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US Energy Consumption 2015 – Key R&D Strategies 
~100 Quads = 100 EJ = 100 tcf CH4 (~20% of World)
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[After Pat Dehmer, US DOE, Office of Science, 2009; Sankey Diagram from LLNL]
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Capacity Needs – Stabilization Wedges

[Rationale in: Pacala & Socolow, Science, 2004, 
www.stabilisation2005.com/day3/Socolow.pdf]

2 billion cars at 60 mpg 
instead of 30 mpg

Low carbon: 1600 GW
(~80 tcf/yr)

Zero carbon: 800 GW
(~40 tcf/yr)

Zero carbon: 700 GW
(~40 tcf/yr)

Zero carbon: 800 GW
(~40 tcf/yr)

Zero carbon: 800 GW
(~40 tcf/yr)

Baseload 
Geothermal

Global Energy Budget
~10-15TW
~500 Quads/yr
~500 EJ/yr
~500 tcf/yr
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[EIA from Nature, March, 2017]

Economic Reccession –vs- Expansion
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[From Nature, December, 2018]
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Mechanical/Stability and Transport Properties of Fractured Rocks

Impermeable Caprock
Formation

Groundwater Formation

Shallow Surface Zone CO
2  Injector

Permeable Saline
Formation
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Groundwater Formation

Shallow Surface Zone

Low Permeability Shale Reservoir
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Pre-existing Fractures

Hyraulic Fractures
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Enhanced Geothermal System

Shale Reservoir Stimulation

CO2 Sequestration
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Sub-Surface Geoengineering – Some Key Issues in 
Sustainable Recovery of Energy Resources

“All-of-the-Above”
Sequestration (CO2/HLW)

Permeability-seismicity coupling
Seismic-aseismic deformation and implications
Scale dependencies 
Rational models for permeability-seismicity linkage 

Gas Shales – making permeability
Making permeability - Gas fracturing
Sustaining permeability in fracs/refracs
Elevating long term permeability - dp, dc, dT

EGS Geothermal Resources – controlling permeability
Uniform sweep – permeability control

Complex coupled process interactions
Manifold approaches 
Permeability-seismicity linkage for characterization 
True control and engineering of reservoirs  & migration of O/G technology

Summary
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Induced Seismicity

[Ellsworth, Science, 2013]
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Induced Seismicity
Seismic/Aseismic Fields

Mid-west Seismic Hazard

US Seismic Hazard
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Induced Seismicity

[Elsworth et al., Science, 2016]
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Mechanisms of Induced Seismicity

[Candela et al., Science, 2018]



derek.elsworth@psu.edug3.ems.psu.edu 13

Pohang (South Korea) Earthquake (2017) Mw~5.5

EGS Stimulation Related?

[Grigoli et al., Science, 2018]

Anatomy of the EQ
15th century EQs Mw~7

Mw<5 since instrumental 
recording in 1903

Mw~5.5 ~30km south of EGS
Mw~5.5 Pohang ~4km depth

Same strike-slip fault

Data         Model InSAR



derek.elsworth@psu.edug3.ems.psu.edu 14

Maximum Event Magnitude – Equivalent Porous Medium

Moment Magnitude 
(Deviatoric)
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Maximum Anticipated Moment Magnitude – M or M_dot?
MGross or MNet? Triggered –vs- Induced?
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Maximum Event Magnitude – Penny-Shaped Crack

Moment Magnitude 
(Deviatoric)
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Anticipated Thermal Stressing in EGS
For a closed system in thermal equilibrium: 
Heat carried by water: 

Heat in closed system:

Volume*Temperature Product: 

Event magnitude: 

Injected volume:

For an open and circulating system (last term loses the preceding porosity):
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Fluid Pressure –versus- Thermal Stressing-based Reactivation
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Shear Offset Scaling – Seismic Only

[Zangeneh et al., 2013]

M~5.8
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Fault Zones as Seals and Pathways

[Patil et al., 2017; after Vrolijk et al., 2005]

Little Grand Wash Fault, UT

[Huppert and Neufeld, Ann. Rev. Fluid Mechs., 2014]
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Controls on Permeability Structure

[e.g. Faulkner et al., 2010]

[IEAGHG, “Fault Permeability,” 2016; after Faulkner et al., 2010][Yielding et al., 2010]

[Fisher and Knipe, 2001]

Mineralogy

Stress and Mineralogy
Fault Core 

and Damage Zones

Dynamic Processes

Deformation and 
Across Fault 
Permeability Control:
Localized process zone 
(gouge in fault core)

Along-Fault
Permeability Control:
Fault damage zone 
(fractures)
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Subduction Zone Megathrusts and the Full Spectrum of 
Fault Slip Behavior

Ide et al., 2007; Peng & Gomberg, 2010

  

Annual Fossil Fuel Budget

~ 15TW → 5×1020 Joules [500 EJ ]
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Stick-slip dynamics

Brittle Friction Mechanics, Stick-slip

Stick-slip (unstable) versus stable shear 

Slip

µs

µd
Dc

Slip Weakening Friction Law

(v)µd≠

[After C.J. Marone, Pers. Comm., 2017]
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Requirements for Instability
1. Shear strength on the fault is exceeded 

– i.e.

2. When failure occurs, strength is 
velocity (or strain) weakening - i.e.

2. That the failure is capable of ejecting 
the stored strain energy adjacent to 
the fault (shear modulus  and fault 
length )  - i.e.

4. That effective normal stresses evolve 
that do not dilatantly harden the fault 
and arrest it via the failure criterion of 
#1 – i.e.

    τ > µσ 'n

   a −b < 0

    
G
l

< Kc = (b−a)σn '
Dc

    
1 >> vD = w2

k
vsη

KsDc
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Seismic – Aseismic Transition
Full Spectrum of Slip Behaviors
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[Adapted from C.J. Marone, Pers. Comm., 2017]
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Instability Threshold – Penny-Shaped Crack
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Instability Threshold – Penny-Shaped Crack
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Permeability and Elastic Softening

F	

[Elkhoury	et	al,	Nature,	2006]		

Fractured	

Intact	

[Brenguier	et	al,	Science,	2008]	

[Elkhoury	et	al,	JGR,	2011]		
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[Shokouhi, Pers. Comm. 2016]

[Scuderi et al., Nature Geosc, 2016]

During the Seismic Cycle
Seismic waves trigger transient 

changes in elastic properties
Elastic softening coincides with 

increased permeability 
Lab observations of precursors to 

earthquake-like failure (i.e., 
elastic wave speed)

Monitoring to assess the critical 
stress-state in Earth’s crust

Potential for management of 
induced seismicity to 
maximize geothermal energy 
production



derek.elsworth@psu.edug3.ems.psu.edu 29

Rate-State Friction [1]

3 3
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(1 ) (1 )bk
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k b
= + = +

D D

   

ΔH
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≅ Δφ = −ε ln( v
v0

) = −ε ln(
v0θ
Dc
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Velocity Steps

R-S Friction

Dilation

Permeability Evolution

Multiple Velocity Steps

Single Velocity Step

[Samuelson et al., 2009]



Rational Linkages: Rate-State Friction, Porosity and 
Permeability
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Frictional Stability-Permeability Experiments
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Frictional Stability-Permeability Observations
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Mineralogical Controls on Instability
[Ikari et al., Geology, 2011]Friction

Stability (a-b)

Velocity Weakening 
(unstable slip)

Velocity 
Strengthening 
(stable slip)

Frictional Response of Mixtures

[Niemeijer et al., GRL, 2010]

Velocity 
Weakening 
(unstable slip)

Velocity 
Strengthening 
(stable slip)
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Tectosilicate Carbonate Phyllosilicate

Green River Shale 45.44% 51.96% 2.60%

Displacement(mm)

Before After

Green River Shale- Permeability Enhancement

1µm/s 1µm/s
1µm/s

10µm/s 10µm/s

Wear products after slip 

Velocity-upstep results in a 
permeability increase due to 
dilation

Permeability increase
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Displacement(mm)

Before After

Phyllosilicate-dominant Artificial Sample- Permeability Decrease

Tectosilicate Carbonate Phyllosilicate

AS002 10% 10% 80%

10µm/s1µm/s 1µm/s10µm/s

Permeability decrease

Clay swelling concurrent 
with shear damage

Velocity-upstep results in a 
permeability decrease due to wear 
products and swelling
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Nascent Friction-Stability-Permeability Relationships

Observations
• dk/k0 increases with increased 

brittleness (a-b)<0
• dk/k0 increases with increased frictional 

strength
• Roles of mineralogy and surface 

roughness?

Velocity Weakening 
(unstable slip)

Velocity Strengthening  (stable slip)
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v Seismicity-Permeability Linkages – Natural Samples



derek.elsworth@psu.edug3.ems.psu.edu 38

Stability-Permeability Relations in Composites/Mixtures 

Kohli & Zoback, 2013
Fang et al., 2015; 2016
Samuelson & Spier, 2012
Carpenter et al., 2015

Boulton et al., 2015
Giogetti et al., 2015
Moore & Lockner, 2011

Verberne, et al., 2010; 2014
Ikari, et al., 2011; 2015; Stesky, et al., 1974
Smith & Faulkner, 2010; Numelin et al., 2007
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Smith & Faulkner, 2010; Numelin et al., 2007

Fr
ic

tio
na

l S
tr

en
gt

h 
(μ

)

Fr
ic

tio
na

l S
ta

bi
lit

y 
(a
-b
)

(b) (a) 

Friction

Stability (a-b)

Friction

Stability (a-b)

Mono-mineralic Multi-mineralic

[Ikari et al., Geology, 2011]
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Role of Texture in Friction-Stability-Permeability

Heterogeneous Mixture

Textured/Layered Mixture
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Multi-Mineral Frictional Strength
Particle-Particle Friction RSF Notation

Steady-State Friction

DEM Model

Velocity-strengthening

Velocity-weakeningrefµ

refv

ssµ

ssµ

pµ

cD

ssv

The linear components produce linear elastic (no tension) 
and frictional behavior. contact force ( ) is resolved into 
normal ( ) and shear ( ) components: 

 (1) 
The linear and shear components are updated by the 
following equations: 

 (2) 

 (3) 
 (4) 

/ : the of normal and shear stiffness; 
/ : the relative displacement between two entities.  

 
Simplifications are made with the friction evolution as 
follows: 
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ï =î  (7) 
: the peak friction due to the direct; 
: the steady state friction after evolution effect; 
: the reference friction coefficient of last velocity change; 
: accumulated relative shear displacement. 
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Mixture Controls of Frictional Instability

Observations

Analysis

Transition in Slip 
Stability ~10% - ~25% 
Talc

[Moore & Lockner 2011]
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100%75%50%25%0%

Transition zone appears 
at ~10% to ~25% talc 
content

108531
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Introduction & Motivation
CO2 bleached sand stone and silt stone 
showed lower fracture toughness
(Major et al. 2014)

Lower Fracture Toughness

Lower Fracture Toughness Unaltered Entrada Sand Stone: quartz 
rich, minor feldspar and calcite, with 
hematite coating.

Altered Entrada Sand Stone: hematite 
coating is dissolved, replaced by goethite, 
no significant change in quartz, feldspar, 
and calcite.
(Major et al. 2014)

Mineralogic Difference

Hematite 
Globules

Goethite
Precipitation

Paleo-fluid
Alteration

(Eichhubl et al. 2004)



DEM Model Setup

(Marone, 1999)



Shear Strength -- Unaltered vs Altered
Evolution of friction at 10 MPa normal stress [other normal stresses (5, 15 MPa) 
show similar trend].

• CO2 altered synthetic gouge shows 
LOWER frictional strength (shear 
strength) than unaltered synthetic 
gouge.

• Unaltered gouge shows HIGHER
shear strength with more coating 
particles.
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Slip-Stability – Unaltered versus Altered
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Permeability Evolution
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Digital Fractures
Mated Fractures Particle-Particle 

Contact

Pseudo-RSF
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DEM Modeling of Rough Fractures
Profiles

Stress-Displacement

Dilation

Permeability
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Permeability Evolution - Role of Wear Products
Profiles – Variable RMS and Wear Products

Permeability 
Evolution
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Permeability Changes due to Dynamic Stressing

[Elkhoury et al., Nature, 2006]

Remote earthquakes trigger dynamic 
changes in permeability

Unusual record transits ~8y
Sharp rise in permeability followed by 

slow �healing� to background
Scales of observations:

Field scale
Laboratory scale

Mechanistic understanding and control?

Pe
rm
ea
bi
lit
y

Pe
rm
ea
bi
lit
y
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Dynamic Stressing - Mechanisms

Permeability Enhancement
via Dynamic Stressing

[Candela et al., 2014a,b]

Amplitude?    or       Frequency?

Experiment

Excitation

Observation Correlations with Flow Rate

Suggested Mechanism

Amplitude or Frequency Dependency
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Healing – Necessary Component of the Seismic Cycle
Shear Stress and Permeability Evolution
• Increasing shear stress peak is observed with increasing hold 

time (Frictional Healing)
• Permeability declines overall with temporal response to shear 

events
• Permeability decline is fast at initial stage then become slower

�

�
�� � � �

�

Experimental Notes
• Permeability of Green River shale #600 

grit became unresolvable after initial 
shear

• Westerly granite #150 grit stopped at 
~150 min due to limited pump capacity

• 8th shear applied to Westerly granite 
#600 grit after 5000 seconds

Hold 10000 sHold 3000 s

Slide 1mm Slide 1mm

Hold 5000 s

GRS #150 grit

WG #600 grit

WG #150 grit

GRS #600 grit

GRS #150 grit

WG #600 grit

WG #150 grit
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Shear Permeability Enhancement
Shear Induced Permeability Enhancement
• Later stage shear slip + Incremented duration of prior slip à Significant 

permeability enhancement
• Permeability continuously decreases during hold (Pressure solution?)
• Prior slip permeability recovery took 70 minute after slip �,  WG #600 grit case
• Permeability increase appears to be linear to slip distance
• The enhancement is least apparent with rougher surface granite (WG #150 grit)
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Pressure solution 
• Permeability reduction due to pressure solution in all cases seems to 

follow power law decay                 with power p =-0.37  
• The enhancement can be significant after extremely long (natural scale) 

holds
• Can this be applied to natural hydraulic systems?
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Permeability change and earthquake catalog (ML>3) 

in southern California [Elkhoury et. al., 2006]

Time (minute)

Permeability Healing (Sealing) Law
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Permeability Decay – Role of Pressure Solution

Power-law dependence
Rigid indenter, Pressure solution

Indentation rate:

Permeability change:

[Gratier et al., 2014]

   Δb = αtβ

    
k = k0[1−

Δb
b0

]3 → k = k0[1−
α
b0

tβ ]3
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Magnitude of Permeability Enhancement
Absolute perm increase: rougher granite > smoother granite > shale
Normalized perm increase: shale > smoother granite > rougher granite
Shear permeability increase with duration of prior hold time for 
Westerly granites
Shear permeability slightly decreases with prior hold time for Green 
River shale
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Response to Laboratory Earthquakes (Stick Slip) 
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Permeability response to pore pressure steps and induced shear slip
Pore Pressure Perturbation

Shear Slip begins

Shear stress

Displacement

10µm

• Address question of relative impact of normal and shear stress incremental contributions
• Stepwise incremented pressure pulse – to cross critically-(shear)-stressed threshold
• Permeability increases with magnitude of pressure pulse
• Induced shear slip begins at fluid pressure ~600 kPa à Permeability increment becomes larger
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Effect of induced shear slip

Pore Pressure Perturbation

• Slope of permeability increment curve changes at initiation of shear slip 
• Permeability increment suddenly increases when shear slip initiates (stress threshold)

?
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Some Key Issues in Energy Supply
Needs
Constraints and Solutions

CO2 Sequestration - Linking Induced Seismicity to Permeability Evolution
Controls on seismicity – the aseismic-seismic transition
Controls on maximum magnitude event
RSF – for permeability evolution
Controls on stability and permeability

Mineralogical & textural 
Structural 

Healing and sealing and the seismic cycle 
Energy From Hot Rocks – EGS and SGRs

Anomalous seismicity – Newberry Demonstration Project
Permeability scaling – Newberry Demonstration Project

Summary

Seismicity-Permeability Coupling in the 
Breaching and Sealing of Reservoirs and Caprocks

Derek Elsworth (Penn State), Yi Fang (PSU), Chaoyi Wang (PSU), Takuya Ishibashi (AIST/PSU), 
Yves Guglielmi (LBNL/Aix-Marseille), Kyunjae Im (PSU), Yunzhong Jia (PSU/NTU),

Brandon Schwartz (PSU), Ziyan Li (PSU), Elif Yildirim (PSU), Andre Niemeijer (UU), 
Thibault Candela (TNO),  Ben Madara (PSU), Mengke An (Tongji), Fengshou Zhang (Tongji), 

Jacques Riviere (Grenoble/PSU), Parisa Shokouhi (PSU), Chris Marone (PSU)
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Basic Observations of Permeability Evolution and IS

Challenges
• Prospecting (characterization) 
• Accessing (drilling)
• Creating reservoir
• Sustaining reservoir
• Environmental issues

Observation
• Stress-sensitive reservoirs
• T H M C all influence via effective stress
• Effective stresses influence

• Permeability
• Reactive surface area
• Induced seismicity

Understanding T H M C is key:
• Size of relative effects of THMC(B)
• Timing of effects
• Migration within reservoir
• Using them to engineer the reservoir

Permeability
Reactive surface area
Induced seismicity

Resource
• Hydrothermal (US:104 EJ) 
• EGS (US:107 EJ; 100 GW in 50y)
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Anomalous Seismicity – The Missing Zone
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Questions:
• What is the mechanism of this 

anomalous distribution of 
MEQs? 

• What does the anomalous 
distribution of MEQs imply? 

Wellbore Characteristics
• 0-2000m: Casing shoe
• 2000m-3000m: open zone
Spatial Anomaly
• Bimodal depth distribution
• Below 1950 m, only a few MEQs 

occurred.
• Between 500m and 1800m, 90% 

MEQs occurred adjacent to the 
cased part.

Temporal Anomaly
• Deep MEQs occurred within 4 

days and diminished after that 
time.

• Shallow MEQs occurred since the 
4th day.
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Constraints on Frictional Slip
1. Shear Failure Analysis

(a-b > 0)
Velocity Strengthening

(a-b < 0)
Velocity Weakening
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2. Friction Experiments

1. Shear Failure
Analysis suggests that
if seismicity occurs at
great depth, it should
occur continuously up
the rock column, and
not with a gap.

2. Frictional
Experiments are
performed to explore
the frictional stability
with depth and to
explore the
mechanisms of the
unexplained seismic
gap.
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RSF Properties

RSF Properties

• Weakly velocity 
weakening

• Seismic slip
• a is close to b, low 

stress drop

Friction (a-b) at 15-45 MPa

weakening

weakening

strengthening
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Linking MEQs to Permeability Evolution

Observed MEQs
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Workflow:
1. MT -> Orientation, mode of disp.
2. Magnitude, stress drop -> fracture size
3. Size -> roughness and dilation
4. Dilation/mode -> permeability evolution

1. Seismicity induced by hydroshearing is controlled by the Mohr-Coulomb
shear criterion.

2. The frictional coefficient evolves during seismic slip.
3. Two types of fractures:

- Velocity-weakening/seismic fractures and,
- Velocity-strengthening/aseismic fractures (fracture size smaller than

the critical length).
4. Fracture interaction is ignored – consequently variations in the orientations

of principal stresses are negligible

Seismic Events vs. Depth
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Seismicity-Permeability Validation
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DoE EGS Collab(oration) Project
At Sanford Underground 

Research Facility 
(SURF-DUSEL) – 1500m

Experiment 1, intended to 
investigate hydraulic 
fracturing*, in situ

Experiment 2 designed to 
investigate shear 
stimulation*. 

Experiment 3 will investigate 
changes in fracturing 
strategies – TBD.

Fracture Perpendicular Configuration

ERT electrodes

thermistors

grouting tube

electrically resistive
grout

ML-CASSM 
(active seismic) sources

or hydrophone 
(depending on borehole)

High frequency 
accelerometers 

(passive seismic) 

Courtesy: Tim Kneafsey (LBNL), Tim Johnson (PNNL), Hunter Knox (SNL), Jonathan Ajo-Franklin (LBNL), Paul Cook (LBNL), Yves 
Guglielmi (LBNL), Martin Schoenball (LBNL), Hari Neupane (INL) & EGS Collab.



derek.elsworth@psu.edug3center.org 70

Frontier Observatory for Research in Geothermal Energy
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Summary
Sub-Surface Science/Engineering is a Key Component to a Sustainable Future

Deep geothermal, unconventional resources and sequestration are examples
Access to, and the ability to create and control the “reservoir” is key

Complex Process Interactions Influence Reservoir Evolution
Permeability/Seismicity evolution is strongly influenced by these processes 
These interactions can be complex and involve:

Mineralogy
Structure, texture  and heterogeneity
Evolving patch dimension
Brittlemess (a-b) and pore-pressure or effective stress level 
Role of Fault Core (FC) and Damage Zone (FDZ)

Interseismic Behavior
Necessary to reset permeability for brittle failure
Consistent with observations with far-field reactivation of faults/fractures

Prospects for Permeability-Seismicity Linkage
Observed seismicity is a certifiable predictor of permeability evolution
Possible despite potential for aseismic slip 

- possibility that aseismic slip -> creep -> no dilation & wear products


