Smooth Particle Hydrodynamics (SPH)

Group Presentation
EGEE 520 Course

Spring 2017

Presented By
Ahmed Nasreldeen
Long Fan
Keru Liu

Presentation
 Outlines

Introduction

Historical Perspective
General Principles.

Governing Equations

Hand-Calculation Example
Numerical Example
Example Applications

Smoothed Particle Hydrodynamics

(SPH)

It is a computational method usec for simulating the dynamics of continuum media, such as solid mechanics and fluid flows. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a mesh-free Lagrangian method (where the coordinates move with the fluid)

Smoothed Particle

Some particle properties are determined by taking an average over neighboring particles

Hydrodynamics

The fluid is represented by a particle system

Fluid dynamics

The Smoothed Particle Hydrodynamics (SPH) method works by dividing the fluid into a set of discrete elements, referred to as particles. These particles have a spatial distance (known as the "smoothing length", typically represented in equations by h), over which their properties are "smoothed" by a kernel function

Basic Concepts of Computational Hydrodynamics

Grid Based

Metherdsan approach (FDM)
> Lagrangian approach (FEM)
> Meshfree methods can use both approaches
Particle Based
Methondsthed Particle Hydrodynamics
> Dissipative Particle Dynamics
> Brownian Dynamics

Eulerian vs Lagrangian descriptions

 Eulerian method

 Eulerian method}

Concerned with fluid properties
(velocity, density, pressure, temperature) at a specific spacetime point (x, y, z, t).

Control volume approach

Named after Swiss mathematician Leonhard Euler (1707-1783).

Lagrangian

 mothndConcerned with a particular particle of fluid as it moves through space to reflect the behavior of the rest particles.

Control mass approach

Named after Italian mathematician Joseph Lagrange (1736-1813).

Eulerian vs Lagrangian descriptions

	Lagrangian Methods	Eulerian Methods
Grid	$\begin{array}{c}\text { Attaching on the moving } \\ \text { material }\end{array}$	Fixed in the space

materials\end{array} \quad $$
\begin{array}{c}\text { Mass, momentum, and energy } \\
\text { flux across grid nodes and mesh } \\
\text { cell boundary }\end{array}
$$\right]\)

Meshfree and Meshfree Particle Methods

> The basic idea of the meshfree methods is to discretize the continuum through a set of nodes without the connective mesh in order to follow the deformation experienced by the material and avoid the degradation of the numerical result maintaining a suitable computational effort.
> When the nodes assumes a physical meaning, i.e. they represent material particles carrying physical properties, the method is said to be meshfree particle and follows, in general, a Lagrangian approach.
$>$ Accurate and stable numerical solutions for integral equations or PDEs with all kind of boundary conditions

Limitations of Grid Based

 MethodsNot Suitable for problems involving:
> Large displacements.
$>$ Large inhomogeinities.
> Moving material interface.
> Deformable boundaries.
$>$ Free surfaces.

Historical
 Perspective

(Benz, Slattery \& Cameron, 1986)
Collision problems
(Miyama, Hayashi \& Narita, 1984)
Fragmentation in collapsing molecular clouds
(Lucy, 1977), (Gingold \& Monaghan, 1977)
Simulating astrophysics problems

Advantages of SPH

Method

$>$ It can obtain the time history of the material particles. The advection and transport of the system can thus be calculated.
> The free surfaces, material interfaces, and moving boundaries can all be traced naturally in the process of simulation regardless the complicity of the movement of the particles, which have been very challenging to many Eulerian methods. Therefore, SPH is an ideal choice for modeling free surface and interfacial flow problems.
> The distinct meshfree feature of the SPH method allows a straightforward handling of very large deformations, since the connectivity between particles are generated as part of the computation and can change with time.
$>$ SPH is suitable for problems where the object under consideration is not a continuum. This is especially true in bio- and nano- engineering at micro and nano scale, and astrophysics at astronomic scale

SPH is comparatively easier in numerical implementation, and it is more natural to develop three-dimensional numerical models than grid based methods.

P Pure advection is treated exactly. For example, if the particles are given a colour, and the velocity is specified, the transport of colour by the particle system is exact

- With more than one material, each described by its own set of particles, interface problems are often trivial for SPH but difficult for finite difference schemes.

P Particle methods bridge the gap between the continuum and fragmentation in a natural way.
> The resolution can be made to depend on position and time, which makes the method very attractive for most astrophysical and many geophysical problems.

SPH has the computational advantage, particularly in problems involving fragments, drops or stars that the computation is only where the matter is, with a consequent reduction in storage and calculation.

Disadvantages of SPH

Method

> The main disadvantage of SPH is its limited accuracy in multi-dimensional flows due to noise. This noise seriously messes up the accuracy that can be reached with the technique, especially for subsonic flow, and also leads to a slow convergence rate.
> Particularly problematic in SPH are fluid instabilities across contact discontinuities, such as Kelvin-Helmholtz instabilities. These are usually found to be suppressed in their growth.

Another generic problem is that the artificial viscosity is operating at some level also outside of shocks, giving the numerical model a relatively high numerical viscosity, which limits the Reynolds numbers that can be easily reached with SPH.

Industrial applications of SPH Method

Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges

M.S. Shadloo ${ }^{\text {a,b,*, }}$, G. Oger ${ }^{\text {b }}$, D. Le Touzé ${ }^{b}$

${ }^{\text {a }}$ CORAA-UMR 6614, Normandie University, CNRS-University \& INSA of Rouen, 76000 Rouen, France
${ }^{\mathrm{b}}$ Ecole Centrale de Nantes, LHEEA Lab. (ECN/CNRS), Nantes, France

The basic step of the method

(domain discretization, field function approximation and numerical solution):
> The continuum:
A set of arbitrarily distributed particles with no connectivity (meshfree);
> Field function approximation:
The integral representation method
> Converting integral representation into finite summation: Particle approximation

Integral representation of a function:

The continuum A set of arbitrarily particles

$$
f(x)=\int \Omega \uparrow f(x) W(x-x, h) d x
$$

Integral representation of a function:

$>$ The interpolation is based on the theory of integral interpolants using kernels that approximate a delta function
$>$ The integral interpolant of any quantity function, $A(r)$

$$
A \downarrow I(r)=\int \Omega r=A(r) W(r-r, h) d r
$$

$>$ where: r is any point in domain $(\Omega), W$ is a smoothing kernel with h as width.
> The width, or core radius, is a scaling factor that controls the smoothness or roughness of the kernel.

Integral representation into finite summation

> Numerical equivalent

$$
A \downarrow I(r)=\int \Omega \uparrow A(r) W(r-r, h) d r
$$

$$
A \downarrow S(r)=\sum j \uparrow=A \downarrow j V \downarrow j W(r-r \downarrow j, h)
$$

> where j is iterated over all particles, V_{j} is the volume attributed implicitly to particle j, r_{j} the position, and A_{j} is the value of any quantity A at r_{j}

Smoothing function in support domain
> The basis formulation of the SPH

$$
V=m / \rho
$$

> Up to now, various kernel functions have been developed and used in the SPH method, among which the most widely used are the cubic spline kernel function and the Wendland kernel.

$$
\begin{array}{lcc}
-W(r \downarrow i j, h)=C \downarrow h \quad \square & \{(2-q) \uparrow 3-4(1-q) \uparrow 3 & \text { for } 0 \leq q \leq 1 \\
(2-q) \uparrow 3 & \text { for } 1 \leq q \leq 2 \quad 0 \quad C \downarrow h=15 /(4 \pi h \uparrow 2) \\
\text { for } q>2 \quad C \downarrow \\
W(r \downarrow i j, h)=C \downarrow h \square & \{\square(2-q) \uparrow 4(1+2 q)-4(1-q) \uparrow 3 \quad \text { for } \\
0 \leq q \leq 2 \quad 0 & \text { for } q>2 \quad C \downarrow h=7 /(64 \pi \\
h \uparrow 2)
\end{array}
$$

$$
\mathrm{q}=r \downarrow i j / h
$$

Governing

Equations $_{\text {ticle is specified by a state list: }}$
mass,
velocity,
position,
force,
density,
pressure
Particle $\mathbf{~} \longrightarrow\left(m_{i}, \mathbf{V}_{i}, r_{i}, \mathbf{F}_{i}, \rho_{i}, p_{i}\right)$

Governing Equations

The acceleration of a particle is

$$
\frac{d v_{i}}{d t}=a_{i}^{\text {pressure }}+a_{i}^{\text {viscosity }}+a_{i}^{\text {interactive }}+a_{i}^{\text {gravity }}
$$

Particle mass

Assume we have the same mass for all particles, $m_{i}=m$
The mass m is calculated by

$$
m=\frac{(\text { Density of fluid }) \cdot(\text { Total volume })}{\text { Total number of particles }}
$$

How to determine the density of a particle?

Weight function or Kernel function

Surface tracking

We can find the surface by monitoring the density
If the density at a particle deviates too much compared to expected density we tag it as a surface particle

Pressur
 e

We get the pressure from the relation:

$$
p_{i}=c_{s}^{2}\left(\rho_{i}-\rho_{0}\right)
$$

where C_{s} is the speed of sound and $\rho 0$ is the fluid reference density

$m_{i}, \mathbf{V}_{i}, r_{i}, \mathbf{F}_{i}, \rho_{i}, p_{i}$

> The next property we focus on is the force
> Velocities and positions are calculated from the forces in a way similar to an ordinary particle system
> But before we go into that we need to learn more about taking averages...

In SPH, the average is formally defined as follows:

$$
\langle A(r)\rangle=\int_{V} A\left(r^{\prime}\right) W\left(r-r^{\prime}\right) d r^{\prime}
$$

For numerical solutions, the summation is used in stead of integration.

$$
\begin{aligned}
& \langle A\rangle_{i} \approx \sum_{j} \frac{m_{j}}{\rho_{j}} A_{j} W\left(r_{i j}\right) \\
& \langle\nabla A\rangle_{i} \approx \sum_{j} \frac{m_{j}}{\rho_{j}} A_{j} \nabla W\left(r_{i j}\right) \\
& \left\langle\nabla^{2} A\right\rangle_{i} \approx \sum_{i} \frac{m_{j}}{\rho_{i}} A_{j} \nabla^{2} W\left(r_{i j}\right)
\end{aligned}
$$

Meshless method!!

velocities and
 Forces

Motion equation in elasticity:

$$
\frac{d v}{d t}=\frac{1}{\rho} \nabla \cdot \sigma+\frac{1}{\rho} F_{e x t}
$$

where:

$$
\begin{aligned}
& \sigma=C \varepsilon \\
& \sigma=-p \mathrm{I}+\mu \dot{\varepsilon}
\end{aligned}
$$

All this together produces the following fluid equation called
Navier-Stokes equation

$$
\frac{d \mathbf{v}}{d t}=-\frac{1}{\rho} \nabla p+\frac{\mu}{\rho} \nabla \cdot \nabla \mathbf{v}+\frac{1}{\rho} F_{e x t}+\mathbf{g}
$$

Convert each term on the RHS in Navier-Stokes to SPHaverages

> First term (pressure) becomes:

$$
\left\langle-\frac{1}{\rho} \nabla p\right\rangle_{i} \approx \sum_{j} P_{i j} \nabla W\left(r_{i j}\right)
$$

where

$$
P_{i j}=-\frac{m_{j}}{\rho_{j}}\left(\frac{p_{i}}{\rho_{i}{ }^{2}}+\frac{p_{j}}{\rho_{j}{ }^{2}}\right)
$$

a) Balanced mass-density in the marked region, hence no produced pressure forces

b) High mass-density in the marked region will produce repulsive pressure forces.

c) Low mass-density in the marked region will produce attractive pressure forces.

$$
\left\langle-\frac{1}{\rho} \nabla p\right\rangle_{i}=\sum_{j} P_{j} \nabla W\left(r_{i j}\right)
$$

The second term (viscosity):
where

$$
\mathbf{V}_{i j}=-\mu \frac{m_{j}}{\rho_{j}}\left(\frac{\mathbf{v}_{i}}{\rho_{i}{ }^{2}}+\frac{\mathbf{v}_{j}}{\rho_{j}{ }^{2}}\right)
$$

Summary

> The acceleration of a particle can now be written:

$$
\frac{d v_{i}}{d t}=a_{i}^{\text {pressure }}+a_{i}^{\text {viscosity }}+a_{i}^{\text {external }}+a_{i}^{\text {gravity }}
$$

$$
a_{i}^{\text {pressure }} \approx \sum_{j} P_{i j} \nabla W\left(r_{i j}\right)
$$

$$
a_{i}^{\text {viscosity }} \approx \sum_{j} V_{i j} \nabla W\left(r_{i j}\right)
$$

$$
a_{i}^{\text {external }} \approx \frac{1}{\rho_{i}} F_{i}^{\text {external }}
$$

$$
a_{i}^{\text {gravity }} \approx(0,0,-g)
$$

Hand-Calculation
 Example

	Mass $/ \mathrm{m}$	Density $/ \rho$	Pressure $/ \mathrm{P}$	Viscosity $/ \mu$	Velocity $/ \mathrm{V}$	Location $/(\mathrm{x}, \mathrm{y})$	h	$\Delta \mathrm{t}$
Particle i	1	1	1	1	$(1,1)$	$(2,1)$	2.5	1
Particle j	1	1	1	1	$(0.5,1)$	$(1,2)$	2.5	1

$\mathrm{W}{ }^{\mathrm{L}} \mathrm{ij}$

Using the numerical method to solve nums
 $\partial W \downarrow i j / \partial x=(-45 *((2-0.001) \uparrow 2+1 \uparrow 2) \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 *((2-0.001) \uparrow 2+1 \uparrow 2) / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2)-(-45 * 5 \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 * 5 / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2) / 0.001=-2.43 * 10 \uparrow-1$

$\partial W t i j / \partial y=(-45 *(2 \uparrow 2+(1-0.001) \uparrow 2) \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 *(2 \uparrow 2+(1-0.001) \uparrow 2) / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2)-(-45 * 5 \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 * 5 / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2) / 0.001=-1.21 * 10 \uparrow-1$

$$
-W(r, h)=C \downarrow h \square\{\square(2-q) \uparrow 3-4(1-q) \uparrow 3 \quad \text { for } 0 \leq q \leq 1 \quad(2-q) \uparrow 3
$$

$$
\mathrm{q}=r \downarrow j, i / h=\sqrt{ } 5 / 2.5<
$$

$$
W \downarrow_{i j}=45 r \downarrow i j \uparrow 3 / 4 \pi h \uparrow 5-45 r \downarrow i j \uparrow 2 / 2 \pi h \uparrow 4+15 / \pi h \uparrow 2
$$

$$
\nabla \mathrm{W} \downarrow_{\mathrm{i}, \mathrm{j}}=\partial \mathrm{W} \downarrow_{\mathrm{ij}} / \partial \mathrm{x}, \partial \mathrm{~W} \downarrow_{\mathrm{ij}} / \partial \mathrm{y}=(-2.43 * 10 \uparrow-1,-1.21 *
$$

$$
10 \uparrow-1) ;
$$

Calculatıon of V

$W \backslash j i$

Using the numerical method to solve awn

$\partial W \downarrow j i / \partial x=(-45 *((-2-0.001) \uparrow 2+1 \uparrow 2) \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 *((-2-0.001) \uparrow 2+1 \uparrow 2) / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2)-(-45 * 5 \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 * 5 / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2) / 0.001=-2.43 * 10 \uparrow-1$
$\partial W \downarrow j i / \partial y=(-45 *(2 \uparrow 2+(-1-0.001) \uparrow 2) \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 *(2 \uparrow 2+(-1-0.001) \uparrow 2) / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2)-(-45 * 5 \uparrow 3 / 2 / 4 \pi * h \uparrow 5+45 * 5 / 2 \pi * h \uparrow 4-15 / \pi * h \uparrow 2) / 0.001=-1.21 * 10 \uparrow-1$

$$
-W(r, h)=C \downarrow h \square\left\{\begin{array}{l}
\boldsymbol{\square} \\
(2-q) \uparrow\}-4(1-q) \uparrow 3 \quad \text { for } 0 \leq q \leq 1 \quad(2-q) \uparrow\}
\end{array}\right.
$$

$$
\mathrm{q}=r \downarrow j, i / h=\sqrt{ } 5 / 2.5<
$$

$$
W \downarrow j i=45 r \downarrow j i \uparrow 3 / 4 \pi h \uparrow 5-45 r \downarrow j i \uparrow 2 / 2 \pi h \uparrow 4+15 / \pi h \uparrow 2
$$

$\pi \mathrm{W} \downarrow j i=\partial \mathrm{W} \downarrow j i / \partial \mathrm{x}, \partial \mathrm{W} \downarrow j i / \partial \mathrm{y}=(-2.43 * 10 \uparrow-1,-1.21 *$ 10ヶ-1);

calculation of V

$2 \boldsymbol{W} \downarrow \mathbf{i}, \mathrm{j}$
Using the numerical method to solve amw
$\nabla \uparrow 2 W \downarrow i j \mid \downarrow x=W \downarrow i+0.001, j-2 W \downarrow i j+W \downarrow i-0.001, j / 0.001 \uparrow 2=-0.257075-2 *(-0.257317)-0.257558 / 0.001^{\wedge} 2=5.1 * 10 \uparrow-1$
$\nabla \uparrow 2 W \downarrow_{i j} \mid \downarrow_{y}=W \downarrow i, j+0.001-2 W \downarrow_{i j}+W \downarrow i, j-0.001 / 0.001 \uparrow 2=-0.257196-2 *(-0.257317)-0.257438 / 0.01 \uparrow 2-2.36 * 10 \uparrow-1$

$$
-W(r, h)=C \downarrow h \square\left\{\begin{array}{l}
\| \\
(2-q) \uparrow 3-4(1-q) \uparrow 3 \quad \text { for } 0 \leq q \leq 1 \quad(2-q) \uparrow\}
\end{array}\right.
$$

$$
\mathrm{q}=r \downarrow j ; i / h=\sqrt{ } 5 / 2.5<1
$$

$$
W \downarrow j i=45 r \downarrow j i \uparrow 3 / 4 \pi h \uparrow 5-45 r \downarrow j i \uparrow 2 / 2 \pi h \uparrow 4+15 / \pi h \uparrow 2
$$

Calculation of ∇

$2 W \downarrow \mathrm{j}, \mathrm{i}$

Using the numerical method to solve

$\nabla \uparrow 2 W \downarrow j i / \downarrow x=W \downarrow j+0.001, i-2 W \downarrow j i+W \downarrow j-0.001, i / 0.001 \uparrow 2=-0.257558-2 *(-0.257317)-0.257075 / 0.001 \uparrow 2=-5.1 * 10 \uparrow-1$
$\nabla \uparrow 2 W \downarrow j i \mid \downarrow y=W \downarrow j, i+0.001-2 W \downarrow j i+W \downarrow j ; i-0.001 / 0.001 \uparrow 2=-0.257438-2 *(-0.257317)-0.257196 / 0.001 \uparrow 2=-2.36 * 10 \uparrow-1$

$$
\begin{aligned}
-W(r, h)=C \downarrow h \square\{\boldsymbol{\square}(2-q) \uparrow 3-4(1-q) \uparrow 3 \quad \text { for } 0 \leq q \leq 1 & (2-q) \uparrow 3 \\
q & =r \downarrow j, i / h=\sqrt{ } 5 / 2.5<1
\end{aligned}
$$

$$
W \downarrow_{j i}=45 r \downarrow j i \uparrow 3 / 4 \pi h \uparrow 5-45 r \downarrow j i \uparrow 2 / 2 \pi h \uparrow 4+15 / \pi h \uparrow 2
$$

Calculation of Acceleration, Velocity and Location

$$
\begin{aligned}
& a \downarrow i=a \downarrow i \uparrow p r e s s u r e+a \downarrow i \uparrow v i s c o s i t y+a \downarrow i \uparrow e x t e r n a l+a \downarrow i \uparrow g r a v i t y=\sum j \uparrow=1
\end{aligned}
$$

$$
\begin{aligned}
& 10 \uparrow-1)-3.5(-5.1 * 10 \uparrow-1,-2.36 * 10 \uparrow-1)+(0,0)+(0,0)=(1.542,0.705)
\end{aligned}
$$

$V \downarrow i n n e w=V \downarrow i=a \downarrow i n * \Delta t=(1,1)+(1.542,0.705)=(2.542,1.705) ; \quad X \downarrow i n n e w$ $=X \downarrow i+V \downarrow i n e w * \Delta t=(2,2)+(2.542,1.705)=(4.542,3.705)$;

Calculation of Acceleration, Velocity and Location

```
a\downarrowj=a\downarrowj\uparrowpressure +a\downarrowj\uparrowviscosity +a\downarrowj\uparrowexternal +a\downarrowj`gravity = \sumi\uparrow瑇 P\downarrowji
```



```
10\uparrow-1,-1.21*10\uparrow-1 )+3.5(-5.1*10\uparrow-1,-2.36*10\uparrow-1)
+(0,0)+(0,0)=(-1.542,-0.705)
```

$V \downarrow j n e w=V \downarrow j+a j * \Delta t=(0.5,1)+(-1.542,-0.705)=(-1.042,0.295) ;$
$X \downarrow j$ new $=X \downarrow j+V \downarrow j n e w * \Delta t=(4,3)+$
$(-1.042,0.295)=(2.958,3.295)$;

Calculation Results

For each time step:

> Discrete from integration to summation
> Numerical approximation for Kernel Function
> Calculate density for each particle
> Calculate pressure for each particle
> Calculate all type of accelerations for each particle, and sum it up
> Find new velocities and positions by using the same summation method as before...

Numerical Example

Simulation Example

> Software Introduction
> Software preparation
> Numerical Computation
> Parameter Setup
> Coding
> Visualization of result

Software Introduction

> Code source: Open source.
$>$ Dimension: 2-D \& 3-D.
> Numerically computation.
$>$ Visualization routines with ParaView.

Software preparation

> Windows: Intel Visual Fortran Silverfrost FTN95
GNU gfortran compiler on Cygwin
> Mac: GNU gfortran
> Linux: GNU gfortran compiler on Cygwin ParaView 5.3.0 (Visualization)

Numerical Computation

Numerically compute free-surface elevation:

1) For a given (X, Y) position.

2) Compute numerical MASS at different Z positions using MASS values of neighbouring fluid particles:

$$
\boldsymbol{m}_{a}=\sum_{b} \boldsymbol{m}_{b} W_{a b}
$$

3) We will choose as wave elevation: the Z value for which $m=0.5 * m$ (reference)

Numerical Computation

Numerically compute velocity:
1). For a given location.
2). Compute numeical velocity using velocity values of neighbouring fluid particles:

$$
\boldsymbol{V}_{a}=\frac{\sum_{b} \boldsymbol{V}_{b} W_{a b}}{\sum_{b} W_{a b}}
$$

Numerical Computation

Numerically compute pressure:
1). For a given location.
2). Compute numerical PRESSURE using PRESSURE values of neighbouring fluid particles:

$$
\boldsymbol{P}_{a}=\frac{\sum_{b} \boldsymbol{P}_{b} W_{a b}}{\sum_{b} W_{a b}}
$$

Numerical Computation

Numerically compute forces:

1) For a range of boundary particles
2) We compute numerical ACCELERATION of those boundary particles solving the particle interactions with fluid neighbouring particles:

$$
\frac{d \mathbf{v}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{b}}{\rho_{b}^{2}}+\frac{P_{a}}{\rho_{a}^{2}}+\Pi_{a b}\right) \nabla_{a} W_{a b}+\mathbf{g}
$$

3) Summation of ACCELERATION values of those boundary particles:

$$
\mathbf{F}=m \sum \frac{d \mathbf{v}_{a}}{d t}
$$

Parameter Setup

Kernel Function:

> Gaussian
> Quadratic
> Cubic
> Wendland

Parameter Setup

Time-stepping algorithm:
> Predictor-Corrector
> Verlet
> Symplectic
> Beeman

Parameter Setup

Viscosity treatment:
> Artificial viscosity
> Laminar
> Laminar viscosity+ Sub-Particle Scale

Parameter Setup

Density Filter:
> Zeroth Order - Shepard Filter
> First Order - Moving Least Squares (MLS)

Other choices

> Kernel correction (None)
$>$ Equation of state (Tait's equation)
> Boundary conditions (Dalrymple)
> Geometry of the zone (Box)
$>$ Initial fluid particle structure (BCC)

Coding

In Cygwin, with virtual Linux platform:
> Compiles SPHysicsgen_2D by SPHysicsgen.make.
> Run SPHysicsgen_2D with input file(Case1.txt), then obtain a output file (Case1.out).
> Compile and generate SPHysics_2D by SPHysics.make, places the SPHysics_2D executable.
> Execute SPHysics_2D.
> Visualize by ParaView.

Coding-bug and solution

Bug:

‘Xilink’ Command in SPHYSICS.mak file cannot be recognize by new version of Cygwin.

Solution:
Remodify the PHYSICS.mak file as follows:

```
.f.obj:
    ifort $(OPTIONS) $(COPTIONS) /O3 /c $<
SPHYSICS_2D.exe: $(OBJFILES)
    xilink /OUT:$@ $(OPTIONS) $(OBJFILES)
    del *.mod *.obj
```

```
.f.obj:
```

.f.obj:

```
.f.obj:
    ifort $(OPTIONS) $(COPTIONS) /03 /c $<
    ifort $(OPTIONS) $(COPTIONS) /03 /c $<
    ifort $(OPTIONS) $(COPTIONS) /03 /c $<
SPHYSICS_2D.exe:
SPHYSICS_2D.exe:
SPHYSICS_2D.exe:
    gfortran -o SPHYSICS_2D.exe $(OBJFILES)
    gfortran -o SPHYSICS_2D.exe $(OBJFILES)
    gfortran -o SPHYSICS_2D.exe $(OBJFILES)
clean:
clean:
clean:
clean:
    rm *.mod *.o
```

 rm *.mod *.o
    ```
    rm *.mod *.o
```


Visualization of result

Visualization of result ($\mathrm{t}=0,15,30,45$)

Visualization of result ($\mathrm{t}=60$, 75,90,105)

Visualization of result $(\mathrm{t}=120$, 135,149)

Example Applications

Uses in astrophysics

Smoothed-particle hydrodynamics's adaptive resolution, numerical conservation of physically conserved quantities, and ability to simulate phenomena covering many orders of magnitude make it ideal for computations in theoretical astrophysics.

Uses in fluid simulation

First, SPH guarantees conservation of mass without extra computation. Second, SPH computes pressure from weighted contributions of neighboring particles. Finally, SPH creates a free surface for two-phase interacting fluids directly. For these reasons it is possible to simulate fluid motion using SPH in real time.

Smoothed Particle Hydrodynamics

Uses in solid mechanics

This feature has been exploited in many applications in Solid Mechanics: metal forming, impact, crack growth, fracture, fragmentation, etc.

Questions

