
rock is of great importance and has a vital role in applied science
and engineering of the subsurface.

With the aid of microscopic observations (e.g. SEM, X-ray CT,
etc.) it is clear that fracture evolution in rock is a process of pro-
gressive damage accumulation [4–6]. This is characterized by the
initiation, growth and coalescence of numerous microcracks, as a
result either of change in the external load or of a change in the
internal pore fluid pressure. However, such complex mechanisms
of microfracturing are very difficult to describe faithfully. A variety
of models intended to accommodate these microscopic mecha-
nisms have evolved to reproduce the macroscopic behavior of
rocks (for comprehensive reviews, see Refs. [7,8]). In general, pro-
cess-based computational models for simulating fracturing in rock
can be classified into two categories, depending on whether dam-
age is represented directly by tracking the evolution of numerous
microcracks or indirectly by its effects on the phenomenological
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constitutive relations [9]. Specifically, in direct approaches [10–15]
rock material is discretised into a collection of idealized micro-
structural units (such as springs, beams or particles) and fracturing
is represented by the breakage of these individual microscopic
units. Conversely, in the indirect approach [16] rock is idealized
as a continuum with material degradation in constitutive relations
to represent irreversible microstructural damage. Continuum dam-
age mechanics (CDM) which is capable of reproducing the de-
graded macroscopic properties of rock material is widely applied
in this indirect approach.

Computational models based on the indirect approach (CDM)
are becoming progressively more sophisticated. Typical capabili-
ties of such models [17,18] include the incorporation of initial het-
erogeneous stiffness and strength of individual basic elements that
are allowed to degrade based on a simple strength failure criterion
in the form of an elastic-brittle constitutive relation, yet most mod-
els following the indirect approach assume the rock to be imper-
meable [8,19] and the effects of hydro-mechanical coupling on
fracturing behavior are typically neglected. However, in many sit-
uations this H–M coupling is the essence of the interaction and
accommodating these effects is crucial if accurate description of
processes is to be accomplished. Such coupled numerical models
have found limited development and are briefly reviewed here.
Tang et al. [20] proposed a flow-stress-damage coupling model
for heterogeneous rocks. This model was implemented within a
previously developed code for rock failure process analysis (RFPA)
[17] and used to investigate the evolution of damage and fluid
flow. Yuan and Harrison [21] extended a local degradation ap-
proach [18] to include the hydro-mechanical behavior through
the introduction of elemental models for dilatancy and permeabil-
ity. More recently, Lyakhovsky and Hamiel [22] presented a ther-
modynamically based continuum poroelastic damage model for
simulating the coupled evolution of fractures and fluid flow in
poroelastic rock. However, these models are all under the frame-
work of phenomenological damage theories. The damage evolution
equations in these models surrender insightful descriptions of
microstructural microcrack kinetics. Such relevant micromechan-
ics features are of particular importance for modeling the connec-
tivity and flow characteristics of rock and should be incorporated
in the coupled fracturing and flow modeling of rock [23].

Following the indirect approach, a major difficulty in the mod-
eling of coupled fracturing and fluid flow is of how to link the elas-
tic properties, poroelastic properties and permeability to the
growth of damage. Experiments observe that there can be signifi-
cant evolution of elastic modulus, Biot effective stress coefficients
and permeability with the growth of microcracking [24,25]. The
traditional phenomenological damage models are formulated on
a somewhat heuristic basic, rather than on the microscopic kinetics
of microcrack growth, so it remains difficult to evaluate accurately
the mechanical and hydraulic properties of rock as a function of
damage evolution. To overcome the disadvantages encountered
in the phenomenological damage models, one alternative is to de-
velop continuous damage models based on the results of micro-
scopic analyses. Costin [26] originally proposed a microcrack-
based continuous damage model by introducing a continuum dam-
age surface to represent microcrack propagation. This model was
then further implemented into a specific finite element code to
simulate the deformation and failure of brittle rocks [27]. Hom-
mand-Etienne et al. [28] developed a similar damage model and
implemented it in a discrete element code (UDEC) to investigate
the characteristics of an excavation damaged zone (EDZ). However,
hydro-mechanical coupling is not included in either of these mod-
els. Recently, Shao et al. [29,30] further developed the microcrack-
based continuous damage model to link anisotropic poroelastic
behavior and permeability to damage evolution in brittle rocks.
These models facilitate better understanding of fundamental char-
acteristics of coupled damage growth and fluid flow, but they have
not been combined with numerical simulation techniques to fur-
ther study the progressive fracturing and associated flow behavior
of permeable rocks under complex hydro-mechanical loading con-
ditions. A notable exception is where an anisotropic microcrack-
based damage model [31] was extended to account for changes
in permeability around an underground research laboratory,
although the evolution of explicit fracturing is not incorporated
in this model.

In the following, we present a coupled microcrack-based dam-
age and flow modeling approach in the framework of a continuum
numerical method. This focuses on understanding the fundamental
processes of progressive fracturing and associated fluid flow in per-
meable rocks. The basic difference between the modeling approach
presented here and some other approaches which incorporate
damage and flow coupling behavior is that in the present approach
the macroscopic elastic modulus tensor, Biot effective stress coef-
ficient tensor and the overall permeability tensor are all directly re-
lated to the microcrack growth. This allows prediction of the
evolution fracturing and flow in realistic fractured media where
fracture-fluid interaction effects are important. In the following
the principles of the numerical approach are presented (Section 2),
the approach validated (Section 3) before being applied to the sim-
ulation of hydraulic fracturing (Section 4).
2. Numerical approach

In this section, we briefly describe the principles of the coupled
damage and flow modeling approach in the framework of a contin-
uum numerical method. A two-scale conceptual model is used to
represent realistic rock material containing micro-fractures. This
medium is assigned a microcrack-based failure criterion and initial
damage with the resulting system of equations solved by a numer-
ical approach.
2.1. Conceptual model

It is well known that brittle rocks are typically strongly inhomo-
geneous at a variety of length scales. Here, we make a preliminarily
focus on rock at the laboratory length scale where the mechanical
and hydraulic behavior is mainly controlled by grain-scale hetero-
geneity including grain boundaries, micropores and microcracks.
However, such complicated textures are very difficult to replicate
realistically in a numerical model. To aid a faithful mechanistic
representation of these defects we assume that the macroscopic
rock can be divided into a series of regularly arranged, uniform
and square microscopic elements, i.e. representative elemental
volumes (REVs), as shown in Fig. 1a. Such microscopic elements
in conventional statistical models [15,17,18] are commonly as-
sumed to be homogeneous and isotropic. This assumption, how-
ever, obscures the important micromechanical features in the
REV, such as the distributions and evolution in length, aperture
and density of microcracks. This microscopic information is partic-
ularly useful and essential for modeling the alteration of hydraulic
properties (e.g. permeability) [30,32]. For this reason, in this paper
it is assumed that each of the microscopic elements is not homoge-
neous but rather is a heterogeneous medium consisting of a rock
matrix containing an arbitrary distribution of microcracks ran-
domly oriented in space (see Fig. 1a). The matrix of the REV is as-
sumed to be an equivalent isotropic homogenized porous medium
which is composed of solid grain constituents and micropores. A
family of idealized microcracks (line crack for 2-D and penny-
shaped crack for 3-D) are inserted into this matrix, each of which
can be specified by its initial length (2a0) and orientation angle
(b) in the case of the two-dimensional problem. Thus, the real rock



Fig. 1. (a) A two-scale conceptual model for the representation of realistic rock medium. a0 and b are initial length and orientation angle of microcracks, respectively. �r0ij and �p
are the average effective stress and pore pressure over the REV, respectively. (b) Schematic of typical stress–strain curves with corresponding transition from damage to
failure for a microscopic element (after [18,33,34]). KI and KIC are the Mode I stress intensity factor and the Model I fracture toughness, respectively. ak is the microcrack
length and b is the critical length of microcrack which defines the failure of the microscopic element.
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medium is then represented by a two-scale (micro–macro scale)
conceptual model: (i) at macro-scale the rock medium is composed
of the REVs and (ii) at micro-scale each of the REVs comprises both
homogeneous porous matrix and distributed microcracks.

Physically, the failure process of rock includes three stages: lin-
ear elastic response, the evolution of damage with microcracks but
without macrocracks, and then the combination of both micro-
cracking and macrocracking [33]. In the framework of a continuum
numerical method, the evolution of rock failure can be described
by tracking the entire range of physical behavior of the microscopic
elements (REVs) defined in the above two-scale model (i and ii). An
individual REV may experience the processes of deformation, dam-
age and failure similar to the macroscopic rock specimen in labora-
tory experiments [18], as shown in Fig. 1b. Initially, the REVs are
considered to be elastic and isotropic, but the properties of these
elements vary randomly from point to point within the rock. This
results in heterogeneity of the medium at the macro-scale. Then,
with an increase of the effective stresses applied to the REVs, dam-
age by microcracking begins to accumulate. The accumulation of
damage induces changes in the mechanical and hydraulic proper-
ties of the rock including the elastic stiffness, Biot effective stress
coefficients, Biot modulus and permeability. The governing equa-
tions for describing such relations are presented in the following.
Finally, as the microcracks in the REVs become so numerous and
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necessarily closely-spaced that interaction among them is inevita-
ble, the damage accumulation accelerates due to the unstable
growth and coalescence of microcracks. This results in the localiza-
tion of damage, strain softening response, and eventually the
development of large scale fractures which imply the failure of
the REVs [34]. After that, the failed REVs could still retain residual
strength when they are subject to the confining pressure [18].
However, for simplicity, it is assumed in this paper that the macro-
scopic fracture is formed instantaneously (brittle failure) and a
continuum softening law is employed to gradually degrade the
properties of the failed REVs in the post-failure regime. When
the failed REVs are subject to large tensile loading, macroscopic
fracture surfaces will be formed in these failed elements and these
surfaces will separate. To facilitate modeling this discontinuity, an
extremely small magnitude of stiffness is applied to the completely
failed REVs [35]. In this respect, the initiation and propagation of
macroscopic fractures is simply simulated.

Actually, the above modeling approach originates from the
smeared crack model [36] in conventional fracture mechanics
analysis. Thus no special singular element is used for the finite ele-
ment analysis, which simplifies the problem of the discontinuity
since it requires no change in the mathematical description of
the model. The macroscopic fracture has the width of a micro-
scopic element (REV). The dimensions of the REV should be propor-
tional to the smallest size of the damage localization zone or
fracture process zone [33]. Quantitatively, Bažant and Oh [36] pro-
posed that the size of such microscopic elements must be at least
several times the maximum aggregate size in the case of concrete.
Following this suggestion, the size of the REV in this paper is taken
as 5–10 times the maximum length of microcracks for brittle rocks.
Based on the two-scale model and the physical process of rock fail-
ure, it allows the modeling of the macroscopic fracturing behavior
of rock as prescribed by processes at the microscopic level. This al-
lows the tracking of the dynamic evolution of fracturing and fluid
flow in permeable rocks by FEM in the framework of continuum
mechanics.
2.2. Governing equations

Damage evolution, elastic properties, poroelastic properties and
permeability are a function of the propagation of the microcracks.
The following briefly summarizes the main governing equations
for these features (for detailed derivations, see Refs. [28,30,37–
39]). All the equations are established at the elemental scale (for
the REV). The symbols used in the equations are summarized in
Table 1.
2.2.1. Damage tensor and damage evolution law
The rock material considered in this study is assumed to be sat-

urated. The REV is made of a homogenized porous medium with
embedded random microcracks. Damage is relative, and virtually
any state of damage can be considered as the reference state or ini-
tial state. Here, the state of the rock before loading is applied is re-
garded as the initial state and is defined as the ‘‘undamaged’’ state.
The definition of the damage variable depends on the different
modeling approaches that could be adopted [16]. In this paper,
emphasis is placed on the influence of microcracks on hydro-
mechanical coupling behavior. Therefore, a symmetric second-or-
der damage tensor based on the relative variation of microcrack
density within the REV [28,40] is followed. It is considered that N
families of idealized line microcracks (for 2-D) or penny-shaped
crack (for 3-D) are uniformly intersected in the REV. Each of the
microcrack families is characterized by the unit vector nk, the sta-
tistical average length or radius ak and the number density mk

which is defined by the ratio between the number of microcracks
in family k and the volume of the REV. Thus, the microcrack dam-
age tensor is:

D ¼
XN

k¼1

mk � dk � ðnk � nkÞ ð1Þ

with dk ¼ ða3
k � a3

0Þ=a3
0 for the 3-D case and dk ¼ ða2

k � a2
0Þ=a2

0 for the
2-D case.

In these equations, a0 denotes the average length of initial
microcracks which is assumed to be uniform in the REV in the ini-
tial undamaged state, and dk is the relative variation of microcrack
density induced by microcrack growth.

According to the definition of Eq. (1), the evolution of the dam-
age tensor is inherently related to the propagation of microcracks
in each orientation. In fracture mechanics, there are two kinds of
crack growth criteria [26]: mechanical growth (time-independent)
due to stress variations and subcritical growth (time-dependent)
due to stress corrosion. Here, only the time-independent crack
growth is taken into consideration. Costin [26] first suggested that
the driving force for microcrack propagation is local tensile stress
which is a function of the macroscopic stresses applied and the
microcrack orientation and formulated the criterion of microcrack
propagation based on linear fracture mechanics. Moreover, Shao
[37] extended this criterion to saturated brittle rocks to take into
account the effect of pore pressure by using the concept of Terzaghi
effective stress. Such a criterion is chosen in this paper as the dam-
age evolution law:

K Iðr; p; ak;nkÞ ¼
ffiffiffiffiffiffiffiffi
pak
p

� rt ¼
ffiffiffiffiffiffiffiffi
pak
p

� ½rn þ pþ f ðakÞnk � S � nk� ð2aÞ

Fðr;p; ak;nkÞ ¼ K Iðr;p; ak;nkÞ � K IC ¼ 0 ð2bÞ

where KI is the Model I stress identity factor of the microcrack, KIC is
the Model I fracture toughness, rt is the local traction on the micro-
crack in direction nk, r is the total stress tensor, p is the pore pres-
sure, rn = nk � r � nk is the normal stress applied to the microcrack,
and S = r � (trr/3)d is the deviatoric stress tensor. The scalar func-
tion f(ak) in Eq. (2a) defines a proportionality factor between the ap-
plied field stress and the local tensile stress concentration around
the microcracks, which takes the following simple form [32,41]:

f ðakÞ ¼
x � ðb=akÞ ðak 6 bÞ
x ðak > bÞ

�
ð3Þ

where x is a material constant controlling the damage surface and
b denotes the critical microcrack length which defines the failure of
the REVs. These two constants can be determined from the slope of
the failure curve of rock under triaxial compression [41].

For any stress state, the actual average length of the kth micro-
crack family, ak, in the direction nk may be determined from Eq.
(2b). More specifically, when the local traction rt on the microcrack
is positive (tension) and sufficiently large then KI will approach the
fracture toughness KIC, and microcrack growth will take place. The
early growth of microcracks will be stable since the interaction be-
tween them is small. That is why the local traction rt is assumed to
be reduced with microcrack growth (see Eq. (3)) [34]. Accordingly,
the microcrack will grow to some distance to reach an equilibrium
point where KI = KIC. As the applied loads are increased, the micro-
crack will grow again to a new equilibrium state. When the micro-
crack length ak increases to the critical length b, the separation
distance between adjacent microcracks in the kth family becomes
small enough that the effect of microcrack interaction becomes
stronger and unstable crack growth occurs. This results in the grad-
ual coalescence of microcracks to form large-scale fractures. For
simplicity, it is assumed that the macroscopic fracture is formed
instantaneously (brittle failure), and hence the condition ak = b can
be defined as a criterion for the failure of the REV [26,28]. However,
it should be noted that the failure, as defined by the above criterion,
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is the point where the microcrack interaction begins (onset of the
macroscopic fracture). In general, this will be somewhat before
the point at which the final failure of the REV occurs by the full coa-
lescence of microcracks. Therefore, such an assumption would make
the microcracks more prone to coalesce and bifurcate to form the
discrete macroscopic fractures.

2.2.2. Damage constitutive equations for poroelasticity
After defining the damage tensor and its evolution law, the

poroelastic properties of the damaged rock material need to be de-
fined. It is assumed that the REV of the rock is isotropic in the ini-
tial, undamaged state. To satisfy this assumption, the microcracks
are assumed to be inserted uniformly and symmetrically within
the REV. That is, all microcracks within the REV are uniformly clas-
sified into several families in each of which the microcracks have
the same orientation, and the initial length and number density
of the microcracks are the same for all families. But as damage
accumulates due to microcracking in the REV, the element gradu-
ally evolves to anisotropy. Accordingly, the generalized anisotropic
Biot theory [38] is assumed to be applicable for any stationary state
of damaged saturated rocks [37], and thus the following state laws
are deduced:

r ¼ CðDÞ : e� aðDÞp
p ¼ MðDÞ � ½f� aðDÞ : e�

�
ð4Þ

where C(D) is the fourth rank elastic modulus tensor of damaged
rock material which exhibits the classic Voigt symmetries Mijkl = -
Mjikl = Mijlk = Mklij, a(D) denotes the symmetric (aij = aji) second rank
anisotropic Biot effective stress coefficients tensor, scalar M(D) is
Biot modulus and f represents the change of fluid content per unit
volume of porous skeleton.

The variation of elastic properties as well as the poroelastic
parameters is a function of damage growth, which has been de-
rived explicitly from thermodynamic potential and micromechan-
ical analyses [29,38], as follows:

CijklðDÞ ¼ kdijdkl þ lðdikdjl þ djkdilÞ þ AðdijDkl þ DijdklÞ
þBðdikDjl þ dilDjk þ Dikdjl þ DildjkÞ

aijðDÞ ¼ dij � 1
3 �

CijkkðDÞ
Ks

MðDÞ ¼ Ks

1�1
9�

Ciijj ðDÞ
Ks

� �
�/ 1�Ks

Kf

� �

8>>>>>><
>>>>>>:

ð5Þ

where k and l are Lame elastic constants of the initial undamaged
material, A and B are two constants defining the damage-induced
modification of the strain energy, Ks and Kf are the bulk modulus
of solid constituent of rock material and fluid bulk modulus, respec-
tively, and / is the porosity. For completeness, the expansions of Eq.
(5) for the 2-D problem are given in Appendix A.

2.2.3. Damage-induced permeability changes
In order to form a complete system for solving the coupled hy-

dro-mechanical problem, it is necessary to introduce another gov-
erning equation, i.e. the fluid transport equation, to describe fluid
flow in the permeable rock medium. Enforcing fluid mass conser-
vation and Darcy’s law, the transport equation for an incompress-
ible fluid can be written as:

�r � �KðDÞ
t
� rp

� 	
¼ @f
@t
¼ 1

MðDÞ
@p
@t
þ @

@t
ðaðDÞ : eÞ ð6Þ

where K(D) is the overall permeability tensor of the REV and t is the
dynamic viscosity of the fluid. The permeability of brittle rocks can
significantly increase with the propagation of microcracks. From the
viewpoint of homogenization, the REV of the rock material, com-
posed of a porous matrix and a random distribution of microcracks,
can be treated as an equivalent homogenized porous medium with
an overall permeability tensor. Such an overall permeability tensor
K(D) can be decomposed into two parts: (i) the initial permeability
tensor K0 due to initial porosity which represents flow in the
micropores in the matrix of the REV and (ii) the microcracking-in-
duced permeability tensor Kc(D). The total overall permeability ten-
sor is hence K = K0 + Kc(D). The permeability tensor for the porous
matrix of the REV K0 is assumed to remain unchanged during the
loading (i.e. the influence of effective stresses on the micropore
deformation is neglected), but the crack permeability tensor Kc(D)
depends on the length, orientation, average aperture and number
density of microcracks in the REV. Shao [30] explored the variation
of crack permeability with the evolution of damage using a micro–
macro averaging procedure. This relation for the overall crack per-
meability tensor is followed here and for the 2-D plane problem it
can be rewritten as:

KcðDÞ ¼
1
6

XN

k¼1

mkakRðakÞeðr0t; akÞ3ðd� nk � nkÞ ð7Þ

where R(ak) is the connectivity coefficient, denoted by
RðakÞ ¼ t1½ðak � a0Þ=ðb� akÞ�t2 , t1 and t2 are constants reflecting the
connectivity characteristics, eðr0t; akÞ is the average aperture of
microcracks defined as eðr0t; akÞ ¼ pakrt=E00 where E0 is the elastic
modulus of the undamaged material and r0t is the local tensile stress
acting on the microcrack, denoted as r0t ¼ rn þ pþ f ðakÞnk � S � nk.

2.3. Failure criterion and post-failure decay

The REV fails when the microcrack length in a certain orienta-
tion in the REV is equal to or greater than the critical microcrack
length (b). The failure of the REV implies that it has entered into
the post-failure regime where the stress–strain curve has peaked
followed by a rapid stress drop and then a substantially unchanged
residual strength. During the post-failure regime, the macroscopic
behavior of the REV is dominated mainly by the unstable micro-
cracking and the frictional sliding of the broken microcrack inter-
face [42]. Few models have succeeded in quantitatively modeling
the behavior in the post-failure regime from first principles and
based on microscopic characteristics of the medium [34]. For sim-
plicity, an isotropic softening model for post-peak behavior is
adopted [35] while other more realistic schemes to follow post-
peak softening are investigated.

It is assumed that the elastic modulus of a failed microscopic
element degrades monotonically as a scalar damage variable
[35], as follows:

E ¼ ð1� DÞE0 ð8Þ

where E0 is the initial elastic modulus of undamaged rock material
and D is a scalar damage variable which is a function of the equiv-
alent principal strain:

D ¼
1� gec0=ec ðec0 P ec; for compressiveÞ
1� get0=et ðet0 6 et < etu; for tensileÞ
1 ðetu < et; for tensileÞ

8><
>: ð9Þ

with et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

1ð
jei jþei

2 Þ2
q

for a tensile state (at least one of the princi-
pal stresses is tensile) and ec = min (ei) for a compressive state (all
three principal stresses are compressive). Note that tension is taken
to be positive in this paper.

In the above equations, ei are the principal strains which are po-
sitive in the case of tensile strains, et and ec are the equivalent prin-
cipal tensile and compressive strains, et0 and ec0 are the equivalent
principal tensile and compressive strains at the peak stress state
(i.e. only just failed state), g denotes the residual strength coefficient
which is equal to the ratio of peak strength to residual strength of
rock, and etu is the ultimate tensile strain which is defined by etu = 1-
et0, where 1 is defined as the ultimate strain coefficient.
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According to Eqs. (8) and (9), the stiffness of the failed REV is
isotropically reduced with the increasing equivalent principal
strain. If the tensile equivalent principal strain exceeds the ulti-
mate tensile strain, the REV is considered to be fully ruptured
and a small magnitude of stiffness is assigned to it. This approach
is similar to the smeared crack model, which greatly simplifies the
simulation of initiation and propagation of macroscopic fractures.
Fig. 2. Procedures for the implementation
2.4. Assignment of initial damage/heterogeneity

Brittle rock generally contains numerous pre-existing defects,
i.e. initial damage. Such initial damage leads to the virgin mechan-
ical and hydraulic properties varying randomly from point to point
and with direction in the material, i.e. heterogeneity. Accommo-
dating such heterogeneity is vital for modeling localized failure.
of coupled damage-flow modeling.
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Two alternative approaches have been developed to represent real-
istic heterogeneity in rock. One is the statistical approach [35]
which reconstructs heterogeneous properties at the microscopic
level and the alternative is the deterministic approach where dig-
ital image processing techniques [43] are used to recover the mate-
rial microstructure from the digital images recovered by X-ray CT
scanning, acoustic velocity imaging, or a variety of other non-
destructive geophysical methods.

Here we follow the statistical approach to randomly assign the
initial mechanical and hydraulic parameters for each of the REVs.
For the mechanical heterogeneity, the widely used Weibull distri-
bution is adopted, which takes the following probability density
function:

f ðnm; �nm; kmÞ ¼
km

�nm
� nm

�nm

� 	km�1

� exp � nm
�nm

� 	km
" #

ð10Þ

where nm is the characteristic mechanical parameters (e.g. elastic
modulus) for the REV, �nm is the scale parameter related to the average
value of the characteristic parameters and km defines the shape of the
distribution function. For hydraulic heterogeneity a log-normal dis-
tribution function may be used to describe the permeability distribu-
tion [21] that is uncorrelated with the mechanical properties as:

f ðnh; �nh; khÞ ¼
1

nhkh

ffiffiffiffiffiffiffi
2p
p � exp � lnðnh � �nhÞ2

2k2
h

" #
ð11Þ

where nh is the characteristic hydraulic parameter (e.g. permeabil-
ity) for the REV, �nh and kh are the mean value of characteristic
hydraulic parameter and its standard deviation, respectively. It is
found that the shape parameters km and kh can reflect the degree
of material homogeneity. To be specific, the larger the values of
km and the smaller the values of kh the more homogeneous the
resulting distribution of material properties [18,21,35]. According
to Eqs. (10) and (11), multiple Monte-Carlo simulations can be uti-
lized to generate heterogeneous distributions of material properties
for each of the REVs.
2.5. Model implementation

This coupled damage and flow approach, based on the prior
two-scale conceptual model is implemented as a continuum
numerical method. This may be implemented in any continuum
numerical model that accommodates Biot poroelasticity and that
determines the solution of the fully coupled deformation and pore
pressure fields – in our approach a finite element model is used.
Additionally, this approach requires that the damage state and
the damage-induced alteration of stiffness, poroelastic coefficients
and permeability are continually updated with the increase in
loads. Fig. 2 presents a flow chart for this coupled modeling ap-
proach. The basic procedures are summarized as follows:

(i) After the problem geometry has been defined, the model is
discretized into a set of microscopic elements (REVs). Then
multiple Monte-Carlo simulations are utilized to generate
the initial mechanical and hydraulic properties and the
microcrack distribution. The prescribed stress or displace-
ment on the boundaries is divided into a series of discrete
load increments. The incremental load is applied to the
model gradually so as to ensure a quasi-static response.

(ii) For each loading increment, a fully coupled analysis is per-
formed by FEM based on Biot theory, and the average effec-
tive stresses and pore pressure for each of the REVs are
calculated.

(iii) Effective stresses and pore pressures defined over the REV
are used in Eqs. (2a) and (2b) to determine the growth in
length for the microcracks in all families. Then the damage
tensor is calculated using Eq. (1). Furthermore, the tensors
for the elastic modulus, Biot effective stress, Biot modulus
and the overall permeability are modified following Eqs.
(5) and (7), respectively. If the average microcrack length
in any family in the REV exceeds the critical microcrack
length (b), the REV is presumed to have failed and its stiff-
ness is degraded isotropically using Eqs. (8) and (9).

(iv) The continuum finite element model with the updated
material parameters is used to define a new equilibrium
and steps (ii) and (iii) are repeated to examine the damage
state. The next load increment is added only if the following
convergence condition is satisfied: kCstepþ1 � Cstepk1 6
1� 10�3, where C is the elastic stiffness matrix.

The above procedures have been implemented in MATLAB to
define the damaged constitutive parameters and implemented into
the finite element model COMSOL Multiphysics to define spatial
behavior.
3. Model validations

Two verification examples are followed to examine the imple-
mentation of the coupled damage and flow model. A first example
explores the response of a single REV under simple loading condi-
tion to demonstrate the basic nature of the model. The second
example follows the response of a biaxial compression experiment
in the laboratory where the spatial evolution of damage and flow is
followed together with the resulting nonlinear response to failure.
3.1. Elementary REV

The plane strain mechanical and steady-state hydraulic response
is followed on a single REV with dimensions of 1 mm � 1 mm
(Fig. 3). It is assumed that twelve (N = 12) sets of microcracks are in-
serted uniformly in the REV. The orientation angle of the ith micro-
crack is bi = p(i � 1)/N. The initial microcrack length and the number
density of microcracks are assumed to be uniform in each orienta-
tion. The input model parameters used in the calculations
[29,30,44] are summarized in Table 2. The sample is first loaded
by an equal confining pressure and axial stress to establish an initial
balance state. This is followed by an applied incremental axial dis-
placement of Duy = 5 � 10�4 mm per loading step imposed to the
top of the sample. The sample is assumed to be completely satu-
rated throughout the loading, with a specific initial pore pressure
p0 and with constant fluid pressures pt and pb applied to the top
and basal boundaries and with zero flux from the sides. Lateral con-
fining stresses of rx = 0, 10 and 20 MPa and fluid pressures of pt = -
pb = p0 = 0, 5 and 10 MPa were variously applied to investigate the
deformation and flow behavior of the REV before rupture.
3.1.1. Stress–strain response
Fig. 4 shows the relationships between axial stress, axial strain

and lateral strain for the REV before failure at different confining
pressures and pore pressures. The model adequately replicates
the anticipated non-linear strain hardening behavior with associ-
ated volumetric dilatancy in the pre-peak stress regime. As the
confining stress increases, the ultimate strength also increases
and the strain hardening range (inelastic behavior) widens.
Increasing pore pressure illustrates the opposite tendency. The rea-
son for this phenomenon is that the confining pressure suppresses
the opening of microcracks and restrains their propagation while
the fluid pressure accelerates microcrack growth.



Table 1
Notation.

Symbol Description Units

a0 Initial microcrack length m
ak Average microcrack length of the kth family m
b Critical microcrack length m
e Average aperture of microcrack m
mk Microcrack number density of the kth family m�3

p; �p Pore pressure and average pore pressure Pa
t1, t2 Connectivity coefficients –
A, B Damage influence coefficients Pa m3

C Borehole pressurization rate Pa/s
D Scalar damage variable –
E0, v0, k, l Initial elastic modulus, Poisson’s ratio, Lame

constants
Pa, –, Pa,
Pa

DP, Dt Pressure increment and time increment Pa, s
Pi, Pb Fracture initiation pressure and breakdown

pressure
Pa

R Connectivity coefficient –
Ks, Kf Solid constituent bulk modulus and fluid bulk

modulus
Pa

KIC Mode I fracture toughness Pa m1/2

N Total families of microcracks in the REV –
M Biot modulus Pa
a Scalar Biot effective stress coefficient –
b Microcrack orientation angle –
et; ec; et0 ; ec0 Equivalent tensile and compressive strains –
etu Ultimate tensile strain –
/ Porosity –
r0t Local tensile stress on microcrack Pa
x Damage surface coefficient –
f Fluid content change –
1 Ultimate strain coefficient –
km, kh Mechanical and hydraulic homogeneity indices –
t Fluid dynamic viscosity Pa s
g Residual strength coefficient –
nk Unit normal vector of microcrack in the kth

family
–

a Biot effective stress coefficients tensor –
r, �r0 Total stress tensor and effective stress tensor Pa
D Damage tensor m�3

K, K0, Kc Permeability tensor m2

S Deviatoric stress tensor Pa
C Elastic modulus tensor Pa

Fig. 3. Model geometry and loading conditions for the single element REV test. The
microcracks are assumed to be inserted uniformly in the REV. Duy is the applied
incremental axial displacement, rx is the confining stress and p0, pt and pb are the
fluid pressures.

Table 2
Model parameters used in the single element REV test.

Identity Values

Mechanical
properties

Initial elastic modulus and Poisson’s ratio: E0 = 10 GPa,
v0 = 0.25
Mode I fracture toughness of microcrack:
KIC = 1.1 MPa m1/2

Damage influence coefficients: A = 200 Pa m3

B = � 800 Pa m3

Bulk modulus of rock grain constituent: Ks = 40 GPa

Microcrack
parameters

Initial microcrack length: a0 = 0.1 mm
Critical microcrack length: b = 0.3 mm
Microcrack number density: m = 0.23 mm�3

Damage surface coefficient: x = 0.60

Hydraulic
properties

Bulk modulus of fluid: Kf = 3.3 GPa
Dynamic viscosity of fluid: t = 1 � 10�3 Pa s
Initial permeability: k0 = 1.0 � 10�17 m2

Porosity: u = 5%
Connectivity coefficients: t1 = 100, t2 = 1.0

Fig. 4. Relationships between axial stress (ry), axial strain (ey) and lateral strain (ex)
obtained from the elementary simulations at different confining pressures and pore
pressures (rx, p0).
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3.1.2. Damage growth and induced permeability change
The accumulation of damage together with the evolution of per-

meability for this elemental REV test is displayed in Fig. 5. The two
components of damage tensor and that of permeability tensor are
shown in Fig. 5a for the x- and y-coordinate directions, respec-
tively. Damage is accumulated mainly in the x-direction while
the major change in permeability is, as expected in the orthogonal
(y-) direction. This results from the microcracks primarily growing
parallel to the loading axis (i.e. y-direction). Moreover, the damage
component D11 only begins to accumulate when the rock is
stressed over 50% of the peak stress (ultimate strength) at which
point it increases markedly. The permeability component k22 also
alters in a similar way and its value at peak stress state is about
103 times that of the magnitude of the initial permeability.

Fig. 5b shows the variation of damage component D11 and per-
meability component k22 with an increase in axial stress at differ-
ent confining pressures and pore pressures. As can be seen from
the figure, the stress threshold for the onset of damage and perme-
ability change depends on the effective confining pressure. The
evolution rate of damage and permeability is faster as the effective
confining pressure is reduced (confining pressure lower or pore
pressure higher), that is to say, at the same level of axial stress
the damage and permeability decrease with the increase of effec-
tive confining pressure. From a qualitative point of view, the gen-
eral trend in damage growth and its influence on permeability



Fig. 5. Evolution of damage and permeability for the single element REV test: (a)
two components (D11 and D22) of the damage tensor and that (k11/k0 and k22/k0) of
the permeability tensor as a function of normalized axial stress (axial stress/peak
axial stress) at rx = 0 MPa and p0 = 0 MPa; (b) variation of D11 and k22/k0 with axial
stress at different confining pressures and pore pressures.

Fig. 6. Variation of relative modulus (C11/E0, C22/E0 and C12/G0) and Biot effective
stress coefficients (a11 and a22) with the normalized axial stress in the elementary
test at rx = 0 MPa and p0 = 0 MPa. E0 and G0 are the initial elastic modulus and shear
modulus.
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change produced by the model is in good agreement with many re-
ported experimental [31,41,45] and numerical [46] observations.

Finally, it should be pointed out that the reduction of initial per-
meability during the elastic deformation stage which results from
the closure effect of initial microcracks and micropores is not
incorporated in the present model, but such changes in initial per-
meability are generally smaller than the magnitude of permeabil-
ity induced by damage growth [45] and its effect can generally
be ignored.
Fig. 7. Model geometry and loading conditions for the standard biaxial compres-
sion experiment. The model is meshed by 50 � 100 = 5000 REVs. Duy is the applied
incremental axial displacement, rx is the confining stress, p0 is the initial pore
pressure and Dp is the differential pressure between the upstream fluid and the
downstream fluid.
3.1.3. Damaged poroelastic properties
The variation of elastic modulus and Biot effective stress coeffi-

cients of the damaged REV with the normalized axial stress are
shown in Fig. 6, where E0 and G0 are the initial elastic modulus
and shear modulus of rock, respectively. It is observed that the ax-
ial modulus (C22) remains near constant while the lateral modulus
(C11) and shear modulus (C12) deteriorate significantly with the
increasing axial stress. This can be explained by the fact that most
of the induced damage is accumulated in the lateral direction (x-
coordinate direction). Correspondingly, the Biot effective stress
coefficient in the axial direction (a22) is only affected slightly by
this induced damage but that in lateral direction (a11) increases
by �6%. These features of anisotropic poroelastic behaviors repro-
duced by the model are qualitatively consistent with experimental
observations [25,29,37].
3.2. Biaxial loading in compression

The progress of standard compression experiments is followed
using the coupled damage and flow model to verify the general
representative behaviors of the model including the complete
load-deformation history, permeability evolution and failure
modes via a qualitative comparison with available experimental
results. The geometry of the numerical experiments is shown sche-
matically in Fig. 7. The sample is a rectangular domain with dimen-
sions of 50 mm � 100 mm and is discretized into 50 � 100 = 5000
REVs, in each of which it is assumed that twelve (N = 12) groups
of microcracks were inserted with the parameters given in Table 2.
In addition, the effects of initial damage on the mechanical and
hydraulic properties, particularly the elastic modulus and perme-
ability, were incorporated by randomly assigning these parameters
in a Weibull distribution defined by Eq. (10) and in a log-normal



Table 3
Model parameters used in the biaxial experiment simulation.

Parameter names Values

Overall elastic modulus, �nm 10 GPa
Homogeneity index of elastic modulus, km 1.5, 2.5, 3.5 and 5.0
Overall permeability, �nh 1 � 10�17 m2

Homogeneity index of permeability, kh 1.0,1.5, 2.0 and 2.5
Residual strength coefficient, g 0.1
Ultimate tensile strain coefficient, 1 5

Fig. 8. Biaxial compression simulation results of (a) axial stress and overall axial
permeability versus axial strain, and (b) AE event counts and cumulative AE event
counts occurring over specified axial strain interval.

Fig. 9. Random distribution of (a) x-direction damage and (b) y-direction perme-
ability at the load level labeled by Point A on the stress–strain curve in Fig. 8a.
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distribution defined by Eq. (11). These distributions were ascribed
to each of the REVs to model the localized failure and flow in the
sample. All mechanical, hydraulic and post-failure decay parame-
ters are as listed in Table 3.

Congruent with the procedure adopted by typical triaxial com-
pression experiment [47] (that actually apply a biaxial stress state),
a constant confining pressure rx in combination with the axial
stress was applied equally to achieve an initial hydrostatic stress
state. Subsequently, an incremental axial displacement of Duy = 2 -
� 10�2 mm per loading step was applied to the top of the sample
until its load-bearing capacity was completely lost. The simula-
tions were run with the scheme of steady-state fluid flow, in which
the upstream fluid pressure pt and downstream fluid pressure pb

were kept unchanged and a constant differential pressure of
Dp = pt � pb = 0.1 MPa between them was maintained throughout
the test.

With the aim of reproducing the macroscopic hydraulic and
mechanical behaviors during the failure process, several macro-
scopic variables are needed to describe the modeling results. These
are stress, engineering strain, overall permeability and acoustic
emission event rates and energy release. Stress–strain curves are
derived from the simulation results by conversion of boundary
forces and displacements. The overall permeability of the sample
is derived based on Darcy’s law, as follows [20]:

K ¼ H
Dp
� Q ¼ H

pt � pb
�
X

q ð12Þ

where Q =
P

q is the total flux flowing through the sample, Dp = pt -
� pb is the differential fluid pressure between the top and the bot-
tom of the sample and H is the length of the sample.

Acoustic emission (AE) is defined as transient elastic waves
within the material, caused by the release of elastic energy due
to microcracking in stressed material. It offers useful information
for indirectly identifying the evolution of damage within rock
[48]. An approximate approach for calculating AE events and en-
ergy release is used [17] in which it is assumed that each AE event
corresponds to the damage of an element and that the strain en-
ergy released by damaged elements is all in the form of radiated
seismic energy (acoustic emissions). We follow this approach here
to account for the number of the damaged REVs in the numerical
model as the AE event counts and then calculate the reduced elas-
tic strain energy of the REVs due to damage as the AE energy is
released.

3.2.1. Biaxial load behavior
The first sets of simulations are performed on samples with a

homogeneity index of elastic modulus of km = 2.5 and an initially
homogeneous permeability. A lateral confining stress of rx = 5.0 -
MPa and an initial pore pressure of p0 = 1.0 MPa are applied to
the sample before the incrementing of axial displacement to pro-
vide the loading.

Fig. 8 shows the resulting axial stress, overall axial permeability
and AE event counts as a function of axial strain during the failure
process of the sample under biaxial compression. In the figure, the
overall axial permeability is calculated by Eq. (12). In general, the
numerically-obtained evolution of deformation of the sample, as
evident in the complete stress–strain curve and the overall axial
permeability curve, can be characterized into four stages: a linear
elastic stage (OA), a nonlinear hardening stage (AB), a stage con-
taining a sudden stress drop (BC) and an asymptote to residual
strength (CD). In each of the four stages, the macroscopic feature
of deformation, permeability and AE activities are closely related
to the microscopic damage evolution with the sample.

In the linear elastic stage (OA in Fig. 8a), the simulated overall
axial permeability remains constant due to the small amount of



Fig. 10. Local microscopic elementary damage concentration into a macroscopic shear failure band during the sudden stress drop stage (i.e. Point B to C on the stress–strain
curve in Fig. 8a). Different colors indicate the state of all the REVs: the gray for the unruptured REVs, the blue for the ruptured REVs but still maintaining residual strength and
the red for the completely ruptured REVs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Distribution of (a) y-direction permeability and (b) flow vector at the load
level labeled by Point C on the stress–strain curve in Fig. 8a.

1 For interpretation of color in Fig. 11, the reader is referred to the web version of
is article.
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damage occurring. However, the reduction of permeability in this
stage, observed in reported experiments (see for example, Ref.
[47]), is not replicated by the present model. The reason for this
is that the closure effect of microcracks and micropores under
compression is not included in this model. As the load reaches
�70% of the peak stress (Point A in Fig. 8a), the elementary damage
and permeability are distributed somewhat randomly throughout
the sample (see Fig. 9). From Point A, the sample enters a stage
of non-linear hardening. The simulated overall axial permeability
increases sharply in this stage prior to the sample reaching peak
stress as a result of the accelerated growth and coalescence of
microcracks. Also, the numerically-obtained AE event counts,
reflecting the evolution of damage due to microcracking within
the sample, increase smoothly and continuously with the increase
in load before the peak stress (OB in Fig. 8b).

The numerically-obtained macroscopic fracture pattern be-
comes evident just after the peak stress (Point B in Fig. 8a), accom-
panied by a dramatic loss in load-bearing capacity. The sequential
diagrams in Fig. 10 clearly illustrate during the unloading portion
of stress–strain curve (Points B–C in Fig. 8a) how the local damaged
REVs continue to propagate and coalesce and eventually self-orga-
nize into a macroscopic shear fracture inclined at an angle to the
loading direction. In these figures the state of all the REVs are de-
noted with different colors: the gray background for those unrup-
tured REVs, the blue dots for the failed REVs that still retain
residual strength (i.e. partially ruptured REVs) and the red dots
for the failed REVs which have completely lost their load bearing
capacity (i.e. fully ruptured REVs). It is interesting to observe that
the macroscopic shear fracture, comprising the fully ruptured REVs
clustered in the center of the partially ruptured zones, are well
reproduced by the present numerical model in which only the
Mode I fracture criterion is employed, rather than some shear-
stress related strength criterion (e.g. Mohr–Coulomb criterion).
Such observation may confirm the most common interpretation
of shear failure which holds that the macroscopic propagation of
shear fracturing is caused by the linkage of many tensile micro-
cracks [49].

Moreover, the simulated overall axial permeability reaches a
maximum soon after the peak stress which is approximately
20 times that of the initial magnitude. The maximum overall per-
meability is much smaller than the local elementary permeability
in the macroscopic fracture (about three orders of magnitude smal-
ler than initial permeability), as shown in Fig. 11a. Such difference
may be explained by the fact that the macroscopic flow behavior
depends not only on the local elementary permeability but also
on the connectivity of the more conductive elements. As can be
seen from Fig. 11a, the higher permeability only occurs in the in-
clined macroscopic shear fracture, outside of which other lower
permeability zones act as barriers to fluid flow. As a result, the
overall macroscopic permeability of the sample is not increased
significantly. Such localized flow behavior is demonstrated more
distinctly by1 Fig. 11b in which the flow velocity vectors are repre-
sented by the blue arrows. It can be seen that the fluid flows prefer-
entially and rapidly along the nucleated macroscopic fracture. The
fractured zones provide the fast pathways for the migration of fluid
while the unruptured zones block the fluid transport.

Finally, in the stage of residual deformation, the numerically-
produced axial stress approaches an asymptote of residual strength
and the AE event counts decrease to a low level (CD in Fig. 8). Also,
it is observed that the simulated overall axial permeability is re-
duced by �36% of that at the peak stress. This can be explained
by the fact that the overall axial permeability of the numerical
sample depends on not only the higher permeability zones in the
macroscopic shear fractured band but also the lower permeability
zones outside the band (see Fig. 11a). The elastic closure of micro-
th
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cracks in the lower permeability zones at residual strength,
because of the decrease of local traction on the surface of
microcracks, which further block the fluid flow in axial direction.
However, it should be noted that such an effect of microcrack clo-
sure in the present model may be amplified due to neglecting the
irreversible inelastic deformation of microcracks, which results in
the substantial decrease in permeability. Actually, the permeability
reduction in the residual period, reported in the laboratory exper-
iment [47], is primarily controlled by the conjugate shear fracture
that transects the sample and the resulting comminution along
that feature [47,50].

Despite ignoring some mechanisms of microcrack deformation,
it can be concluded that the present model provides a general two-
Fig. 12. Evolution of (a) axial stress and (b) overall axial permeability as a function
of axial strain for four simulated samples with different degrees of heterogeneity.

Fig. 13. Fracture patterns for four simulated sam
scale approach for predicting the evolution process from micro-
cracking to macroscopic fracturing and the associated behavior of
fluid flow of brittle rocks under the coupled hydraulic-mechanical
loading, subject to suitable calibration.

3.2.2. Effect of heterogeneity
As noted above, rock is generally heterogeneous in both

mechanical and hydraulic properties, which can be represented
by the Weibull and lognormal distributions, respectively. This het-
erogeneity plays a vital role in determining the fracture patterns
and flow paths in rock. To illustrate this point, simulations were
performed under biaxial loading using four pairs of mechanical
and hydraulic homogeneity indices ðkm; khÞ, i.e. (1.5, 2.5), (2.5,
2.0), (3.5, 1.5) and (5.0, 1.0) (see Table 3). These specific values im-
part material property distributions ranging from highly heteroge-
neous to homogeneous, respectively.

The influence of heterogeneity on hydro-mechanical behavior
of rock can be seen from the stress–strain curve, permeability re-
sponse and fracture patterns. Fig. 12 depicts the evolution of axial
stress and permeability as a function of axial strain for four simu-
lated samples with varying degrees of heterogeneity. It is clear that
the stress–strain relationship and the permeability evolution de-
pend strongly on the heterogeneity of the sample. The samples
with higher heterogeneity show more ductile post-failure behavior
while those with higher homogeneity fail in a brittle manner.
Moreover, increasing heterogeneity leads to both a reduced peak
strength and with permeability augmentation occurring at smaller
axial strain. The fracture patterns for each of the four degrees of
heterogeneity are shown in Fig. 13. It is found that more ruptured
REVs occur and distribute randomly within the highly heteroge-
neous samples but within the highly homogenous samples there
are only a few failed REVs concentrated around the macroscopic
fracture. This is thought to be a consequence of a ruptured REV
leading to widespread failure of the adjacent REVs since they have
similar strengths within homogeneous samples.
4. Numerical simulation of hydraulic fracturing

We now explore the roles of heterogeneity and damage on the
progressive propagation of hydraulic fractures driven by pressuri-
zation of a borehole. Numerous theoretical models and numerical
algorithms have been developed to predict the evolution of
hydraulic fractures created by injecting a viscous fluid from a bore-
hole (see Refs. [19,51–53] for detailed reviews). The development
of the fracture following initiation from the borehole wall requires
consideration of the propagation of damage and may be accommo-
ples with different degrees of heterogeneity.



Fig. 14. Model setup for hydraulic fracturing at laboratory scale: (a) specimen
geometry and loading conditions and (b) injecting pressure (P) versus pressuriza-
tion time (t). r1 and r3 are the maximum and minimum principal stress
components, respectively. The pressurization rate is defined as C = DP/Dt, where
DP and Dt are the increment of fluid pressure and time, respectively.
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dated by damage models as described previously – provided that
compatibility between fluid flow and the evolution of damage is
maintained. Such effects are essential to the modeling of the prop-
agation of hydraulic fractures in a numerically efficient and phys-
ically realistic manner, particular in accurately predicting the
critical pressures and fracturing paths [19,51]. Motivated by this,
we here focus on the modeling of the evolution of fracturing driven
by hydraulic pressure in permeable rocks from the viewpoint of
coupled damage-flow interactions. Simulations are performed to
show how the proposed model predicts the behavior of time-
dependent pressurizing fluid penetrating into the ruptured wall
of the borehole and the resulting induced fracturing away from
the borehole. The effects on initiation pressure and breakdown
pressure of heterogeneities, borehole pressurization rate and per-
meability are taken into account and comparisons of numerical re-
sults with available experimental data are discussed.

4.1. Model geometry

The 2D hydraulic fracture problem considered herein, is a cross-
section through a vertical borehole drilled within a porous perme-
able rock which is assumed to be isotropic in the initial, undam-
aged state, subjected to an initial anisotropic stress field with
maximum principal stress component r1 and minimum principal
stress component r3. The initial pore pressure field in the rock is
neglected and the pressurizing fluid is injected into the borehole
at a constant pressurization rate C until unstable fracture propaga-
tion occurs. This problem can be analyzed by assuming the plane
strain condition and transient state fluid flow. Taking advantage
of the problem half symmetry, the problem geometry is a rectan-
gular region of 200 � 100 mm with a half hole of R0 = 10 mm ra-
dius located half-way along one-side of the mesh. The geometry
comprises 200 � 100 = 20,000 microscopic elements (REVs), as
shown in Fig. 14a. The boundary conditions correspond to a roller
along the left side and the line of symmetry and tractions applied
at the top boundary (r1) and the right boundary (r3). All bound-
aries are zero flux boundaries except for the borehole where the
fluid is injected as an increasing hydraulic pressure P with time
(P is represented by a step function, as shown in Fig. 14b). The rel-
evant material parameters used in the simulations are shown in
Tables 2 and 3.

4.2. Effective stress and pore pressure field around borehole

The first basic problem we are here interested in is the evolu-
tion of poroelastic stress around the borehole caused by fluid pres-
surization. Also, this problem provides a further validation test for
the modeling of coupled hydraulic-mechanical processes. The
closed-form poroelastic solutions for a borehole ‘‘instantaneously’’
drilled in a non-hydrostatic stress field [54] presents the short-
time asymptotic solutions for the region near the borehole. Follow-
ing these solutions, the stress field and pore pressure distribution
around the pressurized borehole can be derived analogously.

Simulations which assume that no damage occurs in the rock
were performed to define the poroelastic effects around the bore-
hole. The maximum principal stress, r1, and minimum principal
stress, r3 are �6.0 MPa and �1.0 MPa, respectively. A constant
fluid pressure, P, of 1.0 MPa is applied in the borehole. A two-step
solution scheme is utilized to simulate the realistic process of fluid
injection whereby the numerical calculation is first performed in
the mechanical-only model to reach an initial equilibrium, and
then with this equilibrium state as initial conditions, the calcula-
tion is subsequently run in the solid–fluid coupling model to a spe-
cific time. The variation of pore pressure, tangential and radial
effective stresses with radius are compared to the analytical results
for three values of early times (t = 0.01 s, 0.05 s and 0.1 s) and along
the direction of the vertical diameter (h = 90�) in Fig. 15. The figure
shows clearly that the numerical simulation results agree well
with the analytical predications. Moreover, it is noted that the pore
pressure and effective stress on the borehole wall are independent
of time, but they increase gradually with time in the vicinity of the
borehole. On the borehole wall (r = R0), the tangential effective
stress is tensile and it reaches a maximum value of r0h ¼ 4:3 MPa
at the point h = p/2. This is congruent with the reduced form of
these expressions for maximum tangential effective [55] as:

r0h max ¼ P½2� að1� 2v0Þ=ð1� v0Þ� þ 3r3 � r1 ¼ 4:4 MPa ð13Þ

where a is a scalar Biot effective stress coefficient and v0 is Poisson’s
ratio. This equation also indicates that the maximum tangential
effective stress is determined by just the borehole pressure P and
is independent of time and the pore pressure distribution beyond
the borehole wall. This implies that the traditional hydraulic-frac-
turing criterion based on Eq. (13) cannot interpret the effect of per-
meability and pressurization rate on breakdown pressure [56].

4.3. Evolution of hydraulic fractures

In hydraulic fracturing, a critical problem of interest is how to
appropriately predict the failure mode of rock under conditions
of fluid injection and the associated breakdown pressure. To illus-
trate this point, numerical simulations are completed using this
coupled damage-flow model to represent the progressive hydraulic
fracturing process. The numerical specimens are assumed to have a
homogeneity index of elastic modulus of km = 2.5, a homogeneous
permeability, and they are subjected to a maximum principal
stress of �6.0 MPa and minimum principal stress of �1.0 MPa.
The fluid is injected into the borehole at a constant pressurization
rate of C = DP/Dt = 0.50 MPa/s, where DP = 0.5 MPa denotes the
pressure increment and Dt = 1.0 s denotes the time increment.



Fig. 15. Analytical and simulated poroelastic stress variations around the borehole
with radius at h = 90� for the specified time (t = 0.01 s, 0.05 s and 0.1 s): (a) pore
pressure (p), (b) tangential effective stress ðr0hÞ, and (c) radial effective stress ðr0rÞ.

Fig. 16. Fracture propagation length and AE event counts as a function of injection
pressure for the simulated specimen with a homogeneity index for the elastic
modulus of km = 2.5. The fluid is injected into the borehole at a constant
pressurization rate of C = 0.50 MPa/s.

Fig. 17. Numerically obtained (a) hydraulic fracture patterns and (b) pore pressure
distribution in the specimen with homogeneity index of elastic modulus of km = 2.5
for a particular computation step under the breakdown pressure. L is defined as the
hydraulic fracture propagation length, d0 is a distance at which the unstable
hydraulic fracture initiates at breakdown pressure, and R0 is the radius of the
borehole.
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Fig. 16 presents the resulting fracture propagation length and
AE event counts as a function of injection pressure during the bore-
hole pressurization process. The fracture propagation length L is
calculated by the radius of a circle which just covers the fractured
zones, as shown in Fig. 17a. As can be seen from Fig. 16, there are
two typically critical points (i.e. Points A and B) to distinguish the
different stages of the hydraulic fracturing process. When the fluid
pressure is increased to Point A (Pi = 6.0 MPa), acoustic emissions
are activated immediately. This implies that the fracture first be-
gins to propagate. Following Ref. [19], the pressure at Point A is
called the fracture initiation pressure, Pi. Beyond Point A, the con-
tinually increasing fluid pressure drives the fracture to propagate
stably until the pressure reaches Point B, where Pb = 12.0 MPa. At
Point B, the acoustic emission event rate increases dramatically
and the facture propagates without increasing the hydraulic pres-
sure. The pressure at Point B is defined as the breakdown pressure,
Pb. It is seen that the fracture initiation pressure Pi is about 50% of
the corresponding breakdown pressure Pb. In addition, the unsta-
ble hydraulic fracture initiates under the breakdown pressure at
a point apart from the borehole wall by a distance of d0 = 8.9 mm
(see Fig. 17a), rather than a point on the borehole wall predicted
by the conventional theories of hydraulic fracturing [55,57]. These
observations are also supported by recent theoretical and experi-
mental investigations [58,59].



Fig. 18. Influence of (a) mechanical homogeneity index (km = 1.5, 2.0, 2.5, 3.0, 6.0
and 10.0) and (b) REV size (LREV = 0.5, 1.0, 1.25, 2.0, 3.125 and 4.0 mm) on fracture
initiation pressure (Pi), breakdown pressure (Pb), and the distance (d0) for unstable
hydraulic fracture initiation of numerical specimens.
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Furthermore, Fig. 17 displays the view of the hydraulic fracture
patterns and the associated pore pressure distribution in the
numerical specimen for a particular computation step under the
breakdown pressure. From Fig. 17a, it is seen that the macroscopic
hydraulic fracture grows progressively in the direction parallel to
the maximum principal stress r1. However, the fracture shows a
relatively rough and irregular trajectory. This is caused by the het-
erogeneity of the specimen. Indeed, the fracture propagation is
controlled by the pre-existing field of defects (initial damage) in
the material with statistical features. In addition, it is also interest-
ing to note from Fig. 17b that a connected flow path is created
which conducts fluid directly from the borehole to the open
hydraulic fracture. That is why the pore pressure within the frac-
ture is identical to the injection pressure in the borehole. Such frac-
ture and flow patterns closely resemble the observations in
hydraulic fracturing experiments [60]. It also confirms that the
proposed numerical model is capable of capturing the evolution
of fracturing and flow in a physically realistic manner.

4.4. Effect of heterogeneity

It is known that fracture propagation usually selects a path of
least resistance within the material. Consequently, the heterogene-
ity of the rock, reflecting a random location of local strength, most
strongly controls the hydraulic fracturing behavior in many ways,
including fracture initiation pressure, breakdown pressure and
fracture propagation path. To investigate the effect of heterogene-
ity, a series of simulations were conducted in which various homo-
geneity indices of elastic modulus (km = 1.5, 2.0, 2.5, 3.0, 6.0 and
10.0) were used with principal stresses of r1 = � 6.0 MPa and r3 -
= � 1.0 MPa and a constant pressurization rate of C = 0.50 MPa/s.
Only the mechanical heterogeneity is examined here, and the ef-
fect of permeability is discussed in the following subsection.

Fig. 18a presents the results of fracture initiation pressure Pi and
breakdown pressure Pb for the specimens with varying levels of
mechanical homogeneity (indices). The distance d0 at which the
unstable hydraulic fracture initiates under breakdown pressure is
also plotted in this figure. It is demonstrated that with increasing
homogeneity (identified by an increasing index) both initiation Pi

and breakdown Pb pressures increase gently but d0 drops rapidly.
That is to say, for more homogenous rock a higher hydraulic pres-
sure is required to initiate fracture and to also lead to breakdown,
and moreover, the breakdown tends to take place closer to the
borehole wall. Yang [19] also obtained similar results by using
the RFPA-Flow code. Such an effect of heterogeneity can be ex-
plained by the rationalization that the random distribution of
mechanical properties in rocks plays a leading role in fracture evo-
lution. For more heterogonous rock, it generally contains more
weaker areas (pre-existing defects) which are more likely to initi-
ate and propagate under lower hydraulic pressure, thus having
lower critical pressures (i.e. Pi and Pb). On the other hand, it is
not hard to understand that more ruptured zones occur in the het-
erogeneous rock than homogenous rock at the same hydraulic
pressure. This may explain why the distance d0 declines with an
increasing homogeneity index.

Furthermore, it is worthwhile noting that the present model is
scale-dependent. In addition to the effect of the magnitude of het-
erogeneity variation, the hydraulic fracturing behavior depends on
the spatial length scale associated with the heterogeneity. To
examine the effect of the length scale of heterogeneity, a set of sim-
ulations with the same mechanical homogeneity index (km = 2.5)
were performed in which various sizes of the REV (LREV = 0.5, 1.0,
1.25, 2.0, 3.125 and 4.0 mm) were used to discretize the problem
geometry (Fig. 14a). The resulting fracture initiation pressure Pi,
breakdown pressure Pb and its associated distance d0 are shown
as a function of the REV size in Fig. 18b. It is apparent that the in-
crease in size of the REV leads to an approximately linear growth of
both initiation pressure Pi and breakdown pressure Pb but a de-
crease of d0. One possible reason for the increase of Pi and Pb is that,
as can be seen from Fig. 15, the average effective stresses and pore
pressure over the larger REV are less than those over the smaller
REV under otherwise identical conditions, and hence the larger
REV generally requires a higher hydraulic pressure to develop rup-
ture. Conversely, when an identical distribution function of heter-
ogeneity and associated parameters are adopted in the same model
geometry, the rock composed of the larger REVs will include a rel-
atively small number of weaker elements. Consequently, for rock
comprising the larger REVs, fewer elements are ruptured and high-
er hydraulic pressures are required, which is consistent with hav-
ing a higher critical pressure Pi and Pb and a lower distance d0. It is
clear that the length scale effect leads to different results. A reason-
able REV size should be chosen according to the size of the fracture
process zone [33,36].

4.5. Effect of pressurization rate and permeability

The above discussion has demonstrated that the proposed mod-
el is capable of capturing the principal features representing
hydraulic fracturing in permeable rock in a mechanistically consis-
tent manner. Here, we focus on another interesting problem re-
lated to unusual phenomena related to the pressurization rate/
permeability dependence of breakdown pressures [60,61] during
hydraulic fracturing. This is a controversial and only partially re-



Table 4
Tensile strength of the borehole evaluated from the numerical simulation and the
conventional theories (H–F solution [57] and H–W solution [55]) for different
permeability and pressurization rates.

Permeability (m2) Evaluated tensile strength (MPa)

Numerical simulation H–F solution H–W solution

1E�19 14.16 18.16 13.50
5E�19 14.37 18.16 13.50
1E�18 14.45 18.16 13.50
5E�18 14.07 17.44 13.00
1E�17 14.26 17.44 13.00
5E�17 14.76 16.72 12.50
1E�16 14.64 15.99 12.00
5E�16 14.87 14.55 11.00
1E�15 14.61 13.83 10.50
1E�14 14.86 13.83 10.50

Pressurization rate (MPa/s)
1E�3 14.26 13.83 10.50
5E�3 14.61 13.83 10.50
1E�2 14.86 14.55 11.00
5E�2 14.64 15.99 12.00
1E�1 14.76 16.72 12.50
5E�1 14.26 17.44 13.00
1E0 14.07 17.44 13.00
5E0 14.45 18.16 13.50
1E1 14.37 18.16 13.50
5E1 14.16 18.16 13.50
1E2 14.01 18.16 13.50
Average 14.46 16.51 12.36
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solved issue with regard to interpretation of the critical breakdown
pressure in hydraulic fracturing.

There are two classical formulas for interpreting breakdown
pressure in terms of far-field stresses and depending on the fluid
pressure boundary conditions. The Hubbert–Willis (H–W) solution
[57] is for ‘‘impermeable’’ rocks where the fluid does not penetrate
the skin of the borehole wall and the Haimson–Fairhurst (H–F)
solution [55] is for ‘‘permeable’’ rocks where the borehole skin is
permeated by the injecting fluid. These different conceptualiza-
tions result in two different predictions of fracture initiation pres-
sure representing end members of zero (H–W) and finite
permeability (H–F), respectively, as:

PHW ¼ rt � 3r3 þ r1

PHF ¼ rt�3r3þr1
2�að1�2vÞ=ð1�vÞ

(
ð14Þ

where PHW and PHF are the breakdown pressures related to the
impermeable H–W and permeable H–F solutions, respectively, r1

and r3 are the far-field principal stresses (|r1| P |r3|, with com-
pression considered negative), rt is the tensile strength of the rock.
Note that Eq. (14) for the breakdown pressure is derived based on
the criterion that breakdown occurs when the tangential Terzaghi
effective stress at the borehole wall reaches the tensile strength of
rock. But in reality, the fracture propagation after initiation could
be still stable until the hydraulic pressure reaches another critical
point. Consequently, the critical pressure predicted by Eq. (14)
should be considered a fracture initiation pressure instead of a
breakdown pressure. In addition, neither pressurization rate nor
permeability is incorporated in Eq. (14), so it is unable to explain
such effects on breakdown pressure or the transitional pressuriza-
tion rate to permeability ratio where one solution will transit from
‘‘impermeable’’ to ‘‘permeable’’.

To explore whether the numerical model presented in this pa-
per could replicate the effect of borehole pressurization rate and
permeability on breakdown pressure, two sets of simulations are
performed with various permeability and borehole pressurization
rates: (i) the borehole pressurization rate is retained at
C = 0.5 MPa/s, and the initial permeability ranges from 10�19 to
10�14 m2; and (ii) the initial permeability is retained at
k0 = 10�17 m2, and different constant rates of pressurization are ap-
plied between 10�3 and 10�2 MPa/s. These correspond to a series of
time increments Dt ranging from 0.005 to 500 s when the constant
hydraulic pressure increment DP = 0.5 MPa is adopted for different
models. To facilitate comparison between models, the numerical
specimens are assumed to be homogenous in both mechanical
and hydraulic properties.

Table 4 lists the numerically-obtained tangential effective stres-
ses acting on these first-ruptured REVs at the borehole wall for dif-
ferent values of pressurization rate and permeability. It is clear that
all these values under a variety of conditions remain close to a
mean value of rM

t ¼ 14:46 MPa. This implies that the fracture initi-
ation occurs at the same tangential effective stress rM

t and this va-
lue can be regarded as the tensile strength of the rock containing
the borehole. Such observation conforms to an extensively used
and experimentally verified criterion in the theories of hydraulic
fracturing that fracturing initiation takes place as the maximum
tangential effective stress at the borehole exceeds the tensile
strength of the rock, which further confirms the validity of the pro-
posed model. In addition, Table 4 also lists the theoretical values of
tensile strength of the borehole (rHW

t and rHF
t ) evaluated from the

H–W solution and H–F solution (Eq. (14)) with different fracture
initiation pressures. It is seen that the H–F solution overestimates
the tensile strength of the borehole while the H–W solution under-
estimates that value. However, this error deceases for the H–F
solution in the case of higher permeability or lower pressurization
rate and for the H–W solution in the case of lower permeability or
higher pressurization rate. This infers that the H–F solution and H–
W solution are derived accurately from the two extremes of ‘‘per-
meable’’ rocks and ‘‘impermeable’’ rocks, respectively. But com-
pared with these theoretical solutions, the proposed numerical
model predicts the tensile strength of the borehole with sufficient
accuracy from the microscopic standpoint using a microcrack
propagation criterion instead of a macroscopic fracturing criterion
related to the tensile strength.

Fig. 19 shows the simulated results of fracture initiation pres-
sure and breakdown pressure as a function of borehole pressuriza-
tion rate and permeability. It is seen that the transition of the two
critical hydraulic pressures from one regime (lower pressurization
rate/permeability) to another (higher pressurization rate/perme-
ability) are well replicated by the present numerical model. With
the increase of pressurization rate, the simulated breakdown pres-
sure tends to increase (see Fig. 19a), which is in agreement with
typical experimental observations [60,61]. Moreover, it is shown
in Fig. 19a that the simulated initiation pressure first remains lar-
gely unchanged in the lower pressurization rate regime
(<10�2 MPa/s), then approximately linearly increases with the
pressurization rate, until it finally remains constant in the higher
pressurization rate regime (>101 MPa/s). Interestingly, the H–W
solution for ‘‘impermeable’’ rocks and H–F solution for ‘‘perme-
able’’ rocks (see Eq. (14)) comprise the lower and upper limit of
the simulated initiation pressure, respectively, as shown by the
two dashed lines in Fig. 19a. Such results are consistent with the
previous theoretical investigation [56]. This may also imply that
the proposed two-scale model has a unique ability to provide deep
insight into the effect of fluid permeation on the hydraulic fractur-
ing behavior.

Furthermore, Fig. 19b clearly shows the numerically-obtained
evolution of two critical hydraulic pressures with permeability.
This numerical approach provides a useful virtual experimental
tool to verify the theoretical models. From Fig. 19b it is apparent
that both initiation pressure and breakdown pressure generally de-
crease with permeability. In particular, the simulated initiation
pressure in the lower permeability regime (<10�18 m2) approaches
the H–W solution (for ‘‘impermeable’’ rocks) while that in the



Fig. 19. Influence of pressurization rate and permeability on fracture initiation
pressure (Pi) and breakdown pressure (Pb). PHW and PHF are the critical pressures
evaluated from H–W [57] solution and H–F solution [55] with the average tensile
strength in Table 4, respectively.
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higher permeability regime (>10�15 m2) is close to the H–F solution
(for ‘‘permeable’’ rocks). The simulation results demonstrate the
validity of these two classical formulae (Eq. (14)) representing
two extremes in permeability magnitudes. More importantly, the
natural transition of hydraulic fracturing behavior in rock from
‘‘impermeable’’ to ‘‘permeable’’ are reproduced by the proposed
model in a physically realistic manner.

The achievements of the present model may be attributed to the
conceptual model of fracturing in which the REV of the rock, intrin-
sic to this model, is proposed to characterize an element where
fracturing may occur. The pressurization-rate-dependent and per-
meability-dependent critical hydraulic pressures shown in Fig. 19
may be interpreted using the conjecture based on the proposed
model that the higher permeability causes the fluid to more rapidly
penetrate into the rock surrounding the borehole and that the low-
er pressurization rate also allows the wider spread of fluid in the
rock due to the extended duration of injection. Both the higher per-
meability and lower pressurization rate would elevate the average
pore pressure and the average effective stresses over the REVs of
rock in the vicinity of the borehole, and thus lead to the rupture
of these REVs at the lower hydraulic pressure. Moreover, the suffi-
ciently lower permeability and higher pressurization rate would
cause an extremely small distance of fluid penetration from the
borehole. Conversely, fluid penetration would be considerable
and tend to be steady surrounding the borehole in the case of suf-
ficiently higher permeability and lower pressurization rate. Both of
the two extremes would result in a slight change in the average
pore pressure and the average effective stresses over the REVs of
rock around the borehole. This may explain why the simulated ini-
tiation pressure in the lower permeability/higher pressurization
rate regime or the higher permeability/lower pressurization rate
regime remains largely unchanged.
5. Conclusions

The modeling of coupled evolution of fractures and fluid flow re-
mains an important topic in a variety of rock engineering problems.
Continuum numerical methods are predominant in the modeling of
rock engineering practice problems, but their capacities are limited
in simulating the problem of fracturing evolution coupled by fluid
flow. There is a requirement for them to be extended to adequately
accommodate such coupled behavior. Motivated by this, we pres-
ent an approach based on a two-scale conceptual model represent-
ing rocks containing flaws and in the framework of a continuum
method to model the interaction between the fracture evolution
and extension coupled with fluid flow. This approach combines a
microcrack-based continuous damage model with generalized Biot
poroelasticity. The macroscopic elastic tensors of stiffness, Biot
effective stress coefficient as well as that of overall permeability
are directly related to the microstructural microcrack kinetics. This
approach overcomes the disadvantages encountered in the previ-
ous phenomenological hydro-mechanical coupling models
[20,21]. The proposed modeling approach allows the prediction of
the transition from random microcracking to macroscopic localized
fracturing together with the evolution of fluid flow in permeable
rocks during processes of hydro-mechanical interaction.

Examining the response of a single elementary REV with vary-
ing confining pressures and fluid pressures demonstrates the basic
nature of the proposed model. The numerical results show that the
confining pressure increases both the ultimate strength and the
strain hardening range but that elevated pore pressure decreases
them. It is also apparent that the major damage is accumulated
in the direction perpendicular to the loading axis. Such anisotropic
damage causes the permeability in the loading direction and the
lateral Biot effective stress coefficient to increase but the lateral
modulus to deteriorate. The permeability at the peak stress state
is increased by nearly three orders of magnitude relative to the ini-
tial permeability. These general characteristics, replicated by the
proposed model, are in good agreement with reported experimen-
tal observations [45].

Simulations of standard biaxial compression experiments fur-
ther verify the general macroscopic behavior of the coupled dam-
age and flow model. Heterogeneity in both mechanical and
hydraulic properties is introduced in the model to simulate local-
ized failure. The simulation results replicate typical experimental
observations including the complete stress–strain relation, perme-
ability evolution, acoustic emission (AE) rates and failure modes.
Initial heterogeneity strongly influences the resulting fracture pat-
terns and flow paths. The more heterogeneous rocks show more
ductile post-failure behavior, lower peak strength and permeabil-
ity, and more complex fracture patterns. Another notable observa-
tion is that the presence of the resulting macroscopic shear
fracture is well reproduced by the proposed model in which only
a Mode I fracture criterion is employed. The macroscopic shear
fracture results from the coalescence of multiple tensile micro-
cracks congruent with common interpretations of shear failure
[49]. However, since no shear strength criterion is applied to the
contacting faces of flaws within the damage zone, no prediction
of shear-band orientation is possible.

Finally, the proposed modeling approach is applied to simulate
hydraulic fracturing in permeable rocks. Fracture propagation dri-
ven by hydraulic pressure is examined from the viewpoint of cou-
pled damage-flow interactions. The simulation results indicate that
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the proposed model is capable of reproducing the evolution of
hydraulic fracturing and fluid flow in permeable rocks in a physi-
cally realistic manner. This conceptualization is capable of repre-
senting the two critical pressures, i.e. fracture initiation pressure
and breakdown pressure, during the hydraulic fracturing process.
The fracture initiation pressure is lower than the breakdown pres-
sure and the unstable hydraulic fracture only initiates under break-
down pressure at a point distant from the borehole wall. The
effects of heterogeneities, length scale of the REV, rock permeabil-
ity and borehole pressurization rate on critical pressures are also
examined. It is found that more homogenous rock or the rock com-
posed of the smaller REVs requires lower hydraulic pressure to ini-
tiate fracture and breakdown. Moreover, both the initiation
pressure and breakdown pressure decrease with the permeability
but increase with the pressurization rate, and the theoretical
impermeable wall (H–W) and permeable wall (H–F) solutions give
the upper and lower limit of the initiation pressure, respectively.
Such numerical results are consistent with experimental observa-
tions [60,61] and theoretical results [56].

In summary the presented microcrack-based damage and flow
coupled model is capable of predicting the evolution of fracturing
and fluid flow in permeable rocks, inclusive of key processes at
microscale, in a physically realistic manner. It can be successfully
applied to a variety of hydro-mechanical problems in practical rock
engineering.
Appendix A

For the 2-D plane strain problem (Di3 = D3i = 0), the damaged
elastic modulus tensor C(D) can be expanded to the following ma-
trix form:
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The components of Biot effective stress coefficients tensor a(D) are
expanded as follows:

a11 ¼ 1� 3kþ2lþ4ðAþBÞD11þAD22
3Ks

a22 ¼ 1� 3kþ2lþðAþBÞD22þAD11
3Ks

a12 ¼ a21 ¼ � ð3Aþ4BÞD12
3Ks

8>><
>>: ðA2Þ

Similarly, Biot modulus M(D) is expressed as:

M ¼ Ks

1� 9kþ6lþð6Aþ4BÞðD11þD22Þ
81Ks

� �
� /ð1� Ks

Kf
Þ
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