Computational Reservoir Geomechanics Derek Elsworth ShanDong University, Jinan, China Eebruary 18 – 22, 2019

February 18 – 22, 2019
http://www.ems.psu.edu/~elsworth/courses/comp res geomechs/2019/http://www.youtube.com/derekelsworth">http://www.youtube.com/derekelsworth

Day 1 (Monday February 18 th)	
1. Reactive Flow and Permeability Dynamics – I	[09:00-10:15]*
2. Reactive Flow and Permeability Dynamics – II	[10:30-11:45]*
Lunch	[11:45-14:30]
3. Introduction to Computational Reservoir Geomechanics [1:1]	[Self-Study]
4. Fluid Flow and Pressure Diffusion [2:-]	51 4 20 4 5 4 5 3
a. Finite Element Methods [2:1]	[14:30-15:45]
b. Conservation Equations and Galerkin Approximation [2:2]	[16:00-17:15]
Day 2 (Tuesday February 19 th)	
1. Fluid Flow and Pressure Diffusion, [2:-] Continued	
a. 2D Triangular Constant Gradient Elements [2:3]	[09:00-10:15]
b. 1D Isoparametric Elements [2:4]	[10:30-11:45]
c. 2D Isoparametric Elements and Numerical Integration [2:5]	[Self-Study]
d. Transient Behavior – "Mass" Matrices [2:6]	[Self-Study]
e. Transient Behavior – Integration in Time [2:7]	[Self-Study]
Day 3 (Wednesday February 20 th)	
1. Mass Transport [3:-]	
a. Conservation of Mass and 1D Models [3:1]	[Self-Study]
b. 2D Constant Gradient Elements [3:2]	[Self-Study]
c. Sorption and Reactive Transport [3:3]	[Self-Study]
2. Momentum Transport [4:-]	. ,,
a. Self Study – Fluids, Navier-Stokes Equations [4:1]	[Self-Study]
Day 4 (Thursday February 21st)	FG 10 G 1 7th
1. Seismicity-permeability Coupling in Breaching and Sealing of Caprocks	[Self-Study]*
2. Solid Mechanics [5:-]	F00 00 10 1 <i>5</i> 1
a. 1D and 2D Elements [5:1]	[09:00-10:15]
b. Self Study – Constitutive Equations [5:2]	[Self-Study]
c. Self Study – Preamble for Coupled Systems [5:3]	[Self-Study]
Day 5 (Friday February 22 nd)	
1. "Coupled" Multiphysics Systems [6:-]	
a. Dual-Porosity/Dual-Permeability Models [6:1]	[09:00-10:15]
b. Coupled Hydro-Mechanical Models [6:2]	[10:30-11:45]
c. Self-Study – ComSol Models for HM Coupling [6:3]	[Self-Study]
d. Self-Study – EGEEfem Models for HM Coupling [6:4]	[Self-Study]