Lattice Boltzmann Methods

David Chas Bolton Brandon Schwartz Srisharan Shreedharan

Continuum(Macroscopic scale), finite difference, finite volume, finite element, etc),

Navier-Stokes Equations

Molecular Dynamics (Microscopic scale), Hamilton's Equation.

Lattice Boltzmann Method (Mesoscopic scale),

Boltzmann Equation

- Fictitious assemblage of molecules
- Uses particle probability distribution function instead of simulating every molecule's position and velocity
- Particles can only move from node to node within a lattice or between lattices, based on prescribed boundary conditions.
- Incompressible flow is assumed and particles 'stream' & 'collide'

LBM & FEM:

- Lattice <--> Mesh
- Boltzmann equation <___> Navier-Stokes equation
- Weighting parameter <__> Interpolation function

LBM & DEM

 Mesoscopic parameters are used to estimate macroscale properties (density, velocity, internal energy)

LBM vs conventional CFD:

- Uses 1st order advection PDE instead of 2nd order convection PDE
- Discretization is implicit in Boltzmann equation
- Solved as a 'stream' step and 'collision' step over all lattices and simple kinetic boundaries applied

LBM advantages:

- Supports massive parallel computing since local lattice-level steps can be solved independently and simultaneously
- No need of 'interface' elements for multi-component/multiphase fluid flows
- Multi-scale studies over wide range of particle sizes possible

LBM drawbacks:

- Needs more memory/storage than Navier-Stokes solvers
- Cannot stably handle compressible flows or Mach numbers higher than 0.3
- Requires external packages for THM coupling

Historical perspective

Historical Perspective

- LBM formulated in 1988 by McNamara and Zanetti
 - 1859: Maxwell's distribution function
 - 1868: Boltzmann transport equation
 - 1954: Bhatnagar, Gross, and Krook (BGK) collision operator
 - 1956: FEM by Turner
 - 1973,76: Hardy, Pomeau, and de Pazzis (HPP) model/Lattice Gas Automata (LGA)
 - 1980: Finite volume method (FVM) at Imperial College

Maxwell Distribution Function

- Measures the probability that a certain percentage of a population of molecules will be traveling at a certain speed
- Heavier molecules travel slower (on average)
- The area under each distribution is 1

Boltzmann Transport Equation/BGK Collision Operator

• If no collisions

f(r + cdt, c + Fdt, t + dt)drdc - f(r, c, t)drdc = 0

 Same equation, with collisions

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial r} \cdot c + \frac{F}{m} \cdot \frac{\partial f}{\partial c} = \Omega$$

If no external force

$$\frac{\partial f}{\partial t} + c \cdot \nabla f = \Omega$$

• BGK Collision Operator

$$\Omega = \omega(f^{\rm eq} - f) = \frac{1}{\tau}(f^{\rm eq} - f)$$

• LBM Equation:

$$\frac{\partial f_i}{\partial t} + c_i \nabla f_i = \frac{1}{\tau} (f_i^{\text{eq}} - f_i)$$

Discretized LBM Equation $f_i(r + c_i\Delta t, t + \Delta t) = f_i(r, t) + \frac{\Delta t}{\tau} [f_i^{eq}(r, t) - f_i(r, t)]$

- Turns 1st order PDE into algebraic expression
- Addresses challenges previous CFM's did not
 - Very straightforward to use

General principles & equations

Lattice Arrangements

- Description of the lattice and degree of problem is represented via $D_n Q_m$
- m=speed, # of the linkages of a node, number of velocity directions
- N= dimension of the problem
- Particles are restricted to move via linkages and are allowed to interact at nodes
- Particles move along the linkages at the lattice speed; normally assume that in a given time step the particles move from one cell node to the next.

Example of a 1d problem Source: A.A Mohamad

D₂Q₉ Example of a 2d problem Source:http://www.cims.nyu.edu/ ~billbao/report930.pdf

Lattice Arrangements

- D1Q3 is described with three velocities c0,c1,c2 and f0,f1f2. c0=0 for center particle
- Total number of particles not allowed to exceed 3
- Particle's are free to move to the left or right
- Each particle is assigned a particular weight, which is a function of how close that particle is to the central node and the velocities.
- For D1Q3 the weighting factors, ω₁, are 4/6, 1/6, 1/6 for f0,f1,f2
- Speed of sound, Cs, is 1/(3^.5)
- The sum of all weights must equal 1.

Boundary Conditions

Bounce-Back:

- Models solid stationary or moving boundary conditions.
- When a particle encounters the boundary it will simply bounce back.
- Boundary can be placed between the nodes or going through the center of the nodes.
- Unknown distributions after collision are f2,f5 and f6.
- Focusing on bottom layer we see that f2=f4, f6=f8, f5=f7.

Curved Boundary Conditions

Represent the curved surface through a set of stair steps.

Requires the boundary to placed between the nodes.

Mei et al. 2000

From Lattice Gas Automata to LBM

- For LGA particles restricted to move within a lattice
- We represent the particles in space and time via $n_i(\mathbf{x}, t)$, i = 0, ...M.
- X=position, t=time and i=direction of the particle velocity
- Ni= 1=> particle is present at site x and time t vice versa if Ni=0
- Can describe how the particles evolve in space and time via: $n_i(\mathbf{x} + \mathbf{e}_i \delta t, t+1) = n_i(\mathbf{x}, t) + \Omega_i(n(\mathbf{x}, t)), \quad i = 0, ...M$
- e_i = local particle velocities, Ω_i = collision operator
- Collisions are local

Example of LGA

At time t-1 particle is occupied at site 1 and 4

At time t, particles collide

At time t+1, particles move off in directions of e2 and e5. (governed by scattering rules)

Derivation of Lattice Boltzmann Equation from LGA

- Rather than describing particles via Boolean algebra we can represent them through a distribution function
- Fk=average (nk)
- Distribution function, f(x,e,t); where x=position, e=velocity, t=time
- If we apply some force, f, on the particles their positions and velocities will change from x > x+edt; e > e +F/ Mdt

Collison vs no Collison

• If no collisions between particles take place, then the distribution of particles should be the same before and after force was applied i.e

$$f(\mathbf{x} + \mathbf{e}dt, \mathbf{e} + \frac{\mathbf{F}}{m}dt, t + dt)d\mathbf{x}d\mathbf{e} = f(\mathbf{x}, \mathbf{e}, t)d\mathbf{x}d\mathbf{e}.$$

• With collisions there will be a difference between initial distribution and final distribution:

$$f(\mathbf{x} + \mathbf{e}dt, \mathbf{e} + \frac{\mathbf{F}}{m}dt, t + dt)d\mathbf{x}d\mathbf{e} - f(\mathbf{x}, \mathbf{e}, t)d\mathbf{x}d\mathbf{e} = \Omega(f)d\mathbf{x}d\mathbf{e}dt.$$

- Divide through by dxdedt $\longrightarrow \frac{\mathcal{D}f}{dt} = \Omega(f).$
- Where $\boldsymbol{\Omega}(f)$ is the collision operator

Lattice Boltzmann Equation final form

- Rate of change of our distribution function is equal to the collision operator
- Expanded form:
- Divide through by dt:
- Note, e=dx/dt; de/dt=F/m
- If we assume F=0, i.e no external forces then:

$$\begin{split} \frac{\mathcal{D}f}{dt} &= \Omega(f).\\ \mathcal{D}f &= \frac{\partial f}{\partial \mathbf{x}} d\mathbf{x} + \frac{\partial f}{\partial \mathbf{e}} d\mathbf{e} + \frac{\partial f}{\partial t} dt,\\ \frac{\mathcal{D}f}{dt} &= \frac{\partial f}{\partial \mathbf{x}} \frac{d\mathbf{x}}{dt} + \frac{\partial f}{\partial \mathbf{e}} \frac{d\mathbf{e}}{dt} + \end{split}$$

$$rac{\partial f}{\partial t} + \mathbf{e} \cdot
abla f = \Omega(f).$$

Collision Operator continued

- If particles in our system collide, then it must take some time for the particles to reach an equilibrium state.
- The time taken to reach the equilibrium state is a function of the type of collision and a relaxation time
- Due to the complexity of the Collision Operator the Boltzmann equation can be difficult to solve.
- We can solve for the collision operator based on Bhatnagar, Gross and Krook solution

More on the collision operator

The collision operator $\Omega(f)$ is replaced with the BGK operator: $\Omega_k = -\frac{1}{\tau} (f_k - f_k^{EQ})$

 τ = is the relaxation rate towards equilibrium and is related to viscosity by : $\nu = \frac{2\tau - 1}{6} \frac{(\Delta x)^2}{\Delta t}$ should be in the range of .5-2

fk^{EQ}= equilibrium distribution function

 fk^{EQ} is an expansion of the Maxwell Distribution Function assuming a low Mach number: M=u/cs <<1

Where u=macroscopic velocity of the fluid, cs=speed of sound, ρ =macroscopic fluid velocity

$$f = \frac{\rho}{2\pi/3} e^{-\frac{3}{2}(\mathbf{e}-\mathbf{u})^2} = \frac{\rho}{2\pi/3} e^{-\frac{3}{2}(\mathbf{e}\cdot\mathbf{e})} e^{\frac{3}{2}(2\mathbf{e}\cdot\mathbf{u}-\mathbf{u}\cdot\mathbf{u})},$$

Equilibrium Distribution Function, fk^{EQ}

- Note, Taylors Expansion for e^-x= 1-x +x²/2-x³/3!
- Using Taylors Expansion we can rewrite the equilibrium distribution function as follows:

$$f = \frac{\rho}{2\pi/3} e^{-\frac{3}{2}(\mathbf{e}\cdot\mathbf{e})} \left[1 + 3(\mathbf{e}\cdot\mathbf{u}) - \frac{3}{2}(\mathbf{u}\cdot\mathbf{u}) + \frac{9}{2}(\mathbf{e}\cdot\mathbf{u})^2 \right]$$
$$f_k^{\text{EQ}} = \rho w_k \left[1 + 3(\mathbf{e}_k\cdot\mathbf{u}) - \frac{3}{2}(\mathbf{u}\cdot\mathbf{u}) + \frac{9}{2}(\mathbf{e}_k\cdot\mathbf{u})^2 \right]$$

• k=number of velocities, ω_k = weighting factors

Going from continuous form to discretized

Recall, that the collision operator, $\Omega(f)$, is the rate of change of particle distribution function.

$$\frac{\mathcal{D}f}{dt} = \Omega(f)$$

Expanding the particle distribution function out into its counterparts, we obtain the equation to the right:

Again, dividing through by dt, and assuming no external forces yields the following:

$$rac{\partial f}{\partial t} + \mathbf{e} \cdot
abla f = \Omega(f).$$

$$\mathcal{D}f = \frac{\partial f}{\partial \mathbf{x}} d\mathbf{x} + \frac{\partial f}{\partial \mathbf{e}} d\mathbf{e} + \frac{\partial f}{\partial t} dt,$$

$$\partial f$$

Continuous to discrete

- Recall, that the collision operator is simply: $\Omega(f) = -1/\tau(f-f^{eq})$
- $-1/\tau$ (f-f^{eq})= ∂ f/ ∂ t+ ∂ f/ ∂ x *c
- Now multiply through by dt
- $-dt/\tau(f-f^{eq}) = (\partial f/\partial t + \partial f/\partial x * c)dt$
- Note, Taylor series expansion: $f(x + \Delta x, t + \Delta t) = f(x,t) + \Delta f + c * (\Delta f / \Delta x) \Delta t$
- Substitute the second term in the Taylor Series with Eq 1
- $f(x + \Delta x, t + \Delta t) = f(x,t) \Delta t / \tau$ (f-f^{eq}) = Discretized version of LBM

Connecting microscopic quantities to macroscopic quantities

- Basic idea: To relate microscopic phenomena to macroscopic behavior
- We can represent the density of a fluid via the following eq:

$$\rho(r,t) = \int mf(r,c,t) \,\mathrm{d}c$$

• Can represent the fluid velocity via the following eq:

$$\rho(r,t)u(r,t) = \int mcf(r,c,t) \,\mathrm{d}c$$

• Kinetic Energy: $\rho(r,t)e(r,t) = \frac{1}{2}\int mu_a^2 f(r,c,t) \,\mathrm{d}c$

Hand calculation

Hand Calculation

- Imagine a long tube of gas with an initial temperature of T = 0.
- At times greater than 0, the left boundary of the tube has a temperature T = 1.
- Model the change in gas temperature throughout the tube as time increases
 - Assume the tube is non-conductive such that all heat transfer occurs through the gas

Problem Description

• Can be modeled at 1-D problem:

• We will model with 3 elements:

Workflow

- 1. Initialize macroscopic properties and distribution functions
 - 1. $T_w=1$, all others 0.
 - 2. Make an educated guess for distribution function (for diffusion equation, it doesn't really matter)
 - 1. For initial fi's, set fi's in element 1 to wi's and fi's in elements 2 and 3 to ci's.
- 2. Calculate equilibrium distribution functions

$$f_0(1,0) = \frac{4}{6}, f_1(1,0) = \frac{1}{6}, f_2(1,0) = \frac{1}{6} \to T(1,0) = f_0 + f_1 + f_2 = 1$$

$$f_0(2,0) = 0, f_1(2,0) = 1, f_2(2,0) = -1 \to T(2,0) = 0$$

$$f_0(3,0) = 0, f_1(3,0) = 1, f_2(3,0) = -1 \to T(3,0) = 0$$

$$f_i^{eq}(x,t) = w_i T(x,t)$$

$$f_0^{eq}(1,0) = \frac{4}{6}, f_1^{eq}(1,0) = \frac{1}{6}, f_2^{eq}(1,0) = \frac{1}{6}$$

$$f_i^{eq}(2,0) = f_i^{eq}(3,0) = 0$$

After Initialization...

3. Calculate Collisions:

$$f_i^*(x,t) = (1-\omega)f_i(x,t) + \omega f_i^{eq}(x,t)$$

- 1. Using the BGK Approximation for the Collision Operator
- 4. Calculate Streaming:

$$f_i(x + c_i \Delta t, t + \Delta t) = f_i^*(x, t)$$

$$f_0(x, t + \Delta t) = f_0^*(x, t)$$

$$f_1(x + \Delta x, t + \Delta t) = f_1^*(x, t)$$

$$f_2(x - \Delta x, t + \Delta t) = f_2^*(x, t)$$

$$\begin{aligned} \text{Collision: } f_i^*(x,t) &= (1-\omega)f_i(x,t) + \omega f_i^{eq}(x,t) \\ f_0^*(1,0) &= \left(1 - \frac{4}{3}\right)\left(\frac{4}{6}\right) + \frac{4}{3}\left(\frac{4}{6}\right) = \frac{4}{6} \\ f_1^*(1,0) &= \left(1 - \frac{4}{3}\right)\left(\frac{1}{6}\right) + \frac{4}{3}\left(\frac{1}{6}\right) = \frac{1}{6} \\ f_2^*(1,0) &= \left(1 - \frac{4}{3}\right)\left(\frac{1}{6}\right) + \frac{4}{3}\left(\frac{1}{6}\right) = \frac{1}{6} \\ f_0^*(2,0) &= \left(1 - \frac{4}{3}\right)(0) + \frac{4}{3}(0) = 0 \\ f_1^*(2,0) &= \left(1 - \frac{4}{3}\right)(0) + \frac{4}{3}(0) = 0 \\ f_1^*(2,0) &= \left(1 - \frac{4}{3}\right)(1) + \frac{4}{3}(0) = -\frac{1}{3} \\ f_2^*(2,0) &= \left(1 - \frac{4}{3}\right)(1) + \frac{4}{3}(0) = -\frac{1}{3} \\ f_2^*(2,0) &= \left(1 - \frac{4}{3}\right)(-1) + \frac{4}{3}(0) = \frac{1}{3} \\ f_2^*(3,0) &= \left(1 - \frac{4}{3}\right)(-1) + \frac{4}{3}(0) = \frac{1}{3} \\ f_2^*(3,0) &= \left(1 - \frac{4}{3}\right)(-1) + \frac{4}{3}(0) = \frac{1}{3} \end{aligned}$$

Streaming: $f_i(x + c_i \Delta t, t + \Delta t) = f_i^*(x, t)$

$$f_0(x, t + \Delta t) = f_0^*(x, t)$$

$$f_1(x + \Delta x, t + \Delta t) = f_1^*(x, t)$$

$$f_2(x - \Delta x, t + \Delta t) = f_2^*(x, t)$$

$$f_0(1,1) = f_0^*(1,0) = \frac{4}{6}$$

$$f_0(2,1) = f_0^*(2,0) = 0$$

$$f_0(3,1) = f_0^*(3,0) = 0$$

$$f_1(3,1) = f_1^*(2,0) = -\frac{1}{3}$$

$$f_1(2,1) = f_1^*(1,0) = \frac{1}{6}$$

$$f_1(1,1) = f_1^*(1,0) = \frac{1}{6} (B.C.)$$

$$f_2(1,1) = f_2(1,0) = \frac{1}{6} (B.C.)$$

$$f_2(2,1) = f_2^*(3,0) = \frac{1}{3}$$

$$f_2(3,1) = f_2^*(3,0) = \frac{1}{3}$$

Update Macroscopic Properties

$$T(x,t) = \sum_{i=1}^{3} f_i(x,t)$$

$$T(1,1) = f_0(1,1) + f_1(1,1) + f_2(1,1) = \frac{4}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

$$T(2,1) = f_0(2,1) + f_1(2,1) + f_2(2,1) = 0 + \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$$

$$T(3,1) = f_0(3,1) + f_1(3,1) + f_2(3,1) = 0 + \left(-\frac{1}{3}\right) + \frac{1}{3} = 0$$

Update Macroscopic Properties

$$f_i^{eq}(x,t) = w_i T(x,t)$$

$$f_0^{eq}(1,1) = \frac{4}{6}(1) = \frac{4}{6}$$

$$f_1^{eq}(1,1) = \frac{1}{6}(1) = \frac{1}{6}$$

$$f_2^{eq}(1,1) = \frac{1}{6}(1) = \frac{1}{6}$$

$$f_0^{eq}(2,1) = \frac{4}{6} \left(\frac{1}{2}\right) = \frac{1}{3}$$

$$f_1^{eq}(2,1) = \frac{1}{6} \left(\frac{1}{2}\right) = \frac{1}{12}$$

$$f_2^{eq}(2,1) = \frac{1}{6} \left(\frac{1}{2}\right) = \frac{1}{12}$$

$$f_0^{eq}(3,1) = \frac{4}{6}(0) = 0$$

$$f_1^{eq}(3,1) = \frac{1}{6}(0) = 0$$

$$f_2^{eq}(3,1) = \frac{1}{6}(0) = 0$$

Same problem for 100 units

Form of the solution with increasing T

Summary

Numerical example using OpenLB

Example problem – 2D flow around cylinder

- Steady flow around a cylinder in a channel
- Poiseuille flow profile at inlet
- Dirichlet boundary of p=0 at outlet
- Elastic bounce-back along walls
- Reynolds number = 20 and 100 for laminar and turbulent flows respectively
- D2Q9 system

2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	5	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	5	5	0	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	5	0	0	0	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	5	5	0	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	5	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

0=Do nothing

1=Fluid

2=no slip/bounce back boundary

3=velocity boundary

4=constant (zero in our case) boundary 5=curved boundary (cylinder)

🖲 😑 🛑 🚞 c	cylinder2d — cylinder2d — 115×40
-bash: cd: cylinder2d: Not a directory	
Srisharans-MBP:cylinder2d srisharan\$./cylind	er2d
[LBconverter] LBconverter information	
[LBconverter] characteristical values	
[LBconverter] Dimension(d):	dim=2
[LBconverter] Characteristical length(m):	charL=0.1
[LBconverter] Characteristical speed(m/s):	charU=0.2
[LBconverter] Characteristical time(s):	charT=0.5
[LBconverter] Density factor(kg/m^d):	charRho=1
[LBconverter] Characterestical mass(kg):	charMass=0.01
[LBconverter] Characterestical force(N):	charForce=0.004
[LBconverter] Characterestical pressure(Pa):	charPressure=0.04
[LBconverter] Pressure level(Pa):	pressureLevel=0
[LBconverter] Phys. kinematic viscosity(m^2/s): charNu=0.0002
[LBconverter] lattice values	
[LBconverter] DeltaX:	deltaX=0.05
[LBconverter] Lattice velocity:	latticeU=0.02
[LBconverter] DeltaT:	deltaT=0.001
[LBconverter] Reynolds number:	Re=100
[LBconverter] DimlessNu:	dNu=0.01
[LBconverter] Viscosity for computation:	latticeNu=0.004
[LBconverter] Relaxation time:	tau=0.512
[LBconverter] Relaxation frequency:	omega=1.95312
[LBconverter] conversion factors	
[LBconverter] latticeL(m):	latticeL=0.005
[LBconverter] Time step (s):	physTime=0.0005
[LBconverter] Velocity factor(m/s):	physVelocity=10
[LBconverter] FlowRate factor(m^d/s):	physFlowRate=0.05
[LBconverter] Mass factor(kg):	physMass=2.5e-05
[LBconverter] Force factor(N):	physForce=0.5
[LBconverter] Force factor massless(N/kg):	physMasslessForce=20000
[LBconverter] Pressure factor(Pa):	physPressure=400
[LBconverter] latticePressure:	latticeP=0.01
[prepareGeometry] Prepare Geometry	
[SuperGeometryStatistics2D] updated	
[SuperGeometryStatistics2D] updated	
[SuperGeometry2D] cleaned 238 outer boundary	voxel(s)
[SuperGeometry2D] the model is correct!	
[CuboidGeometry2D]Cuboid Stucture Statist:	ics
[CuboidGeometry2D] Number of Cuboids: 7	

[LatticeStatistics] step=29800; t=14.9; uMax=0.0430039; avEnergy=0.000260975; avRho=1.00005
[getResults] pressure1=0.08080003; pressure2=-0.0149993; pressureDrop=0.0957996; drag=3.03107; lift=0.233117
[Timer] step=30000; percent=93.75; passedTime=65.355; remTime=4.357; MLUPs=14.2383
[LatticeStatistics] step=30000; t=15; uMax=0.04319; avEnergy=0.000261459; avRho=1.00007
[getResults] pressure1=0.0814775; pressure2=-0.0144718; pressureDrop=0.0959493; drag=3.03612; lift=0.313639
[Timer] step=30200; percent=94.375; passedTime=65.732; remTime=3.9178; MLUPs=19.5777
[LatticeStatistics] step=30200; t=15.1; uMax=0.0433338; avEnergy=0.00026197; avRho=1.00007
[getResults] pressure1=0.0815696; pressure2=-0.0145817; pressureDrop=0.0961513; drag=3.04155; lift=0.350273
[Timer] step=30400; percent=95; passedTime=66.112; remTime=3.47958; MLUPs=19.3716
[LatticeStatistics] step=30400; t=15.2; uMax=0.0434153; avEnergy=0.000262455; avRho=1.00006
[getResults] pressure1=0.0811046; pressure2=-0.0152404; pressureDrop=0.096345; drag=3.04652; lift=0.334963
[Timer] step=30600; percent=95.625; passedTime=66.625; remTime=3.0482; MLUPs=14.3493
[LatticeStatistics] step=30600; t=15.3; uMax=0.0434215; avEnergy=0.000262861; avRho=1.00004
[getResults] pressure1=0.0801173; pressure2=-0.016321; pressureDrop=0.0964383; drag=3.04916; lift=0.267066
[Timer] step=30800; percent=96.25; passedTime=66.996; remTime=2.61023; MLUPs=19.8951
[LatticeStatistics] step=30800; t=15.4; uMax=0.0433488; avEnergy=0.000263148; avRho=1.00001
[getResults] pressure1=0.0787531; pressure2=-0.0176492; pressureDrop=0.0964023; drag=3.04939; lift=0.153858
[Timer] step=31000; percent=96.875; passedTime=67.359; remTime=2.17287; MLUPs=20.2231
[LatticeStatistics] step=31000; t=15.5; uMax=0.0432043; avEnergy=0.000263296; avRho=0.999988
[getResults] pressure1=0.0772504; pressure2=-0.0190148; pressureDrop=0.0962652; drag=3.04788; lift=0.00987331
[Timer] step=31200; percent=97.5; passedTime=67.885; remTime=1.74064; MLUPs=14.0213
[LatticeStatistics] step=31200; t=15.6; uMax=0.0430067; avEnergy=0.000263313; avRho=0.999964
[getResults] pressure1=0.0759254; pressure2=-0.0202007; pressureDrop=0.0961262; drag=3.04677; lift=-0.144876
[Timer] step=31400; percent=98.125; passedTime=68.253; remTime=1.3042; MLUPs=19.9491
[LatticeStatistics] step=31400; t=15.7; uMax=0.0428223; avEnergy=0.000263233; avRho=0.999947
[getResults] pressure1=0.0750589; pressure2=-0.0210431; pressureDrop=0.096102; drag=3.0484; lift=-0.287684
[Timer] step=31600; percent=98.75; passedTime=68.633; remTime=0.868772; MLUPs=19.3716
[LatticeStatistics] step=31600; t=15.8; uMax=0.043045; avEnergy=0.000263106; avRho=0.99994
[getResults] pressure1=0.0747529; pressure2=-0.0214879; pressureDrop=0.0962408; drag=3.0532; lift=-0.39655
[Timer] step=31800; percent=99.375; passedTime=69.169; remTime=0.435025; MLUPs=13.7336
[LatticeStatistics] step=31800; t=15.9; uMax=0.0432243; avEnergy=0.000262978; avRho=0.999945
[getResults] pressure1=0.0749513; pressure2=-0.0215298; pressureDrop=0.0964811; drag=3.05908; lift=-0.453635
[Timer]
[Timer]Summary:Timer
[Timer] measured time (rt) : 69.546s

[limer]	measured	LTWe	$(\mathbf{r}t)$:	09.0405	
[Timer]	measured	time	(cpu):	68.938s	

[CuboidGeometry2D]	Number of Cuboids: 7	7
[CuboidGeometry2D]	Delta (min):	0.005
[CuboidGeometry2D]	(max):	0.005
[CuboidGeometry2D]	Ratio (min):	0.75
[CuboidGeometry2D]	(max):	3
[CuboidGeometry2D]	Nodes (min):	5292
[CuboidGeometry2D]	(max):	5292
[CuboidGeometry2D]		

R_e=20 (laminar flow)

t = 0 s

physVelocity Magnitude _4.083e-01 0.3062 0.20413 LO.10207 0.000e+00

t = 10 s

t = 15 s

t = 5 s

R_e=100 (turbulence with Karman vortex street)

t = 0 s

t = 10 s

t = 15 s

t = 5 s

Example applications

Rayleigh-Benard flow

Flow of particulates through nasal cavity

Flow through lungs - parallel processing

Turbulent flow in volcanoes

Our favorite – flow in porous media

