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= Solving problems involving complex
and diffuse interfaces using free
energy

= Models systems where shape of

interface are important T \
X

air

= Can turn sharp interfaces into diffuse
interfaces using phase field
parameters

= Important in material science

WHAT IS PHASE FIELD
MODELING?




= Sharp interface problems do not | e oe
adequately describe most physical
phenomena

= Written in terms of conserved and
non-conserved variables that are
continuous and smooth Q,K,Sff

Solidification front V(m/s] -

= Allows for highly localized variations S | |
at an interface e i i divcted - it st some speed (1) to the right. Most stoe wil then be et and

thermo-mechanically treated to improve their strength properties. In spite of the post solidification
treatment that the metal may receive, the so called "as-cast™ structure (inset) that is established initially

is always, to some extend, present in the final product.

MOTIVATION FOR PHASE
FIELD MODELING




= Impact of droplet on solid surface

Dynamics of drop formation from a capillary tube:

= Drop coalescence and retraction inkjet printing

in viscoelastic fluids

Ee—N

= Flow induced polymerization

ambient pressure
1JP Nozzle i
[
InkDroplet —> @

Substrate

IMPORTANT
APPLICATIONS




ADVANTA
GES OF
PHASE
FIELD
MODELIN
G

= Able to compute

geometric quantities
easily

= Codes can be converted

from two to three
dimensions easily

= Can handle topology

changes easily




DISADVANT
AGES OF
PHASE

FIELD
MODELING

= Requires large number of grid

points near interface

= Most applications limited to

observation of shape

= Large domains can be

computationally challenging




WAYS OF SOLVING PHASE

FIELD MODELS
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Both phase field models and level set
methods...

= Solve for diffuse interfaces

Jiec@mr = . - Have fixed meshes
| LEVE L S ET & =Use an order parameter




Phase field modeling...
= Can solve for three phases

= Allows for fluid-structure interaction and
phase separation models

= More computationally intensive than
level set

= Tends to be more accurate

= Is developed from physics standpoint

 LEVELSET .

O | = Best when the shape of the interface is
5 i g important




Level set methods...
= Only solve for two phases
= Less computationally intensive

= Developed from mathematical
perspective
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BEFORE PHASE FIELD

= Track boundary by predicting local normal
velocity at a point - solve diffusion equation
in both solid and liquid

= Boundary conditions on interfaces are
evolving with time

* Free boundary problem where one equation
depends on the other

* Must breakup/mesh surface to solve the
problem. Move the mesh a certain distance
over a certain time and solve the equations

again

0T /3t =ad1?

VILH =KoT
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PHASE FIELD BEGINNING

= Developed more than a century ago by Van
Der Walls and more than 40 years ago
independently by Cahn and Hilliard

= Conventionally, mathematically sharp
interfaces

» local interfacial velocity was determined
» Limited when dealing with 3D systems

= Method was first introduced through
modeling solidification of a pure melt
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PHASE FIELD EVOLUTION

= Complexity created incentives for numerical
calculations

* Much value in predicting the evolution of
arbitrary morphologies and complex

microstructures
» Used in many industries

» Both practical and theoretical

= Does not require explicitly tracking the
positions of the interface




PHASE FIELD APPL

= Microstructure evolution is common in many
fields as the microstructure plays a critical
role in determining the physical properties

of a material

= Applications began to expand to grain

growth modeling and coarsening

= More recently, phase field models have

developed to thin films and surfaces,

dislocation dynamics, crack propagation,

and electromigration

Applications of the phase field method

ICATIONS

Pure liquid with fluid flow
Binary alloys
Multicomponent alloys
Nonisothermal Solidification

Solid-State Phase Transformations
Spinodal phase separation
Precipitation of cubic ordered intermetallic
Cubic-tetragonal transformations
Hexagonal to orthorhombic transformations
Ferroelectric transformations
Phase transformations under an applied stress
Martensitic transformations in a single and polycrystals

Coarsening and Grain Growth
Coarsening
Grain growth with phases
Anistropic grain growth

Other Applications
Phase transformations in thin films
Surface-stress induced pattern formation
Spiral growth

Crystal growth under stress
Crack propagation @

Electromigration




TWO MODELS

Solidification Models

= Field variables or phase fields are
introduced for the sole purpose of
avoiding tracking the interface

= Solidification and original models
belong to this type

Physical Order Parameters

Field variables correspond to well-
defined physical order parameters

These models assume that the
microstructure evolution during a given
process is governed by the phase field
equations and that all the
thermodynamic and kinetic coefficients
can be related to microscopic
parameters

Mostly used for solid-state
transformations

@



VARIATION IN MODELS

= The main difference among models lies in Ip/0t =—M[5f/0¢ —elpT2 VT2 §]

the treatment of various contributions to the _ B
total free energy Op/0t =MVT2 [0f /0P —elPpT2 VT2 @]

= Two types of variables: conserved and
nonconserved

= In each model, the evolution of an order et i
parameter can be obtained by solving the -:

Cahn-Hilliard and Allen-Cahn equations
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Field variable
Variable
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a) Spatial coordinate - b) Spatial coordinate




PHASE FIELD METHOD TODAY
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Fig. Dislocation network formation, fcc crystal during
annealing. N. Zhou, C. Shen, M.J. Mills, Y. Wang (2007)
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Fig.. Precipitation from an austenite grain boundary. Singer Fig. 3D eutectic growth. Lewis et al. @



SPINODAL DECOMPOSITION

= Mechanism in which a solution of
two or more components separate
into distinct regions with distinct
chemical and physical properties.
=  One of the few phase
transformations in solids for which
there is any plausible quantitative
theory \
= There is no thermodynamic barrier
to reaction inside spinodal region,
meaning decomposition is
determined solely by diffusion
= Provides a means of producing a
very finely dispersed
microstructure that can significantly
enhance the physical properties of
the material

Arya, A. Phase Field Modeling. Materials Science Division, Bhabha Atomic Research Centre, Mumbai, India. @



SPINODAL DECOMPOSITION

In a binary mixture spinodal
decomposition occurs when
delocalized small amplitude
fluctuations grow spontaneously
The local concentration fluctuations
lead to phase change in the
thermodynamically unstable state
This mechanism does not occur in
the whole two-phase region but in
a smaller region which is given by
spinodal curve.
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SPINODAL i
DECOMPOSITION

= Plot of free energy vs composition for a binary mixture.
The points of inflection enclose the region in which
spinodal decomposition will occur at that temperature

= The spinodal curve is found by finding points of
inflection at different temperatures

= Phase separation in spinodal curve is spinodal
decomposition T

= Phase separation between spinodal curve and
coexistence curve takes place via nucleation

= Outside of spinodal curve, localized large amplitude
fluctuations must form in order to start transformation

chemical
spinodal




= A dendrite is a crystal with a tree-like
structure

= Process known as the solidification or
freezing

= The resulting micro-structures from
solidification impact numerous properties of
the solid material.

= http://math.nist.gov/mcsd/savg/vis/dendrite/

= Computations using phase field method
have provided some of the most realistic
simulations of this complicated phenomenon

= Simulations use diffusion in the bulk phases
and surace energy and kinetic effects at the
solid/liquid interface

= http://math.nist.gov/mcsd/Reports/95/yearly/
nodel5.html
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The video shows the concentration of copper (in an aluminium 2 wt% copper alloy) in the liquid phase
changes as the dendrite solidifies



FREE ENERGY MINIMIZATION

F(0) = f F(@)dv

F(9) = f(f((a) + £2|0@|%)dV

!

Cahn Hilliard (conserved) Allen-Cahn (non-conserved) R 2
B
a0 ) (6f - ) 0 (a f ) s )
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DERIVATION OF PHASE FIELD
EQUATION See tneray Funciona

SF/S¢ =0 Of /3¢ —2€12 V12 =0

—————>




FUNCTIONAL DERIVATIVE

Functional derivative acts like a differential operator




»Integrate by parts

»For generalized form, setting expression in parenthesis equal to zero

SE/Sp=08f/3p —2€12 712
=0




JF/§¢=ﬁf/ﬁ¢—2€TZ V2 ¢=0 25

»Define free energy density

S(P)=WPT2 (1=@)T2

2WS(1—@)(1-28)—2€12 dT2 $/dxT2 =0

» Composition Profile

H(x)=1/2 (1+tanhO(x/2/) ) I=Q2/W)TL/2 €




CONSERVED ORDER
FARAMEPER

»Repeat the process

A=38f/0¢ —2€12 V12 ¢

> If we wish to describe diffusion

J=—MA=—MV(3f/3p —2€12 V12 )




DESCRIBING DIFFUSIVE
PROCESSES -z

0 /dt=—1-]

O/t =MV12 (3f /0 —2€12 712 )
Cahn-Hilliard

Allen-Cahn » 0B/0t =—MA=—M(3f/0¢ —2€T2 KVT2 §)




HAND CALCULATION

@=07— | ¢43=1, §1=1

@=0T+ | 943 =0, 041 =1

» Allen-Cahn non-conserved equation

(L/MID )dp/dt=(KID V12 ¢—8f /0% )

»Take free energy density to be the following

[(B)=WPT2

KO VT2 0dr—s @ lr=2WQ @




DEFINING MATRICES

» Taking transient and diffusion coefficients to be values such that our matrices are simplified,

while taking barrier height to be 1

Local Matrices

[=Kil/=[M&1@-1&1 ]

[=SL//=[M & @0&1 |

Global Matrices

[M1&—180@-18&2&—1@0&—1&1 [{MDI1 @DL2 @DI3 }—
/18080 @0&28&0@0&0&1 J{lQ) I1 @D I2 @9 I3 j={M
0l1 @2002 @203 )

[H0&—18&0 @0 &2 &0 @0&—1&0 [{l0@PJ2 @0 }—
[E1&0&0@0&2&0 @0&0&1 J{MY [1 @9 12 @9 I3 }={M
01—l @2042 +BI1 +BI3 @203 —BI3

@



EQUATIONS

kQIt+At —s1 /At (O Jt+ AL —Q It )=20Q Jt+At
O Jt+At [k =1/At s =20 e+ At =1 /At sD It
[k —=1/At s |[=kT*

20 dt+ At —1/At s @ Lt =0T+ t+At

T Q L+ At =@ Tx Jt+ At




FIRST TIME STEP

For At=0.1
Order Parameter vs. Time

kT« =[2—1/0.12]=—18

Yo~ 00 WO

QT+ Jt+Ar =20 J2 +0J1 +0I3 -1 /At s 2
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NEXT TIME STEP

Order Parameter vs. Time

—180 Jt+At =@ T+ Jt+At Yy
@ T Jt+Ar=(2)(0.889)+0+1-1/.2 (2)(0.889)

@ Jt+At =0.34

Order Parameter

—p—deit=0.1 —e— delt=0.05
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PHASE SEPARATION

= Cahn-Hilliard Equation

op/0t +u V=V (yA/€T2 V)

Where y=—1-ef2 Vg+(¢72 —1)g




UPDATING VARIABLES WITH
ORDER PARAMETER

Vifl =1—¢/2
Vif2 =1+¢@/2
p=plair + (pdwater —plair )VIi/f2

U=wlair +(wlwater —plair V4,2




MOMENTUM

Continuity condition

V-u=0

Momentum Transport (Navier-Stokes)

00U/t +p(u V)u=V-[-pl+u(Vut (Vi) 17 ) J+ Flst +pg

Where Filst=¢rg and ¢=A[-V12 ¢g+@(pT12 —1) /€12 J=A/e12




BOUNDARY CONDITIONS

Initial conditions

Reservoir full of water

1Y

Capillary tube full of air

Boundarv conditions

P = 0 at top of capillary tube
P = pgzon right side of reservoir

No slip condition on walls of capillary tube




GRID SIZE

Settings ~ Properties ~ 2| Graphics
“esd. 9. """ "¢ SELECTION
® Build Selected B Build Al = . e . , . . e
0.65 | ! o
Label: | Size 0.6 |
Element Size 0.55 | | i

Calibrate for: 0.5] I u Rectangular grid
General physics v 0~45: I S.y.stem

@® Predefined | Extra fine v 0.4
O Custom 0.35
0.3 i

¥ Element Size Parameters

0.257]

Maximum element size:

)| ‘ = Too fine of a grid took
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Curvature factor:
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COMPUTATION TIME — LEVEL
SET VS. PHASE FIELD

Level Set Phase field

= 13 minutes and 20 seconds = 10 minutes and 50 seconds
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PROBLEM
DESCRIPTION

= Geometry adapted for phase field
from COMSOL Manual (designed
for level set)

= Uses both Navier-Stokes and Cahn-

Hilliard

= Has many important applications

©
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= Most dense around

phase interface
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BONUS ANIMATION: 3D
VOLUME FRACTION







NAVIER-STOKES PHASE FIELD FOR TWO MISCIBLE FLUIDS




NAVIER-STOKES-CAHN-HILLARD SIMULATION OF A DAM BREAK




EXAMPLE APPLICATIONS

= Example using the Phase Field Model for the spinodal decomposition of Iron-Chromium Alloy at 500°C during
one week.

= The simulation assumes a two-dimensional 25nm X 25nm surface.

= The reactions are simple and depend solely on concentrations. Therefore, we can use the Cahn-Hillard equation.

aat = VM(c)V (=== f"’c( 2 — kV?0).

C is the mole fraction of chromium (unitless)
M(c) is the mobility of chromium (m?mol/Js)
floc(c) is the free energy density (J/mol)

K is the gradient energy coefficient (Jm?/mol).

http://mooseframework.org/wiki/MooseTutorials/IronChromiumDecomposition/#introduction @



FREE ENERGY DENSITY

free energy density (J/mol)
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INITIAL MOBILITY CURVE

Mobility (m2 mol/J s)
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= We expect three things from this simulation:

EX A M P L = First, the surface should decompose into the iron
and chromium phases at the equilibrium

concentrations.

E = Second, the decomposed surface will minimize

energy by minimizing the interface contact between
the two phases. It does this by shaping the regions

A P P L I C A as circles or large stripes.
= Third, most phase field problems reduce the free
energy of the surface in an s-curve shape. That is, at
T I O N the beginning and end of the simulation, there is
relatively little change in the free energy of the
surface, but there is a rapid decrease somewhere in
the middle.




STEP 1: MAKE A SIMPLE TEST MODEL STEP 2: MAKE A FASTER TEST
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ADD PHASE DECOMPOSITION TO THE MODEL

STEP 3
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STEP 5: CREATE A FUNCTION OF MOBILITY

045
0.4
0.35 l/”',,a“”
0.3

0.25
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0.15
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fraction of surface covered in Cr phase

0 100000 200000 300000 400000 500000 600000

time (s) (




STEP 5: CHECK THE SURFACE ENERGY CURVE
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Surface free energy
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NAIVER-STOKES-CAHN-HILLARD RISING BUBBLES







