Boundary Element Methods

Judit Gonzalez-Santana
Machel Higgins
Kirsten Stephens

EGEE 520 - Spring 2018 Final Project

Introduction

Introduction

- BEM is a numerical method that solves PDEs by transforming them into boundary integral equations (BIE)

Introduction

Boundary Element Method (BEM)	Finite Element Method (FEM)
Boundary solution method Infinite, semi-infinite	Domain method finite
Solves integral equations (BIEs)	Solves differential equations (PDEs)
Mesh boundaries only	Mesh entire domain
Small, filled-in matrix	
$V h=H v$	Large, sparse matrix
Ku = F	

Introduction

- Advantages
- Only the boundaries have to be discretized
- Reduces complexity and dimensions \rightarrow reduces computational time
- Good for solving linear problems, stress concentration problems involving incompressible materials, steady state
- Disadvantages
- Halfspace has to be homogeneous
- Not efficient for non-linear and/or transient problems
- Requires explicit knowledge of a fundamental solution of the PDE

Historical Perspectives

Historical Perspectives

General Principles \& Equations

Derivation of potential from Laplace equation

- Laplace equation: $\nabla^{2} u=0$
- $\ln 2 \mathrm{D}$:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

- Fundamental solution for $-\infty<x<\infty,-\infty<y<\infty$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\delta(\xi-x, \eta-y)=0
$$

Solving for potential

- Laplace from Cartesian into radial co-ords:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

- Boundary conditions:

$$
\begin{gathered}
\delta \neq 0 @ r=0 \\
u \rightarrow \infty \text { as } r \rightarrow 0
\end{gathered}
$$

$$
r=\sqrt{(\xi-x)^{2}+(\eta-y)^{2}}
$$

- Since in an infinite domain,

$$
\frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

- Applying those conditions, Laplace equation becomes:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)=0
$$

- Solution for this equation:

$$
u=A \ln (r)+B
$$

Solving for potential

- Integrating original Laplace equation (in Cartesian co-ords)

$$
\int_{\Omega} \nabla^{2} u d \Omega+\int_{\Omega} \delta(\xi-x, \eta-y) d \Omega=0
$$

- Applying Green-Gauss Theorem, and assuming circle of radius $\varepsilon>0$ @ $r=0$:

$$
\int_{\Omega} \nabla^{2} u d \Omega=\int_{d \Omega} \frac{\partial u}{\partial n} d s
$$

- Equating $d n=d r$ and since $u=A \ln (r)+B$,

$$
\int_{0}^{2 \pi \varepsilon} \frac{A}{\varepsilon} d s=>A=\frac{1}{2 \pi}
$$

- Setting $B=O$ for convenience, we get the equation for the potential:

$$
u=\frac{1}{2 \pi} \ln (r)
$$

Fluid flow problems

- For flow problems, $u=h$, and unit source strength is indicated as m

$$
h=\frac{m}{2 \pi} \ln (r)
$$

- Velocity in x-direction:

$$
\begin{aligned}
& v_{x}=-K \frac{\partial h}{\partial x}=-K \frac{m}{2 \pi}\left(\frac{x}{r^{2}}\right) \\
& v_{y}=-K \frac{\partial h}{\partial y}=-K \frac{m}{2 \pi}\left(\frac{y}{r^{2}}\right)
\end{aligned}
$$

Evaluating head along line segment

- Integration by parts, let: $u=x^{2}+y^{2}, \frac{d v}{d x}=1 \Rightarrow \frac{d u}{d x}=\frac{2 x}{x^{2}+y^{2}}, v=x$

$$
\begin{aligned}
& \oint \frac{m}{2 \pi} \ln \left(\sqrt{x^{2}+y^{2}}\right) d x=\frac{m}{4 \pi}\left[x \ln \left(x^{2}+y^{2}\right)-\int \frac{2 x^{2}}{x^{2}+y^{2}} d x\right] \\
& \frac{m}{4 \pi}\left(x \ln \left(x^{2}+y^{2}\right)-\left[-2 y \tan ^{-1}\left(\frac{x}{y}\right)+2 x\right]\right) \quad h=\frac{m}{2 \pi}(x \ln (r)+y \theta-x)
\end{aligned}
$$

Evaluating velocity along line segment

$$
h=\frac{m}{2 \pi}(x \ln (r)+y \theta-x)
$$

- Similarly to before, we can calculate the velocities in the x-direction and y direction at é

$$
\begin{array}{r}
v_{x}=-K \frac{\partial h}{\partial x}=-K \frac{m}{2 \pi} \ln (r) \\
v_{y}=-K \frac{\partial h}{\partial y}=-K \frac{m}{2 \pi} \theta
\end{array}
$$

Hand-Calculation Example

Systems of equations:

- $\oint \mathrm{V}_{\mathrm{ij}}=$ integrated effect of a unit source at element i on the resulting normal flux at boundary element j.
- $\oint \mathrm{H}_{\mathrm{ij}}=$ integrated effect of a unit source at element i on the resulting head at boundary element j.
- $c_{i j}=$ free term due to bringing the source to the boundary

Direct vs Indirect method:

Direct - solves the system of equations directly:

$$
\mathbf{V h}=\mathbf{H v}
$$

Indirect - has an intermediate step whereby the source strength (m) required at each point to reproduce the known $\mathrm{BCs}(\mathrm{b})$ is calculated. These source strengths are then applied to calculate the unknown BCs (d).

$$
\begin{aligned}
b & =A_{1} m \\
m & =A_{1}^{-1} b \\
d & =A_{2} m
\end{aligned}
$$

Where A_{1} is a matrix of influence coefficients for the known BCs (b) and A_{2} is that for the unknown BCs (d), ie. they are combinations of the terms in V and H .

Example:

Obtaining the H_{ij} values:

$$
h=\frac{m}{2 \pi}[x \ln (r)-x+y \theta]_{1}^{2}
$$

Eg. Effect of a unit source on node 1 on element 1:

- At p2:
- $x=0.5$
- $y=0$
- $r=0.5$
- $\theta=\frac{\pi}{2}$
- At p1:
- $x=-0.5$
- $y=0$
- $r=0.5$
- $\theta=\frac{3 \pi}{2}$
$h_{11}=\frac{1}{2 \pi}[(0.5 \ln (0.5)-0.5)-(-0.5 \ln (0.5)+0.5)]=-0.269$

Obtaining the H_{ij} values:

$$
h=\frac{m}{2 \pi}[x \ln (r)-x+y \theta]_{1}^{2}
$$

Eg. Effect of a unit source on node 1 on element 3:

- At p2:
- $x=0.5$
- $y=-1$
- $r=\frac{\sqrt{5}}{2}$
- $\theta=1.11715$
- At p1:
- $x=-0.5$
- $y=-1$
- $r=\frac{\sqrt{5}}{2}$
- $\theta=2.03444$
$\mathrm{h}_{31}=\frac{1}{2 \pi}\left[\left(0.5 \ln \left(\frac{\sqrt{5}}{2}\right)-0.5-1.11715\right)-\left(-0.5 \ln \left(\frac{\sqrt{5}}{2}\right)+0.5-2.03444\right)\right]$
$h=0.006185$

H_{ij} matrix:

$\left[\begin{array}{llll}h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44}\end{array}\right]=\left[\begin{array}{cccc}-0.270 & -0.053 & 0.006 & -0.053 \\ -0.053 & -0.270 & -0.053 & 0.006 \\ 0.006 & -0.053 & -0.270 & -0.053 \\ -0.053 & 0.006 & -0.053 & -0.270\end{array}\right]$

Obtaining the V_{ij} values:

We are interested in the value of flow normal to the element:

- V_{x} on elements 2 and 4
- V_{y} on elements 1 and 3

Eg. Unit source at 1 on element 1:

- At p2:
- $\theta=\frac{\pi}{2}$
- At p1:
- $\theta=\frac{3 \pi}{2}$

$$
v_{11}=-K \frac{m}{2 \pi}[\theta]_{1}^{2}=-\frac{10}{2 \pi}\left[\frac{\pi}{2}-\frac{3 \pi}{2}\right]=5.000
$$

Obtaining the V_{ij} values:

Eg. Unit source at 1 on element 2:

- At p2:
- $r=0.5$
- At p1:
- $r=\frac{\sqrt{5}}{2}$

$$
v_{12}=-K \frac{m}{2 \pi}[\ln (r)]_{1}^{2}=-\frac{10}{2 \pi}\left[\ln (0.5)-\ln \left(\frac{\sqrt{5}}{2}\right)\right]=-1.281
$$

\vee_{ij} matrix:

$$
\left[\begin{array}{llll}
v_{11} & v_{12} & v_{13} & v_{14} \\
v_{21} & v_{22} & v_{23} & v_{24} \\
v_{31} & v_{32} & v_{33} & v_{34} \\
v_{41} & v_{42} & v_{43} & v_{44}
\end{array}\right]=\left[\begin{array}{cccc}
5.000 & -1.281 & -1.476 & -1.281 \\
-1.281 & 5.000 & -1.281 & -1.476 \\
-1.476 & -1.281 & 5.000 & -1.281 \\
-1.281 & -1.476 & -1.281 & 5.000
\end{array}\right]
$$

Direct method:

$$
c_{i j}(p) h_{j}(p)+\oint V_{i j}(p, q) h_{i j}(q) d r=\oint H_{i j}(p, q) \overrightarrow{v_{j}}(q) \bullet \hat{n} d r
$$

$$
\mathbf{V h}=\mathbf{H} \mathbf{v}
$$

Where $\delta=c_{i j}(p) h_{j}(p)=1 / 2$

$$
\left[\begin{array}{cccc}
v_{11}+\delta & v_{12} & v_{13} & v_{14} \\
v_{21} & v_{22}+\delta & v_{23} & v_{24} \\
v_{31} & v_{32} & v_{33}+\delta & v_{34} \\
v_{41} & v_{42} & v_{43} & v_{44}+\delta
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
1.000 \\
h_{3} \\
0.000
\end{array}\right]=\left[\begin{array}{llll}
h_{11} & h_{12} & h_{13} & h_{14} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
h_{31} & h_{32} & h_{33} & h_{34} \\
h_{41} & h_{42} & h_{43} & h_{44}
\end{array}\right]\left[\begin{array}{c}
0.000 \\
v_{2} \\
0.000 \\
v_{4}
\end{array}\right]
$$

Direct method:

$$
\mathbf{V h}=\mathbf{H v}
$$

Substituting in the pre-calculated values of v_{ij} and h_{ij} :
$\left[\begin{array}{cccc}5.500 & -1.281 & -1.476 & -1.281 \\ -1.281 & 5.500 & -1.281 & -1.476 \\ -1.476 & -1.281 & 5.500 & -1.281 \\ -1.281 & -1.476 & -1.281 & 5.500\end{array}\right]\left[\begin{array}{c}h_{1} \\ 1.000 \\ h_{3} \\ 0.000\end{array}\right]=\left[\begin{array}{cccc}-0.270 & -0.053 & 0.006 & -0.053 \\ -0.053 & -0.270 & -0.053 & 0.006 \\ 0.006 & -0.053 & -0.270 & -0.053 \\ -0.053 & 0.006 & -0.053 & -0.270\end{array}\right]\left[\begin{array}{c}0.000 \\ v_{2} \\ 0.000 \\ v_{4}\end{array}\right]$

Rearranging for known values on the right, unknowns on the left:
$\left[\begin{array}{l}h_{1} \\ v_{2} \\ h_{3} \\ v_{4}\end{array}\right]=\left[\begin{array}{cccc}5.500 & 0.050 & -1.480 & 0.050 \\ -1.280 & 0.270 & -1.280 & -0.006 \\ -1.480 & 0.050 & 5.500 & 0.050 \\ -1.280 & -0.006 & -1.280 & 0.270\end{array}\right]^{-1}\left[\begin{array}{cccc}-0.270 & 1.280 & 0.006 & 1.280 \\ -0.050 & -5.500 & -0.050 & 1.480 \\ 0.006 & 1.280 & -0.270 & 1.280 \\ -0.050 & 1.480 & -0.050 & -5.500\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}0.409 \\ -16.284 \\ 0.409 \\ 8.987\end{array}\right]$

Indirect method:

$$
\begin{aligned}
& v_{i}=\sum_{j=1}^{M} V_{i j} \cdot m_{j} \longrightarrow\left[\begin{array}{l}
v_{1} \\
h_{2} \\
v_{3} \\
h_{4}
\end{array}\right]=A_{1}\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right] \longrightarrow\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=A_{1}^{-1}\left[\begin{array}{l}
v_{1} \\
h_{2} \\
v_{3} \\
h_{4}
\end{array}\right] \longrightarrow\left[\begin{array}{l}
h_{1} \\
v_{2} \\
h_{3} \\
v_{4}
\end{array}\right]=A_{2}\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right] \\
& A_{1}=\left[\begin{array}{llll}
v_{11} & v_{12} & v_{13} & v_{14} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
v_{31} & v_{32} & v_{33} & v_{34} \\
h_{41} & h_{42} & h_{43} & h_{44}
\end{array}\right]
\end{aligned}
$$

Indirect

$$
b=A_{1} m
$$

method:

$$
\begin{gathered}
{\left[\begin{array}{l}
v_{1} \\
h_{2} \\
v_{3} \\
h_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
5 & -1.28 & -1.48 & -1.28 \\
-0.05 & -0.27 & -0.05 & 0.0062 \\
-1.48 & -1.28 & 5 & -1.28 \\
-0.05 & 0.0062 & -0.05 & -0.27
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]} \\
m=A_{1}^{-1} b
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=\left[\begin{array}{cccc}
5 & -1.28 & -1.48 & -1.28 \\
-0.05 & -0.27 & -0.05 & 0.0062 \\
-1.48 & -1.28 & 5 & -1.28 \\
-0.05 & 0.0062 & -0.05 & -0.27
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1.06 \\
-3.27 \\
-1.06 \\
0.35
\end{array}\right]} \\
d=A_{2} m
\end{gathered}
$$

$$
\left[\begin{array}{l}
h_{1} \\
v_{2} \\
h_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-0.27 & -0.05 & 0.0062 & -0.05 \\
-1.28 & 5 & -1.28 & -1.48 \\
0.0062 & -0.05 & -0.27 & -0.05 \\
-1.28 & -1.48 & -1.28 & 5
\end{array}\right]^{-1}\left[\begin{array}{c}
-1.06 \\
-3.27 \\
-1.06 \\
0.35
\end{array}\right]=\left[\begin{array}{c}
0.437 \\
-14.17 \\
0.437 \\
9.296
\end{array}\right]
$$

Numerical Example

BEM Numerical Solutions

Snaking Pipe Suspected to Have a Hole

Problem: Given that one should know the velocity out the right end of the pipe when the pipe is intact, if the velocity were to change could we numerically figure out where a hole in the pipe could be?

Method: Use Prof Elsworth's General Direct Boundary Element Routine for Potential Flow code

- 40 Nodes/ 20 Elements
- Boundary Conditions:
- Head at right-hand-side = 1 (source)
- Head at left-hand-side $=0$ (sink)
- Sides of 2D pipe should be impermeable, i.e. have velocity $=0$ except at hole.
- One element other than rightmost or leftmost element will be another sink (i.e. $\mathrm{h}=0$)

BEM Numerical Solutions

Model Setup

BEM Numerical Solutions

Model Setup

GENERAL DIRECT Boundary ELEMENT ROUTINE FOR pOTENTIAL FLOW
D. ELSWORTH, UNIVERSITY OF TORONTO. MAY 1985 VERSION

REVISIONS AS OF MARCH 1990

INPUT FILES MODIFIED FOR PC SEE PROGRAM BEM

INPUT DATA:
CARD 1 (20A4) HEADING
CARD 2 (3I5, E15.8)
CONTROL DATA
NUMNP - NUMBER OF NODAL POINTS
NUMEL - NUMBER OF ELEMENTS
MDX - MODE OF EXECUTION
$=$ GENERAL BEM
HYDC - ISOTROPIC HYDRAULIC CONDUCTIVITY
CARD
TO (NUMNP+2) NODAL INPUT DATA
(I5, 2F10.0,I5, F10.0.I5) NODE - GLOBAL NODE NUMBER
X-X - X COORDINATE FO NODE
IBC - INTEGER BOUNDARY CONDITION
$=$ NODAL POTENTIAL SPECIFIED
RBC - REAL BOUNDARY CONDITION (MAGNITUDE)
REC - REAL BOUNDARY CONDITION (MAGNITUDE)
CARD (NUMNP+3) TO (NUMNP+2+NUMEL) ELEMENT INPUT DATA (5I5)
NEL - ELEMENT NUMBER
GLOBAL NODE NO. OF LOCAL NODE II
JJ - GIOBAL NODE NO. OF LOCAL NODE JJ
KK - GLOBAL NODE NO. OF LOCAL NODE KK
$0=$ BOUNDARY ELEMENT

Matlab formats input and plots output.

BEM Numerical Solutions

Results

Example Applications

BEM Examples

Displacement strain and stress on a Fault System

BEM Examples

Volcano Deformation

Wauthier et al. (2015) RS

BEM Examples

Geodynamics: 3D Flow BEM

Subducting slabs with three different ratios of viscosity of the slab-mantle.

BEM Examples

Stokes Flow

Stokes flow
interacting with fibers

BEM Examples

Heat Transfer

Fastbem.com

Sutradhar et al. (2004)

BEM Examples

Acoustics: Wind Turbine Noise

[^0]
BEM Examples

Acoustics: Noise From a Landing Commercial Jet

[^1]
[^0]:

[^1]:

