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• Fictitious	assemblage	of	molecules	
• Uses	particle	probability	distribution	function	instead	of	
simulating	every	molecule’s	position	and	velocity	
• Particles	can	only	move	from	node	to		
		node	within	a	lattice	or	between		
		lattices,	based	on	prescribed	boundary		
		conditions.	
• Incompressible	flow	is	assumed	and		
		particles	‘stream’	&	‘collide’	
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LBM	&	FEM:	
• Lattice	<-->	Mesh	
• Boltzmann	equation	<-->	Navier-Stokes	equation	
• Weighting	parameter	<-->	Interpolation	function	
	
LBM	&	DEM	
• Mesoscopic	parameters	are	used	to	estimate	
macroscale	properties	(density,	velocity,	internal	
energy)	

	



Introduction 

LBM	vs	conventional	CFD:	
- Uses	1st	order	advection	PDE	instead	of	2nd	order	
convection	PDE	
- Discretization	is	implicit	in	Boltzmann	equation	
- Solved	as	a	’stream’	step	and	‘collision’	step	over	all	
lattices	and	simple	kinetic	boundaries	applied		

	



Introduction 

LBM	advantages:	
• Supports	massive	parallel	computing	since	local	lattice-level	
steps	can	be	solved	independently	and	simultaneously	
• No	need	of	‘interface’	elements	for	multi-component/multi-
phase	fluid	flows	
• Multi-scale	studies	over	wide	range	of	particle	sizes	possible	

LBM	drawbacks:	
• Needs	more	memory/storage	than	Navier-Stokes	solvers	
• Cannot	stably	handle	compressible	flows	or	Mach	numbers	
higher	than	0.3	
• Requires	external	packages	for	THM	coupling	

	



Historical perspective 



Historical	Perspective	
•  LBM	formulated	in	1988	by	McNamara	and	Zanetti	

–  1859:	Maxwell’s	distribution	function	
–  1868:	Boltzmann	transport	equation	
–  1954:	Bhatnagar,	Gross,	and	Krook	(BGK)	collision	operator	
–  1956:	FEM	by	Turner	
–  1973,76:	Hardy,	Pomeau,	and	de	Pazzis	(HPP)	model/Lattice	
Gas	Automata	(LGA)	

–  1980:	Finite	volume	method	(FVM)	at	Imperial	College	



Maxwell	Distribution	Function	
•  Measures	the	probability	

that	a	certain	percentage	
of	a	population	of	
molecules	will	be	traveling	
at	a	certain	speed	

•  Heavier	molecules	travel	
slower	(on	average)	

•  The	area	under	each	
distribution	is	1	



Boltzmann	Transport	Equation/BGK	
Collision	Operator	

•  If	no	collisions	

•  Same	equation,	with	
collisions		

•  If	no	external	force		

•  BGK	Collision	Operator	

•  LBM	Equation:		



Discretized	LBM	Equation	

•  Turns	1st	order	PDE	into	algebraic	expression	

•  Addresses	challenges	previous	CFM’s	did	not	

•  Very	straightforward	to	use	



General principles & 
equations 



Lattice 
Arrangements 

•  Description	of	the	lattice	and	degree	of	problem	
is	represented	via	DnQm		

•  m=speed,	#	of	the	linkages	of	a	node,	number	of	
velocity	directions	

•  N=	dimension	of	the	problem	

•  Particles	are	restricted	to	move	via	linkages	and	
are	allowed	to	interact	at	nodes	

•  Particles	move	along	the	linkages	at	the	lattice	
speed;	normally	assume	that	in	a	given	time	step	
the	particles	move	from	one	cell	node	to	the	
next.	

Example	of	a	1d	problem	
Source:	A.A	Mohamad	

Example	of	a	2d	problem	
Source:http://www.cims.nyu.edu/
~billbao/report930.pdf	

D2Q9	



•  D1Q3	is	described	with	three	velocities	c0,c1,c2	and	
f0,f1f2.	c0=0	for	center	particle	

•  Total	number	of	particles	not	allowed	to	exceed	3	

•  Particle's	are	free	to	move	to	the	left	or	right		

•  	Each	particle	is	assigned	a	particular	weight,	which	
is	a	function	of	how	close	that	particle	is	to	the	
central	node	and	the	velocities.		

•  For	D1Q3	the	weighting	factors,	𝛚I	,	are	4/6,	1/6,	
1/6	for	f0,f1,f2	

•  Speed	of	sound,	Cs,	is	1/(3^.5)	

•  The	sum	of	all	weights	must	equal	1.	
	

Lattice 
Arrangements 



Boundary 
Conditions 

Bounce-Back:		
•  Models	solid	stationary	or	moving	

boundary	conditions.	
•  When	a	particle	encounters	the		

boundary	it	will	simply	bounce	back.	
•  Boundary	can	be	placed	between	the	

nodes	or	going	through	the	center	of	
the	nodes.	

•  Unknown	distributions	after	collision	
are	f2,f5	and	f6.	

•  Focusing	on	bottom	layer	we	see	that	
f2=f4,	f6=f8,	f5=f7.	

Igor	2013	



Curved Boundary 
Conditions 

Mei	et	al.	2000	

Represent	the	curved	surface	through	a	set	of	
stair	steps.	
	
Requires	the	boundary	to	placed	between	the	
nodes.	



From Lattice Gas Automata to LBM 

•  For	LGA	particles	restricted	to	move	within	a	lattice	
• We	represent	the	particles	in	space	and	time	via	
• X=position,	t=time	and	i=direction	of	the	particle	velocity	
• Ni=	1=>	particle	is	present	at	site	x	and	time	t	vice	versa	if	Ni=0	
• Can	describe	how	the	particles	evolve	in	space	and	time	via:		
•  																					
•  	ei=	local	particle	velocities,	𝜴i=collision	operator	i=collision	operator	
• Collisions	are	local	



Example of LGA 

At	time	t-1	particle	is	occupied	at	site	1	and	4	
	
At	time	t,	particles	collide	
	
At	time	t+1,	particles	move	off	in	directions	of	e2	
and	e5.	(governed	by	scattering	rules)	
	
	



Derivation of Lattice Boltzmann Equation 
from LGA 

• Rather	than	describing	particles	via	Boolean	algebra	we	
can	represent	them	through	a	distribution	function	
•  Fk=average	(nk)	
• Distribution	function,	f(x,e,t);	where	x=position,	
e=velocity,	t=time	
•  If	we	apply	some	force,f,	on	the	particles	their	positions	
and	velocities	will	change	from	x										x+edt;	e										e	+F/
Mdt	



Collison vs no Collison 
•  If	no	collisions	between	particles	take	place,	then	the	distribution	of	
particles	should	be	the	same	before	and	after	force	was	applied	i.e	

•  		
• With	collisions	there	will	be	a	difference	between	initial	distribution	and	
final	distribution:	

•  Divide	through	by	dxdedt													

• Where	𝜴(f)	is	the	collision	operator	



Lattice Boltzmann Equation final form 
• Rate	of	change	of	our	
distribution	function	is	equal	
to	the	collision	operator																						

•  Expanded	form:	

• Divide	through	by	dt:	

• Note,	e=dx/dt;	de/dt=F/m	
•  If	we	assume	F=0,	i.e	no	
external	forces	then:	



Collision Operator 
continued 

•  If	particles	in	our	system	collide,	then	it	must	take	some	time	for	the	
particles	to	reach	an	equilibrium	state.	

•  The	time	taken	to	reach	the	equilibrium	state	is	a	function	of	the	type	
of	collision	and	a	relaxation	time	

•  Due	to	the	complexity	of	the	Collision	Operator	the	Boltzmann	
equation	can	be	difficult	to	solve.	

•  We	can	solve	for	the	collision	operator	based	on	Bhatnagar,	Gross	and	
Krook	solution	



More on the collision 
operator 

	
The	collision	operator	𝜴(f)	is	replaced	with	the	BGK	operator:	
𝜏=	is	the	relaxation	rate	towards	equilibrium	and	is	related	to	viscosity	by	:		
should	be	in	the	range	of	.5-2		
fkEQ=	equilibrium	distribution	function	
fkEQ	is	an	expansion	of	the	Maxwell	Distribution	Function	assuming	a	low	
Mach	number:	M=u/cs	<<1			
Where	u=macroscopic	velocity	of	the	fluid,	cs=speed	of	sound,	𝛒=macroscopic	
fluid	velocity	
	
	
	

	
	
	



Equilibrium Distribution Function, fkEQ 

• Note,	Taylors	Expansion	for	e^-x=	1-x	+x2/2-x3/3!	
• Using	Taylors	Expansion	we	can	rewrite	the	equilibrium	distribution	
function	as	follows:	

•  k=number	of	velocities,	𝛚k	=	weighting	factors	



Going from continuous 
form to discretized 

	
	
	

Recall,	that	the	collision	operator,	𝜴(f),	is	the	rate	of	change	of	
particle	distribution	function.	
	
	
	
	
Expanding	the	particle	distribution	function	out	into	its	
counterparts,	we	obtain	the	equation	to	the	right:	
	
	
	
	
Again,	dividing	through	by	dt,	and	assuming	no	external	forces	
yields	the	following:	
	
	
	



Continuous to discrete 
	
•  Recall,	that	the	collision	operator	is	simply:	𝜴(f)=	-1/𝜏(f-feq)	

•  -1/𝜏(f-feq)=	∂f/	∂t+	∂f/	∂x	*c	

•  Now	multiply	through	by	dt	

•  -dt/	𝜏(f-feq)=		(∂f/	∂t	+		∂f/	∂x	*c)dt	 	 	 	 	 	 	 	 		(1)	

•  Note,	Taylor	series	expansion:	f(x	+	∆x,	t	+	∆t)=	f(x,t)	+	∆f	+	c	*	(∆f/	∆x)	∆t	

•  Substitute	the	second	term	in	the	Taylor	Series	with	Eq	1	

•  	f(x	+	∆x,	t	+	∆t)=	f(x,t)	-	∆t/	𝜏	(f-feq)	=	Discretized	version	of	LBM	
	

		



Connecting microscopic 
quantities to macroscopic 

quantities 

•  Basic	idea:	To	relate	microscopic	phenomena	to	macroscopic	behavior	
•  We	can	represent	the	density	of	a	fluid	via	the	following	eq:	

•  Can	represent	the	fluid	velocity	via	the	following	eq:		

•  Kinetic	Energy:		



Hand calculation 



Hand	Calculation	
•  Imagine	a	long	tube	of	gas	with	an	initial	
temperature	of	T	=	0.	

•  At	times	greater	than	0,	the	left	boundary	of	the	
tube	has	a	temperature	T	=	1.	

•  Model	the	change	in	gas	temperature	throughout	
the	tube	as	time	increases	
–  Assume	the	tube	is	non-conductive	such	that	all	heat	
transfer	occurs	through	the	gas	



Problem	Description	
•  Can	be	modeled	at	1-D	problem:	

•  We	will	model	with	3	elements:	



Workflow	
1.  Initialize	macroscopic	properties	and	

distribution	functions	
1.  Tw=1,	all	others	0.		
2.  Make	an	educated	guess	for	distribution	function	(for	

diffusion	equation,	it	doesn’t	really	matter)	
1.  For	initial	fi’s,	set	fi’s	in	element	1	to	wi’s	and	fi’s	in	

elements	2	and	3	to	ci’s.	

2.  Calculate	equilibrium	distribution	functions	



	



3.  Calculate	Collisions:	

1.  Using	the	BGK	Approximation	for	the	Collision	
Operator	

4.  Calculate	Streaming:	

After	Initialization…	









Update	Macroscopic	Properties	



Update	Macroscopic	Properties	



Same	problem	for	100	units	



Form	of	the	solution	with	increasing	T	



Summary	

Collision	
•  fi*	

Stream	
•  fi	at	new	location	

Move	to	next	
time	step	
•  t	+	dt	

Update	T,	fieq	

Initialize	
• T,	fi,	fieq	



Numerical example using 
OpenLB  



Example problem – 2D flow around cylinder 

• Steady	flow	around	a	cylinder	in	a	channel	
• Poiseuille	flow	profile	at	inlet	
• Dirichlet	boundary	of	p=0	at	outlet	
• Elastic	bounce-back	along	walls		
• Reynolds	number	=	20	and	100	for	laminar	and	turbulent	
flows	respectively	
• D2Q9	system	



0=Do	nothing		
1=Fluid	
2=no	slip/bounce	back	boundary	 		

3=velocity	boundary	
4=constant	(zero	in	our	case)	boundary	
5=curved	boundary	(cylinder)	





Re=20 (laminar flow) 

t = 0 s t = 10 s 

t = 5 s t = 15 s 



Re=100 (turbulence with Karman vortex street) 

t = 0 s t = 10 s 

t = 5 s t = 15 s 





Example applications 



Rayleigh-Benard flow 



Flow of particulates through nasal cavity 



Flow through lungs - parallel processing 



Turbulent flow in volcanoes 



Our favorite – flow in porous media 


