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§  Solving problems involving complex 
and diffuse interfaces using free 
energy 

§  Models systems where shape of 
interface are important 

§  Can turn sharp interfaces into diffuse 
interfaces using phase field 
parameters 

§  Important in material science 



§  Sharp interface problems do not 
adequately describe most physical 
phenomena 

§  Written in terms of conserved and 
non-conserved variables that are 
continuous and smooth 

§  Allows for highly localized variations 
at an interface 



§  Impact of droplet on solid surface 

§  Drop coalescence and retraction 
in viscoelastic fluids 

§  Flow induced polymerization 



ADVANTA
GES OF 
PHASE 
FIELD 
MODELIN
G 

§ Able to compute 
geometric quantities 
easily 

§ Codes can be converted 
from two to three 
dimensions easily 

§ Can handle topology 
changes easily 



DISADVANT
AGES OF 
PHASE 
FIELD 
MODELING 

§  Requires large number of grid 
points near interface 

§  Most applications limited to 
observation of shape 

§  Large domains can be 
computationally challenging 



Finite element Finite difference Fourier spectral analysis 



PHASE 
FIELD 

MODELING  
VS.  

LEVEL SET 
METHOD 

Both phase field models and level set 
methods… 

§ Solve for diffuse interfaces 

§ Have fixed meshes 

§ Use an order parameter 



PHASE 
FIELD 

MODELING  
VS.  

LEVEL SET 
METHOD 

Phase field modeling… 

§ Can solve for three phases 

§ Allows for fluid-structure interaction and 
phase separation models 

§ More computationally intensive than 
level set 

§ Tends to be more accurate 

§ Is developed from physics standpoint 

§ Best when the shape of the interface is 
important 



PHASE 
FIELD 

MODELING  
VS.  

LEVEL SET 
METHOD 

Level set methods… 

§ Only solve for two phases 

§ Less computationally intensive 

§ Developed from mathematical 
perspective 
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§  Track boundary by predicting local normal 
velocity at a point - solve diffusion equation 
in both solid and liquid 

 
§ Boundary conditions on interfaces are 

evolving with time 
 
§  Free boundary problem where one equation 

depends on the other 

§ Must breakup/mesh surface to solve the 
problem. Move the mesh a certain distance 
over a certain time and solve the equations 
again  

​𝜕𝑇/𝜕𝑡 =𝛼​𝜕↑2 
𝑇  

𝑇= ​𝑇↓𝑚 − ​𝐿↓𝑐 𝐻  

𝑉​𝐿↓𝐻 =𝐾𝜕𝑇  
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§ Developed more than a century ago by Van 
Der Walls and more than 40 years ago 
independently by Cahn and Hilliard 

 
§ Conventionally, mathematically sharp 

interfaces 
 

Ø local interfacial velocity was determined 
Ø Limited when dealing with 3D systems 

 
§ Method was first introduced through 

modeling solidification of a pure melt 
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§ Complexity created incentives for numerical 
calculations 

 
§ Much value in predicting the evolution of 

arbitrary morphologies and complex 
microstructures 
Ø Used in many industries 
Ø Both practical and theoretical  

 
§ Does not require explicitly tracking the 

positions of the interface 
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§ Microstructure evolution is common in many 
fields as the microstructure plays a critical 
role in determining the physical properties 
of a material  

 
§ Applications began to expand to grain 

growth modeling and coarsening   
 
§ More recently, phase field models have 

developed to thin films and surfaces, 
dislocation dynamics, crack propagation, 
and electromigration 

15 

Applications	of	the	phase	field	method	

Solidification		
		Pure	liquid	
		Pure	liquid	with	fluid	flow	
		Binary	alloys	
		Multicomponent	alloys	
		Nonisothermal	Solidification		

Solid-State	Phase	Transformations	
		Spinodal	phase	separation	
		Precipitation	of	cubic	ordered	intermetallic	
		Cubic-tetragonal	transformations	
		Hexagonal	to	orthorhombic	transformations	
		Ferroelectric	transformations	
		Phase	transformations	under	an	applied	stress	
		Martensitic	transformations	in	a	single	and	polycrystals		

Coarsening	and	Grain	Growth	
		Coarsening	
		Grain	growth	with	phases	
		Anistropic	grain	growth	

Other	Applications		
		Phase	transformations	in	thin	films	
		Surface-stress	induced	pattern	formation	
		Spiral	growth		
		Crystal	growth	under	stress	
		Crack	propagation		
		Electromigration	



§  Field variables or phase fields are 
introduced for the sole purpose of 
avoiding tracking the interface 

 
§  Solidification and original models 

belong to this type 

§  Field variables correspond to well-
defined physical order parameters  

 
§  These models assume that the 

microstructure evolution during a given 
process is governed by the phase field 
equations and that all the 
thermodynamic and kinetic coefficients 
can be related to microscopic 
parameters 

 
§  Mostly used for solid-state 

transformations 

Solidification Models Physical Order Parameters 
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§  The main difference among models lies in 
the treatment of various contributions to the 
total free energy  

§  Two types of variables: conserved and 
nonconserved 

 
§  In each model, the evolution of an order 

parameter can be obtained by solving the 
Cahn-Hilliard and Allen-Cahn equations 

​𝜕𝜙/𝜕𝑡 =−𝑀[​𝜕𝑓/𝜕𝜙 − ​ϵ↓𝜙↑2 ​𝛻↑2 𝜙] 
 
​𝜕𝜙/𝜕𝑡 =𝑀​𝛻↑2 [​𝜕𝑓/𝜕𝜙 − ​𝜖↓𝜙↑2 ​𝛻↑2 𝜙] 
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Fig. Dislocation network formation, fcc crystal during 
annealing. N. Zhou,  C. Shen,  M.J. Mills,  Y. Wang (2007) 
 
 

Fig.. Precipitation from an austenite grain boundary. Singer  Fig. 3D eutectic growth. Lewis et al. 
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§  Mechanism in which a solution of 
two or more components separate 
into distinct regions with distinct 
chemical and physical properties.  

§  One of the few phase 
transformations in solids for which 
there is any plausible quantitative 
theory 

§  There is no thermodynamic barrier 
to reaction inside spinodal region, 
meaning decomposition is 
determined solely by diffusion 

§  Provides a means of producing a 
very finely dispersed 
microstructure that can significantly 
enhance the physical properties of 
the material 

 
Arya, A. Phase Field Modeling. Materials Science Division, Bhabha Atomic Research Centre, Mumbai, India.  
 



§  In a binary mixture spinodal 
decomposition occurs when 
delocalized small amplitude 
fluctuations grow spontaneously  

§  The local concentration fluctuations 
lead to phase change in the 
thermodynamically unstable state 

§  This mechanism does not occur in 
the whole two-phase region but in 
a smaller region which is given by 
spinodal curve.   

 



§  Plot of free energy vs composition for a binary mixture.  
The points of inflection enclose the region in which 
spinodal decomposition will occur at that temperature 

§  The spinodal curve is found by finding points of 
inflection at different temperatures 

§  Phase separation in spinodal curve is spinodal 
decomposition 

§  Phase separation between spinodal curve and 
coexistence curve takes place via nucleation  

§  Outside of spinodal curve, localized large amplitude 
fluctuations must form in order to start transformation 



DENDRITIC 
GROWTH 

§  A dendrite is a crystal with a tree-like 
structure 

§  Process known as the solidification or 
freezing 

§  The resulting micro-structures from 
solidification impact numerous properties of 
the solid material. 

§  http://math.nist.gov/mcsd/savg/vis/dendrite/ 

§  Computations using phase field method 
have provided some of the most realistic 
simulations of this complicated phenomenon 

§  Simulations use diffusion in the bulk phases 
and surace energy and kinetic effects at the 
solid/liquid interface 

§  http://math.nist.gov/mcsd/Reports/95/yearly/
node15.html 



The video shows the concentration of copper (in an aluminium 2 wt% copper alloy) in the liquid phase 
changes as the dendrite solidifies 

 
http://www.phase-trans.msm.cam.ac.uk/dendrites.html 
 



 
 

W 

A B 
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Cahn Hilliard (conserved) Allen-Cahn (non-conserved) 



    Free Energy Functional   
 
𝐹(𝜙)=∫↑▒(𝑓(𝜙)+ ​𝜖↑2 ​(​𝑑𝜙/𝑑𝑥 )↑2 )𝑑𝑉  
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𝐹(𝜙)=∫↑▒(𝑓(𝜙)+ ​𝜖↑2 ​(​𝑑𝜙/𝑑𝑥 )↑2 )𝑑𝑉  

𝛿𝐹(𝜙)=𝛿∫↑▒(𝑓(𝜙)+ ​𝜖↑2 ​(​𝑑𝜙/𝑑𝑥 )↑2 )𝑑𝑉  

​𝛿𝐹/𝛿𝜙 =0 ​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 𝜙=0 



Functional derivative acts like a differential operator 

26 

𝛿𝐹(𝜙)=∫↑▒(𝛿𝑓(𝜙)+𝛿​𝜖↑2 ​(​𝑑𝜙/𝑑𝑥 )↑2 )𝑑𝑉 	

𝛿𝐹(𝜙)=∫↑▒(​𝜕𝑓(𝜙)/𝜕𝜙 𝛿𝜙+ ​𝜖↑2 ​𝛿(​𝑑𝜙/𝑑𝑥 )↑2 )𝑑𝑉 	

𝛿𝐹(𝜙)=∫↑▒(​𝜕𝑓(𝜙)/𝜕𝜙 𝛿𝜙+ ​𝜖↑2 2​𝑑𝜙/𝑑𝑥 𝛿(​𝑑𝜙/𝑑𝑥 ))𝑑𝑉 	

𝛿𝐹(𝜙)=∫↑▒(​𝜕𝑓(𝜙)/𝜕𝜙 𝛿𝜙+ ​𝜖↑2 2​𝑑𝜙/𝑑𝑥 ​𝑑/𝑑𝑥 (𝛿𝜙))𝑑𝑉 	



Ø Integrate by parts 
 
=2​𝜖↑2 ​𝑑𝜙/𝑑𝑥 (𝛿𝜙)−∫↑▒2​𝜖↑2 ​​𝑑↑2 𝜙/𝑑​𝑥↑2  (𝛿𝜙)𝑑𝑉  
 
 
Ø Assume phi doesn’t vary at the boundaries 
 
𝛿𝐹(𝜙)=∫↑▒(​𝜕𝑓(𝜙)/𝜕𝜙 −2​𝜖↑2 ​​𝑑↑2 𝜙/𝑑​𝑥↑2  )𝛿𝜙𝑑𝑉  
 
 
Ø For generalized form, setting expression in parenthesis equal to zero 
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​𝛿𝐹/𝛿𝜙 = ​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 
𝜙=0 



 
                       ​𝛿𝐹/𝛿𝜙 = ​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 𝜙=0 
 
 
Ø Define free energy density 
 
 
 
 
 
 
 
Ø Composition Profile 

W 

A B 
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𝑓(𝜙)=𝑊​𝜙↑2 ​(1−𝜙)↑2  

2𝑊𝜙(1−𝜙)(1−2𝜙)−2​𝜖↑2 ​​𝑑↑2 𝜙/𝑑​𝑥↑2  =0 

𝜙(𝑥)= ​1/2 (1+ ​tanh�(​𝑥/2𝑙 ) ) 𝑙= ​(​2/𝑊 )↑​1∕2  𝜖  



Ø Introduce lagrange multiplier 
 
 
 
 
Ø Repeat the process 
 
 
 
 
 
Ø If we wish to describe diffusion 
 

29 

𝐹(𝜙)=∫↑▒(𝑓(𝜙)+ ​𝜖↑2 ​𝛻𝜙↑2 −𝜆(𝜙− ​𝜙↓𝑜 ))𝑑𝑉  

𝜆= ​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 𝜙  

𝐽=−𝑀Δ𝜆=−𝑀𝛻(​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 𝜙) 



 
 
 
 
 
 
 
 
 
Cahn-Hilliard 
 
 
 
Allen-Cahn 
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𝐽=−𝑀Δ𝜆=−𝑀𝛻(​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 𝜙) 

​𝜕𝜙/𝜕𝑡 =−𝛻∙𝐽  

​𝜕𝜙/𝜕𝑡 =𝑀​𝛻↑2 (​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 ​𝛻↑2 𝜙) 

​𝜕𝜙/𝜕𝑡 =−𝑀𝜆=−𝑀(​𝜕𝑓/𝜕𝜙 −2​𝜖↑2 𝐾​𝛻↑2 𝜙) 



 
 
 
 
 
 
Ø Allen-Cahn non-conserved equation 

 
 
 
Ø Take free energy density to be the following 
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(​1/​𝑀↓∅  )​𝜕𝜙/𝜕𝑡 =(​𝐾↓∅ ​𝛻↑2 𝜙− ​𝜕𝑓/𝜕𝜙 ) 

𝑓(𝜙)=𝑊​𝜙↑2 	

​𝑘↓∅ ​𝛻↑2 ​∅↓𝜏 − ​𝑠  ​​∅ ↓𝜏 =2𝑊∅	

1 2 2 I II 

		

@𝑡= ​0↑− 			|		 ​∅↓3 =1, ​ ∅↓1 =1	

@𝑡= ​0↑+ 			|		 ​∅↓3 =0, ​ ∅↓1 =1	



 
Ø  Taking transient and diffusion coefficients to be values such that our matrices are simplified, 

while taking barrier height to be 1 
     
 
      Local Matrices                         Global Matrices 
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​𝐾↓𝐼 = ​𝐾↓𝐼𝐼 =[█1&−1@−1&1 ]	

​𝑆↓𝐼 = ​𝑆↓𝐼𝐼 =[█1&0@0&1 ]	

[█1&−1&0@−1&2&−1@0&−1&1 ]{█​∅↓1 @​∅↓2 @​∅↓3  }−
[█1&0&0@0&2&0@0&0&1 ]{█​​∅ ↓1 @​​∅ ↓2 @​​∅ ↓3  }={█2​
∅↓1 @2​∅↓2 @2​∅↓3  }	

[█0&−1&0@0&2&0@0&−1&0 ]{█0@​∅↓2 @0 }−
[█1&0&0@0&2&0@0&0&1 ]{█​​∅ ↓1 @​​∅ ↓2 @​​∅ ↓3  }={█2​
∅↓1 − ​∅↓1 @2​∅↓2 + ​∅↓1 + ​∅↓3 @2​∅↓3 − ​∅↓3  }	
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​𝑘 ​​∅ ↓𝑡+∆t − ​𝑠 ​1/∆𝑡 (​​∅ ↓𝑡+∆𝑡 − ​​∅ ↓𝑡 )=2​​∅ ↓𝑡+∆𝑡 	

​​∅ ↓𝑡+∆t [​𝑘 − ​1/∆𝑡 ​𝑠 ]=2​​∅ ↓𝑡+∆𝑡 − ​1/∆𝑡 ​𝑠 ​​∅ ↓𝑡 	

[​𝑘 − ​1/∆𝑡 ​𝑠 ]= ​𝑘↑∗ 	

2​​∅ ↓𝑡+∆𝑡 − ​1/∆𝑡 ​𝑠 ​​∅ ↓𝑡 = ​​∅↑∗ ↓𝑡+∆𝑡 	

​𝑘↑∗ ​​∅ ↓𝑡+∆t = ​​∅↑∗ ↓𝑡+∆𝑡 	
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​𝑘↑∗ =[2− ​1/0.1 2]=−18 

​​∅↑∗ ↓𝑡+∆𝑡 =2​​∅ ↓2 + ​∅↓1 + ​∅↓3 − ​1/∆𝑡 ​𝑠 ​​∅ ↓2  

​​​∅↑∗ ↓𝑡+∆𝑡 =2(1)+1+1− ​1/0.1 (2)(1) 

−18​​∅ ↓𝑡+∆t =−16 

​​∅ ↓𝑡+∆t =0.889 

For ∆t=0.1 
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−18​​∅ ↓𝑡+∆t = ​​∅↑∗ ↓𝑡+∆𝑡 	

​​∅↑∗ ↓𝑡+∆𝑡 =(2)(0.889)+0+1−​1/.2 (2)(0.889)	

​​∅ ↓𝑡+∆t =0.34	







𝑟=0.15𝑚𝑚 

ℎ=
0.

5𝑚
𝑚

 



§ Cahn-Hilliard Equation 
 

​𝜕𝜙/𝜕𝑡 +𝑢∙𝛻𝜙=𝛻∙(​𝛾𝜆/​𝜖↑2  𝛻𝜓) 

 

Where 𝜓=−𝛻∙ ​𝜖↑2 𝛻𝜙+(​𝜙↑2 −1)𝜙 
 



​𝑉↓𝑓1 = ​1−𝜙/2  

 

​𝑉↓𝑓2 = ​1+𝜙/2  

 

𝜌= ​𝜌↓𝑎𝑖𝑟 +(​𝜌↓𝑤𝑎𝑡𝑒𝑟 − ​𝜌↓𝑎𝑖𝑟 )​𝑉↓𝑓2  

 

𝜇= ​𝜇↓𝑎𝑖𝑟 +(​𝜇↓𝑤𝑎𝑡𝑒𝑟 − ​𝜇↓𝑎𝑖𝑟 )​𝑉↓𝑓2  



Continuity condition 

𝛻∙𝑢=0 

Momentum Transport (Navier-Stokes) 

𝜌​𝜕𝑢/𝜕𝑡 +𝜌(𝑢∙𝛻)𝑢=𝛻∙[−𝑝𝐼+𝜇(𝛻𝑢+ ​(𝛻𝑢)↑𝑇 )]+ ​𝐹↓𝑠𝑡 +𝜌𝑔 

Where ​𝐹↓𝑠𝑡 =𝐺𝛻𝜙 and 𝐺=𝜆[− ​𝛻↑2 𝜙+ ​𝜙(​𝜙↑2 −1)/​𝜖↑2  ]= ​𝜆/​𝜖↑2  𝜓 

 

 



Initial conditions 

Reservoir full of water 

Capillary tube full of air 

 

Boundary conditions 

P = 0 at top of capillary tube 

P = 𝜌𝑔𝑧 on right side of reservoir 

No slip condition on walls of capillary tube 



§ Rectangular grid 
system 

§ Too fine of a grid took 
too long to compute 

§ Too coarse and the 
water did not move 





Level Set 

§  13 minutes and 20 seconds 

Phase field 

§  10 minutes and 50 seconds 





§ Geometry adapted for phase field 
from COMSOL Manual (designed 
for level set) 

 

§ Uses both Navier-Stokes and Cahn-
Hilliard 

§ Has many important applications 



§ Free triangular grid 

§ Most dense around 
phase interface 



Volume Fraction Velocity 







NAVIER-STOKES PHASE FIELD FOR TWO MISCIBLE FLUIDS 



NAVIER-STOKES-CAHN-HILLARD SIMULATION OF A DAM BREAK 

 



§  Example using the Phase Field Model for the spinodal decomposition of Iron-Chromium Alloy at 500°C during 
one week. 

§  The simulation assumes a two-dimensional 25nm × 25nm surface. 

§  The reactions are simple and depend solely on concentrations.  Therefore, we can use the Cahn-Hillard equation. 

 

 

 

c is the mole fraction of chromium (unitless) 

M(c) is the mobility of chromium (m2mol/Js) 

floc(c) is the free energy density (J/mol) 

κ is the gradient energy coefficient (Jm2/mol).  

http://mooseframework.org/wiki/MooseTutorials/IronChromiumDecomposition/#introduction 







EXAMPL
E 

APPLICA
TION 

§  We expect three things from this simulation: 

§  First, the surface should decompose into the iron 
and chromium phases at the equilibrium 
concentrations.  

§  Second, the decomposed surface will minimize 
energy by minimizing the interface contact between 
the two phases. It does this by shaping the regions 
as circles or large stripes.  

§  Third, most phase field problems reduce the free 
energy of the surface in an s-curve shape. That is, at 
the beginning and end of the simulation, there is 
relatively little change in the free energy of the 
surface, but there is a rapid decrease somewhere in 
the middle.  



STEP 1: MAKE A SIMPLE TEST MODEL    STEP 2: MAKE A FASTER TEST 

MODEL 

 



STEP 3: ADD PHASE DECOMPOSITION TO THE MODEL 



STEP 5: CREATE A FUNCTION OF MOBILITY 



STEP 5: CHECK THE SURFACE ENERGY CURVE 



NAIVER-STOKES-CAHN-HILLARD RISING BUBBLES 

<div style="position:relative;height:
0;padding-bottom:75.0%"><iframe 
src="https://www.youtube.com/embed/
OgqW0C28urU?ecver=2" width="480" 
height="360" frameborder="0" 
style="position:absolute;width:
100%;height:100%;left:0" 
allowfullscreen></iframe></div> 




