Seismicity-Permeability Coupling in the Breaching and Sealing of Reservoirs and Caprocks

<u>Derek Elsworth</u> (Penn State), Yi Fang (PSU), Chaoyi Wang (PSU), Takuya Ishibashi (AIST/PSU), Yves Guglielmi (LBNL/Aix-Marseille), Kyunjae Im (PSU), Yunzhong Jia (PSU/NTU), Brandon Schwartz (PSU), Ziyan Li (PSU), Elif Yildirim (PSU), Andre Niemeijer (UU), Thibault Candela (TNO), Ben Madara (PSU), Mengke An (Tongji), Fengshou Zhang (Tongji), Jacques Riviere (Grenoble/PSU), Parisa Shokouhi (PSU), Chris Marone (PSU)

Some Key Issues in Energy Supply

Needs

Constraints and Solutions

CO₂ Sequestration - Linking Induced Seismicity to Permeability Evolution

Controls on seismicity - the aseismic-seismic transition Controls on maximum magnitude event RSF - for permeability evolution Controls on stability and permeability Mineralogical & textural Structural Healing and sealing and the seismic cycle Energy From Hot Rocks - EGS and SGRs

Anomalous seismicity - Newberry Demonstration Project Permeability scaling - Newberry Demonstration Project

Summary

US Energy Consumption 2015 - Key R&D Strategies ~100 Quads = 100 EJ = 100 tcf CH_4 (~20% of World)

[After Pat Dehmer, US DOE, Office of Science, 2009; Sankey Diagram from LLNL]

Capacity Needs - Stabilization Wedges

Fill the Stabilization Triangle with Seven Wedges

CARBON DIOXIDE EMISSIONS FLAT FOR THIRD YEAR

Rising renewables use and improvements in energy efficiency have kept the world's carbon dioxide emissions stable.

CO₂ EMISSIONS KEEP ON RISING

Industrial carbon-dioxide emissions are projected to rise again globally this year, even as individual countries' emissions look very different.

Mechanical/Stability and Transport Properties of Fractured Rocks

Sub-Surface Geoengineering - Some Key Issues in Sustainable Recovery of Energy Resources

"All-of-the-Above"

Sequestration (CO₂/HLW)

Permeability-seismicity coupling Seismic-aseismic deformation and implications Scale dependencies Rational models for permeability-seismicity linkage

Gas Shales - making permeability

Making permeability - Gas fracturing Sustaining permeability in fracs/refracs Elevating long term permeability - dp, dc, dT

EGS Geothermal Resources - controlling permeability

Uniform sweep - permeability control

Complex coupled process interactions

Manifold approaches

Permeability-seismicity linkage for characterization

True control and engineering of reservoirs & migration of O/G technology

Summary

Seismicity-Permeability Coupling in the Breaching and Sealing of Reservoirs and Caprocks

<u>Derek Elsworth</u> (Penn State), Yi Fang (PSU), Chaoyi Wang (PSU), Takuya Ishibashi (AIST/PSU), Yves Guglielmi (LBNL/Aix-Marseille), Kyunjae Im (PSU), Yunzhong Jia (PSU/NTU), Brandon Schwartz (PSU), Ziyan Li (PSU), Elif Yildirim (PSU), Andre Niemeijer (UU), Thibault Candela (TNO), Ben Madara (PSU), Mengke An (Tongji), Fengshou Zhang (Tongji), Jacques Riviere (Grenoble/PSU), Parisa Shokouhi (PSU), Chris Marone (PSU)

Some Key Issues in Energy Supply

Constraints and Solutions

CO₂ Sequestration - Linking Induced Seismicity to Permeability Evolution

Controls on seismicity - the aseismic-seismic transition Controls on maximum magnitude event RSF - for permeability evolution Controls on stability and permeability Mineralogical & textural Structural Healing and sealing and the seismic cycle

Energy From Hot Rocks - EGS and SGRs Anomalous seismicity - Newberry Demonstration Project Permeability scaling - Newberry Demonstration Project Summary

Induced Seismicity

NEWSFOCUS

SEISMOLOGY

Learning How to NOT Make Your Own Earthquakes

As fluid injections into Earth's crust trigger quakes across the United States, researchers are scrambling to learn how to avoid making more

First off, fracking for shale gas is not touching off the earthquakes that have been shaking previously call megions from New Mexico to Texas, Ohio, and Arkansas. But all manner of other energy-related fluid injection—including deen disosal of fracking's wastewater.

scismicity, they are beginning to see a way ahead: learn as you go. Thorough preinjection studies followed by close monitoring of cautiously increasing injection offer to lower, although never eliminate, the risk of triggerine intolerable earthouakes. Ohio rumblings. Wastewater injected at this site in Youngstown triggered jolting earthquakes that prompted injection-well shutdowns and strong new regulations.

Arkansas. In the current March/April issue of Seismological Research Letters, the University of Memphis seismologist recounts his learn-as-you-go experience with injectiontriggered quakes strong enough to seriously shake up the locals.

Fracking for natural gas, formally known as hydraulic fracturing, had come to Arkansas around 2009. Not that a seismologist in Memphis would have noticed. Injecting water into gas-bearing shale at high pressures does break the rock to free the gas—that's the point, after all. But the resulting tiny quakes rarely get above magnitude 0 (the logarithmic scale includes negative numbers), never mind to the magnitude -3 quakes that poople might feel. But shale gas drillers need to dispose of

But shale gas drillers need to dispose of the millions of liters of water laden with natural brines and added chemicals that flow back up after a shale gas well has been fracked (*Science*, 25 June 2010, p. 1624). Injecting fracking wastewater into deep rock is a comnon solution, so starting in April 2009, 1- to 3-kilometer-deep disposal wells were sunk in the vicinity of Guy (population 706) and Greenbrier (population 4706), Arkansas.

That's when Horton and Scott Ausbrooks of the Arkansas Geological Survey took note of a curious cluster of earthquakes near Greenbrier. The Guy-Greenbrier area had had only one quake of magnitude 2.5 or greater in 2007 and two in 2008. But there were

Induced Seismicity

Induced Seismicity

[Elsworth et al., Science, 2016]

Mechanisms of Induced Seismicity

Mechanisms of induced seismicity

Both wastewater injection and gas extraction can cause induced earthquakes. Detailed observations from the midwestern United States and Groningen, Netherlands, show that in both cases, preexisting conditions in Earth's crust are of central importance.

decrease is needed to trigger an event.

stressed fault to fail. causing an earthquake.

Pohang (South Korea) Earthquake (2017) Mw~5.5

EGS Stimulation Related?

g3.ems.psu.edu

derek.elsworth@psu.edu

Anatomy of the EQ

Maximum Event Magnitude - Equivalent Porous Medium

Maximum Anticipated Moment Magnitude – M or M_dot? M_{Gross} or M_{Net}? Triggered –vs– Induced?

Maximum Event Magnitude - Penny-Shaped Crack

Anticipated Thermal Stressing in EGS

$$M = \frac{1}{(1-c)} G\Delta V \left[\underbrace{\alpha_T \Delta T_f \frac{1}{(1-n)} \frac{\rho_f c_f}{\rho_R c_R}}_{postfactor} \right] \left\{ \begin{aligned} \nu &= 0.25 \\ \mu &= 0.6 \end{aligned} \right\}$$

$$ostfactor = O[10^{-5} (\frac{1}{k}) \times 100(K) \times 1 \times \frac{1}{k}] \sim 10^{-5}$$

Fluid Pressure -versus- Thermal Stressing-based Reactivation

Shear Offset Scaling - Seismic Only

Fault Zones as Seals and Pathways

Little Grand Wash Fault, UT

[Patil et al., 2017; after Vrolijk et al., 2005]

[Huppert and Neufeld, Ann. Rev. Fluid Mechs., 2014]

Controls on Permeability Structure

Subduction Zone Megathrusts and the Full Spectrum of Fault Slip Behavior

Ide et al., 2007; Peng & Gomberg, 2010

Brittle Friction Mechanics, Stick-slip

Stick-slip (unstable) versus stable shear

Stick-slip dynamics

$$m\ddot{x}' + \Gamma \dot{x}' + f(\dot{x}', x', t, \theta) = F_s$$

 $m\ddot{x}' + \Gamma \dot{x}' + f(\dot{x}', x't, \theta) = K(v_{lp} - v)t$
 $m\ddot{x}' + Fx' = K(v_{lp} - v)t$

[After C.J. Marone, Pers. Comm., 2017]

Requirements for Instability

Shear strength on the fault is exceeded

 i.e.

 $\tau > \mu \sigma'_n$

2. When failure occurs, strength is velocity (or strain) weakening - *i.e.*

$$a-b < 0$$

2. That the failure is capable of ejecting the stored strain energy adjacent to the fault (shear modulus and fault length) - *i.e.*

$$\frac{G}{l} < K_c = \frac{(b-a)\sigma_n'}{D_c}$$

 That effective normal stresses evolve that do not dilatantly harden the fault and arrest it via the failure criterion of #1 - *i.e.*

$$1 >> v_D = \frac{w^2}{k} \frac{v_s \eta}{K_s D_c}$$

Seismic – Aseismic Transition Full Spectrum of Slip Behaviors

 $K_{c} = \frac{(\sigma_{n} - p)(a - b)}{D_{c}} \ge \underset{l}{\overset{G}{=}} K$ Promote Aseismic Response: $K_{c} < K$ Otherwise Seismic Slip if: $K_{c} > K$ Increase: $K_{c}; (\sigma_{n} - p); (a - b); l$ Decrease: $D_{c}; G$

Recurrence Requires: *Healing*

[Adapted from C.J. Marone, Pers. Comm., 2017]

Instability Threshold - Penny-Shaped Crack

Instability Threshold - Penny-Shaped Crack

Permeability and Elastic Softening

During the Seismic Cycle

Seismic waves trigger transient changes in elastic properties

Elastic softening coincides with increased permeability

Lab observations of precursors to earthquake-like failure (i.e., elastic wave speed)

Monitoring to assess the critical stress-state in Earth's crust

Potential for management of induced seismicity to maximize geothermal energy production

g3.ems.psu.edu

Rate-State Friction [1]

Velocity Steps

Dilation

Permeability Evolution

Multiple Velocity Steps

Rational Linkages: Rate-State Friction, Porosity and Permeability

Frictional Stability-Permeability Experiments

Frictional Stability-Permeability Observations

g3.ems.psu.edu

Mineralogical Controls on Instability

Green River Shale- Permeability Enhancement

Phyllosilicate-dominant Artificial Sample- Permeability Decrease

Nascent Friction-Stability-Permeability Relationships

Observations

- dk/k₀ increases with increased brittleness (a-b)<0
- dk/k₀ increases with increased frictional strength
- Roles of mineralogy and surface roughness?

Seismicity-Permeability Linkages – Natural Samples

Stability-Permeability Relations in Composites/Mixtures

Role of Texture in Friction-Stability-Permeability

Heterogeneous Mixture

Textured/Layered Mixture

and the second second
A. 1

Multi-Mineral Frictional Strength

Mixture Controls of Frictional Instability

g3.ems.psu.edu

Multi-Mineral Frictional Stability

Evolution of Layer thickness, Coord. Num, and Porosity

Introduction & Motivation

CO₂ bleached sand stone and silt stone showed lower fracture toughness (Major et al. 2014)

Mineralogic Difference

Unaltered Entrada Sand Stone: quartz rich, minor feldspar and calcite, with hematite coating.

Altered Entrada Sand Stone: hematite coating is dissolved, replaced by goethite, no significant change in quartz, feldspar, and calcite. (Major et al. 2014)

Shear Strength -- Unaltered vs Altered

Evolution of friction at 10 MPa normal stress [other normal stresses (5, 15 MPa) show similar trend].

Shear Displacement

Slip-Stability - Unaltered versus Altered

Permeability Evolution

Digital Fractures

DEM Modeling of Rough Fractures

Permeability Evolution - Role of Wear Products

Profiles - Variable RMS and Wear Products

Permeability Changes due to Dynamic Stressing

[[]Elkhoury et al., Nature, 2006]

Dynamic Stressing - Mechanisms

Correlations with Flow Rate

Suggested Mechanism

g3.ems.psu.edu

Healing - Necessary Component of the Seismic Cycle

Shear Permeability Enhancement

Shear Induced Permeability Enhancement

- Later stage shear slip + Incremented duration of prior slip \rightarrow Significant permeability enhancement
- Permeability continuously decreases during hold (Pressure solution?)
- Prior slip permeability recovery took 70 minute after slip ⑦, WG #600 grit case
- Permeability increase appears to be linear to slip distance
- The enhancement is least apparent with rougher surface granite (WG #150 grit)

Pressure solution

- Permeability reduction due to pressure solution in all cases seems to follow power law decay $k = k_0 t^{-p}$ with power p =-0.37
- The enhancement can be significant after extremely long (natural scale) holds
- Can this be applied to natural hydraulic systems?

Permeability Decay - Role of Pressure Solution

Power-law dependence Rigid indenter, Pressure solution Post-shock displacement and power law fits for all data (plaster = red, calcite = blue, halite = green) 3 0.33og₁₀ displacement (µm) 2. 1 0 [Gratier et al., 2014] -2 2.5 0 0.5 1.5 2 log_time (h) Indentation rate: $\Delta b = \alpha t^{\beta}$ Permeability change: $k = k_0 \left[1 - \frac{\Delta b}{b_0}\right]^3 \rightarrow k = k_0 \left[1 - \frac{\alpha}{b_0} t^\beta\right]^3$

Shear Permeability Enhancement

Magnitude of Permeability Enhancement

<u>Absolute</u> perm increase: rougher granite > smoother granite > shale <u>Normalized</u> perm increase: shale > smoother granite > rougher granite <u>Shear</u> permeability increase with duration of prior hold time for Westerly granites

Shear permeability slightly decreases with prior hold time for Green River shale

Stick-Slip Response

Response to Laboratory Earthquakes (Stick Slip)

Pore Pressure Perturbation

Permeability response to pore pressure steps and induced shear slip

- Address question of relative impact of normal and shear stress incremental contributions
- Stepwise incremented pressure pulse to cross critically-(shear)-stressed threshold
- Permeability increases with magnitude of pressure pulse
- Induced shear slip begins at fluid pressure ~600 kPa → Permeability increment becomes larger

Pore Pressure Perturbation

Effect of induced shear slip

- Slope of permeability increment curve changes at initiation of shear slip
- Permeability increment suddenly increases when shear slip initiates (stress threshold)

Seismicity-Permeability Coupling in the Breaching and Sealing of Reservoirs and Caprocks

<u>Derek Elsworth</u> (Penn State), Yi Fang (PSU), Chaoyi Wang (PSU), Takuya Ishibashi (AIST/PSU), Yves Guglielmi (LBNL/Aix-Marseille), Kyunjae Im (PSU), Yunzhong Jia (PSU/NTU), Brandon Schwartz (PSU), Ziyan Li (PSU), Elif Yildirim (PSU), Andre Niemeijer (UU), Thibault Candela (TNO), Ben Madara (PSU), Mengke An (Tongji), Fengshou Zhang (Tongji), Jacques Riviere (Grenoble/PSU), Parisa Shokouhi (PSU), Chris Marone (PSU)

Some Key Issues in Energy Supply

Needs

Constraints and Solutions

CO₂ Sequestration - Linking Induced Seismicity to Permeability Evolution Controls on seismicity - the aseismic-seismic transition Controls on maximum magnitude event R5F - for permeability evolution Controls on stability and permeability Mineralogical & textural Structural Healing and sealing and the seismic cycle

Energy From Hot Rocks - EGS and SGRs

Anomalous seismicity - Newberry Demonstration Project Permeability scaling - Newberry Demonstration Project Summary

Basic Observations of Permeability Evolution and IS

Challenges

- Prospecting (characterization)
- Accessing (drilling)
- Creating reservoir
- Sustaining reservoir
- Environmental issues

Observation

- Stress-sensitive reservoirs
- T H M C all influence via <u>effective stress</u>
- Effective stresses influence
 - Permeability
 - Reactive surface area
 - Induced seismicity

Understanding T H M C is key:

- Size of relative effects of THMC(B)
- Timing of effects
- Migration within reservoir
- Using them to engineer the reservoir

Anomalous Seismicity - The Missing Zone

<u>Questions:</u>

- What is the mechanism of this anomalous distribution of MEQs?
- What does the anomalous distribution of MEQs imply? *Wellbore Characteristics*
- 0-2000m: Casing shoe
- 2000m-3000m: open zone

Spatial Anomaly

- Bimodal depth distribution
- Below 1950 m, only a few MEQs occurred.
- Between 500m and 1800m, 90% MEQs occurred adjacent to the cased part.

Temporal Anomaly

- Deep MEQs occurred within 4 days and diminished after that time.
- Shallow MEQs occurred since the 4th day.

Constraints on Frictional Slip

1. Shear Failure Analysis

2. Friction Experiments

g3center.org

derek.elsworth@psu.edu

RSF Properties

66

Linking MEQs to Permeability Evolution

- 1. Seismicity induced by hydroshearing is controlled by the Mohr-Coulomb shear criterion.
- 2 The frictional coefficient evolves during seismic slip.
- 3 Two types of fractures:
 - Velocity-weakening/seismic fractures and,
 - Velocity-strengthening/aseismic fractures (fracture size smaller than the critical length).
- Fracture interaction is ignored consequently variations in the orientations 4. of principal stresses are negligible

(b) Map View of Reservoir

l0³ [m] scal

eismic fractures

(a) Observed MEOs

Seismicity-Permeability Validation

DoE EGS Collab(oration) Project

Courtesy: Tim Kneafsey (LBNL), Tim Johnson (PNNL), Hunter Knox (SNL), Jonathan Ajo-Franklin (LBNL), Paul Cook (LBNL), Yves Guglielmi (LBNL), Martin Schoenball (LBNL), Hari Neupane (INL) & EGS Collab.

Frontier Observatory for Research in Geothermal Energy

g3center.org

derek.elsworth@psu.edu

Summary

Sub-Surface Science/Engineering is a Key Component to a Sustainable Future

Deep geothermal, unconventional resources and sequestration are examples Access to, and the ability to create and control the "reservoir" is key

Complex Process Interactions Influence Reservoir Evolution

Permeability/Seismicity evolution is strongly influenced by these processes These interactions can be complex and involve:

Mineralogy Structure, texture and heterogeneity Evolving patch dimension

Brittlemess (a-b) and pore-pressure or effective stress level

Role of Fault Core (FC) and Damage Zone (FDZ)

Interseismic Behavior

Necessary to reset permeability for brittle failure

Consistent with observations with far-field reactivation of faults/fractures

Prospects for Permeability-Seismicity Linkage

Observed seismicity is a certifiable predictor of permeability evolution Possible despite potential for aseismic slip

- possibility that aseismic slip -> creep -> no dilation & wear products