Lattice Boltzmann Methods

David Chas Bolton
Brandon Schwartz
Srisharan Shreedharan

Introduction

Introduction

Continuum(Macroscopic

 scale), finite difference, finite volume, finite element, etc),Navier-Stokes Equations

Molecular Dynamics (Microscopic scale),

Hamilton's Equation.

Introduction

- Fictitious assemblage of molecules
- Uses particle probability distribution function instead of simulating every molecule's position and velocity
- Particles can only move from node to node within a lattice or between lattices, based on prescribed boundary conditions.
- Incompressible flow is assumed and particles 'stream' \& 'collide'

Introduction

LBM \& FEM:

- Lattice <--> Mesh
- Boltzmann equation <-_> Navier-Stokes equation
- Weighting parameter <-_> Interpolation function

LBM \& DEM

- Mesoscopic parameters are used to estimate macroscale properties (density, velocity, internal energy)

Introduction

LBM vs conventional CFD:

- Uses $1^{\text {st }}$ order advection PDE instead of $2^{\text {nd }}$ order convection PDE
- Discretization is implicit in Boltzmann equation
- Solved as a 'stream' step and 'collision' step over all lattices and simple kinetic boundaries applied

Introduction

LBM advantages:

- Supports massive parallel computing since local lattice-level steps can be solved independently and simultaneously
- No need of 'interface' elements for multi-component/multiphase fluid flows
- Multi-scale studies over wide range of particle sizes possible

LBM drawbacks:

- Needs more memory/storage than Navier-Stokes solvers
- Cannot stably handle compressible flows or Mach numbers higher than 0.3
- Requires external packages for THM coupling

Historical perspective

Historical Perspective

- LBM formulated in 1988 by McNamara and Zanetti
- 1859: Maxwell's distribution function
- 1868: Boltzmann transport equation
- 1954: Bhatnagar, Gross, and Krook (BGK) collision operator
- 1956: FEM by Turner
- 1973,76: Hardy, Pomeau, and de Pazzis (HPP) model/Lattice Gas Automata (LGA)
- 1980: Finite volume method (FVM) at Imperial College

Maxwell Distribution Function

$\iiint f\left(c_{x}\right) f\left(c_{y}\right) f\left(c_{z}\right) \mathrm{d} c_{x} \mathrm{~d} c_{y} \mathrm{~d} c_{z}=1$.

$$
\left\langle c^{2}\right\rangle=\int_{0}^{\infty} c^{2} f(c) \mathrm{d} c=\frac{3 k T}{m}
$$

- Measures the probability that a certain percentage of a population of molecules will be traveling at a certain speed
- Heavier molecules travel slower (on average)
- The area under each distribution is 1

Boltzmann Transport Equation/BGK Collision Operator
 - If no collisions $f(r+c \mathrm{~d} t, c+F \mathrm{~d} t, t+\mathrm{d} t) \mathrm{d} r \mathrm{~d} c-f(r, c, t) \mathrm{d} r \mathrm{~d} c=0$

- Same equation, with collisions

$$
\frac{\partial f}{\partial t}+\frac{\partial f}{\partial r} \cdot c+\frac{F}{m} \cdot \frac{\partial f}{\partial c}=\Omega
$$

- If no external force

$$
\frac{\partial f}{\partial t}+c \cdot \nabla f=\Omega
$$

- BGK Collision Operator

$$
\Omega=\omega\left(f^{\mathrm{eq}}-f\right)=\frac{1}{\tau}\left(f^{\mathrm{eq}}-f\right)
$$

- LBM Equation:

$$
\frac{\partial f_{i}}{\partial t}+c_{i} \nabla f_{i}=\frac{1}{\tau}\left(f_{i}^{\mathrm{eq}}-f_{i}\right)
$$

Discretized LBM Equation

$$
f_{i}\left(r+c_{i} \Delta t, t+\Delta t\right)=f_{i}(r, t)+\frac{\Delta t}{\tau}\left[f_{i}^{\mathrm{eq}}(r, t)-f_{i}(r, t)\right]
$$

- Turns $1^{\text {st }}$ order PDE into algebraic expression
- Addresses challenges previous CFM's did not
- Very straightforward to use

General principles \& equations

Lattice
 Arrangements

- Description of the lattice and degree of problem is represented via $D_{n} Q_{m}$
- $m=s p e e d, \#$ of the linkages of a node, number of velocity directions
- $\mathrm{N}=$ dimension of the problem
- Particles are restricted to move via linkages and are allowed to interact at nodes
- Particles move along the linkages at the lattice speed; normally assume that in a given time step the particles move from one cell node to the next.

Example of a 1d problem Source: A.A Mohamad

Example of a 2d problem Source:http://www.cims.nyu.edu/ ~billbao/report930.pdf

Lattice Arrangements

- D1Q3 is described with three velocities c0,c1,c2 and f0,f1f2. c0=0 for center particle
- Total number of particles not allowed to exceed 3
- Particle's are free to move to the left or right

- Each particle is assigned a particular weight, which is a function of how close that particle is to the central node and the velocities.
- For D1Q3 the weighting factors, $\boldsymbol{\omega}_{1}$, are $4 / 6,1 / 6$, 1/6 for f0,f1,f2
- Speed of sound, Cs, is $1 /\left(3^{\wedge} .5\right)$
- The sum of all weights must equal 1.

Boundary Conditions

Bounce-Back:

- Models solid stationary or moving boundary conditions.
- When a particle encounters the boundary it will simply bounce back.
- Boundary can be placed between the nodes or going through the center of the nodes.
- Unknown distributions after collision are $\mathrm{f} 2, \mathrm{f} 5$ and f 6 .
- Focusing on bottom layer we see that f2=f4, f6=f8, f5=f7.

Igor 2013

Curved Boundary Conditions

Represent the curved surface through a set of stair steps.

Requires the boundary to placed between the nodes.

Mei et al. 2000

From Lattice Gas Automata to LBM

- For LGA particles restricted to move within a lattice
- We represent the particles in space and time via $n_{i}(\mathbf{x}, t), \quad i=0, \ldots M$.
- $\mathrm{X}=$ position, $\mathrm{t}=$ time and $\mathrm{i}=$ direction of the particle velocity
- Ni=1=> particle is present at site x and time t vice versa if $\mathrm{Ni}=0$
- Can describe how the particles evolve in space and time via:
$n_{i}\left(\mathbf{x}+\mathbf{e}_{i} \delta t, t+1\right)=n_{i}(\mathbf{x}, t)+\Omega_{i}(n(\mathbf{x}, t)), \quad i=0, \ldots M$
- $\mathrm{e}_{\mathrm{i}}=$ local particle velocities, $\boldsymbol{\Omega}_{\mathrm{i}}=$ collision operator
- Collisions are local

Example of LGA

At time t-1 particle is occupied at site 1 and 4
At time t, particles collide
At time $t+1$, particles move off in directions of e2
 and e5. (governed by scattering rules)

Derivation of Lattice Boltzmann Equation from LGA

- Rather than describing particles via Boolean algebra we can represent them through a distribution function
- Fk=average (nk)
- Distribution function, $\mathrm{f}(\mathrm{x}, \mathrm{e}, \mathrm{t})$; where $\mathrm{x}=$ position, e=velocity, t=time
- If we apply some force,f, on the particles their positions and velocities will change from $x \longrightarrow x+e d t ; e \longrightarrow e+F /$ Mdt

Collison vs no Collison

- If no collisions between particles take place, then the distribution of particles should be the same before and after force was applied i.e

$$
f\left(\mathbf{x}+\mathbf{e} d t, \mathbf{e}+\frac{\mathbf{F}}{m} d t, t+d t\right) d \mathbf{x} d \mathbf{e}=f(\mathbf{x}, \mathbf{e}, t) d \mathbf{x} d \mathbf{e}
$$

- With collisions there will be a difference between initial distribution and final distribution:

$$
f\left(\mathbf{x}+\mathbf{e} d t, \mathbf{e}+\frac{\mathbf{F}}{m} d t, t+d t\right) d \mathbf{x} d \mathbf{e}-f(\mathbf{x}, \mathbf{e}, t) d \mathbf{x} d \mathbf{e}=\Omega(f) d \mathbf{x} d \mathbf{e} d t .
$$

- Divide through by dxdedt $\longrightarrow \frac{\mathcal{D} f}{d t}=\Omega(f)$.
- Where $\boldsymbol{\Omega}$ (f) is the collision operator

Lattice Boltzmann Equation final form

- Rate of change of our distribution function is equal $\frac{D J}{d t}=\Omega(f)$. to the collision operator
- Expanded form:

$$
\mathcal{D} f=\frac{\partial f}{\partial \mathbf{x}} d \mathbf{x}+\frac{\partial f}{\partial \mathbf{e}} d \mathbf{e}+\frac{\partial f}{\partial t} d t,
$$

- Divide through by dt:

$$
\frac{\mathcal{D} f}{d t}=\frac{\partial f}{\partial \mathbf{x}} \frac{d \mathbf{x}}{d t}+\frac{\partial f}{\partial \mathbf{e}} \frac{d \mathbf{e}}{d t}+\frac{\partial f}{\partial t}
$$

- Note, e=dx/dt; de/dt=F/m
- If we assume $F=0$, i.e no external forces then:

$$
\frac{\partial f}{\partial t}+\mathbf{e} \cdot \nabla f=\Omega(f)
$$

Collision Operator continued

- If particles in our system collide, then it must take some time for the particles to reach an equilibrium state.
- The time taken to reach the equilibrium state is a function of the type of collision and a relaxation time
- Due to the complexity of the Collision Operator the Boltzmann equation can be difficult to solve.
- We can solve for the collision operator based on Bhatnagar, Gross and Krook solution

More on the collision operator

The collision operator $\boldsymbol{\Omega}(\mathbf{f})$ is replaced with the BGK operator: $\Omega_{k}=-\frac{1}{\tau}\left(f_{k}-f_{k}^{\mathrm{EQ}}\right)$
$\tau=$ is the relaxation rate towards equilibrium and is related to viscosity by : $\nu=\frac{2 \pi-1(\Delta x)^{2}}{6} \frac{1}{\Delta t}$ should be in the range of .5-2
$\mathrm{fk}^{\mathrm{EQ}}=$ equilibrium distribution function
$\mathrm{fk}^{\mathrm{EQ}}$ is an expansion of the Maxwell Distribution Function assuming a low Mach number: $\mathrm{M}=\mathrm{u} / \mathrm{cs} \ll 1$

Where u=macroscopic velocity of the fluid, cs=speed of sound, $\boldsymbol{\rho}=$ macroscopic fluid velocity

$$
f=\frac{\rho}{2 \pi / 3} e^{-\frac{3}{2}(\mathbf{e}-\mathbf{u})^{2}}=\frac{\rho}{2 \pi / 3} e^{-\frac{3}{2}(\mathbf{e} \cdot \mathbf{e})} e^{\frac{3}{2}(2 \mathbf{e} \cdot \mathbf{u}-\mathbf{u} \cdot \mathbf{u})}
$$

Equilibrium Distribution Function, $\mathrm{fk}^{\mathrm{ED}}$

- Note, Taylors Expansion for $e^{\wedge}-x=1-x+x^{2} / 2-x^{3} / 3$!
- Using Taylors Expansion we can rewrite the equilibrium distribution function as follows:

$$
\begin{aligned}
& f=\frac{\rho}{2 \pi / 3} e^{-\frac{3}{2}(\mathbf{e} \cdot \mathbf{e})}\left[1+3(\mathbf{e} \cdot \mathbf{u})-\frac{3}{2}(\mathbf{u} \cdot \mathbf{u})+\frac{9}{2}(\mathbf{e} \cdot \mathbf{u})^{2}\right] \\
& f_{k}^{\mathrm{EQ}}=\rho w_{k}\left[1+3\left(\mathbf{e}_{k} \cdot \mathbf{u}\right)-\frac{3}{2}(\mathbf{u} \cdot \mathbf{u})+\frac{9}{2}\left(\mathbf{e}_{k} \cdot \mathbf{u}\right)^{2}\right]
\end{aligned}
$$

- $\mathrm{k}=$ number of velocities, $\boldsymbol{\omega}_{\mathrm{k}}=$ weighting factors

Going from continuous form to discretized

Recall, that the collision operator, $\Omega(\mathrm{f})$, is the rate of change of particle distribution function.

$$
\frac{\mathcal{D} f}{d t}=\Omega(f)
$$

$$
\mathcal{D} f=\frac{\partial f}{\partial \mathbf{x}} d \mathbf{x}+\frac{\partial f}{\partial \mathbf{e}} d \mathbf{e}+\frac{\partial f}{\partial t} d t
$$

Expanding the particle distribution function out in
counterparts, we obtain the equation to the right:

Again, dividing through by dt , and assuming no external forces yields the following:

$$
\frac{\partial f}{\partial t}+\mathbf{e} \cdot \nabla f=\Omega(f)
$$

Continuous to discrete

- Recall, that the collision operator is simply: $\boldsymbol{\Omega}(\mathrm{f})=-1 / \tau(\mathrm{f}-\mathrm{feq})$
- $-1 / \tau(f-f e q)=\partial f / \partial t+\partial f / \partial x$ *c
- Now multiply through by dt
- -dt/ $\tau(f-f e q)=(\partial f / \partial t+\partial f / \partial x * c) d t$
- Note, Taylor series expansion: $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{t}+\Delta \mathrm{t})=\mathrm{f}(\mathrm{x}, \mathrm{t})+\Delta \mathrm{f}+\mathrm{c}^{*}(\Delta \mathrm{f} / \Delta \mathrm{x}) \Delta \mathrm{t}$
- Substitute the second term in the Taylor Series with Eq 1
- $f(x+\Delta x, t+\Delta t)=f(x, t)-\Delta t / \tau(f-f e q)=$ Discretized version of LBM

Connecting microscopic quantities to macroscopic quantities

- Basic idea: To relate microscopic phenomena to macroscopic behavior
- We can represent the density of a fluid via the following eq:

$$
\rho(r, t)=\int m f(r, c, t) \mathrm{d} c
$$

- Can represent the fluid velocity via the following eq:

$$
\rho(r, t) u(r, t)=\int m c f(r, c, t) \mathrm{d} c
$$

- Kinetic Energy:

$$
\rho(r, t) e(r, t)=\frac{1}{2} \int m u_{a}^{2} f(r, c, t) \mathrm{d} c
$$

Hand calculation

Hand Calculation

- Imagine a long tube of gas with an initial temperature of $\mathrm{T}=0$.
- At times greater than 0 , the left boundary of the tube has a temperature $\mathrm{T}=1$.
- Model the change in gas temperature throughout the tube as time increases
- Assume the tube is non-conductive such that all heat transfer occurs through the gas

Problem Description

- Can be modeled at 1-D problem:

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \\
& \alpha=\frac{k}{\rho C} \\
& \alpha=0.25
\end{aligned}
$$

$$
\begin{aligned}
& c_{0}=0, c_{1}=1, c_{2}=-1 \\
& w_{0}=\frac{4}{6}, w_{1}=\frac{1}{6}, w_{2}=\frac{1}{6} \\
& \Delta x=1, \Delta t=1
\end{aligned}
$$

- We will model with 3 elements:

Workflow

1. Initialize macroscopic properties and distribution functions
2. $\mathrm{T}_{\mathrm{w}}=1$, all others 0 .
3. Make an educated guess for distribution function (for diffusion equation, it doesn't really matter)
4. For initial fi's, set fi's in element 1 to wi's and fi's in elements 2 and 3 to ci's.
5. Calculate equilibrium distribution functions

$$
\begin{gathered}
f_{0}(1,0)=\frac{4}{6}, f_{1}(1,0)=\frac{1}{6}, f_{2}(1,0)=\frac{1}{6} \rightarrow T(1,0)=f_{0}+f_{1}+f_{2}=1 \\
f_{0}(2,0)=0, f_{1}(2,0)=1, f_{2}(2,0)=-1 \rightarrow T(2,0)=0 \\
f_{0}(3,0)=0, f_{1}(3,0)=1, f_{2}(3,0)=-1 \rightarrow T(3,0)=0 \\
f_{i}^{e q}(x, t)=w_{i} T(x, t) \\
f_{0}^{e q}(1,0)=\frac{4}{6}, f_{1}^{e q}(1,0)=\frac{1}{6}, f_{2}^{e q}(1,0)=\frac{1}{6} \\
f_{i}^{e q}(2,0)=f_{i}^{e q}(3,0)=0
\end{gathered}
$$

After Initialization...

3. Calculate Collisions:

$$
f_{i}^{*}(x, t)=(1-\omega) f_{i}(x, t)+\omega f_{i}^{e q}(x, t)
$$

1. Using the BGK Approximation for the Collision Operator
2. Calculate Streaming: $f_{i}\left(x+c_{i} \Delta t, t+\Delta t\right)=f_{i}^{*}(x, t)$

$$
\begin{gathered}
f_{0}(x, t+\Delta t)=f_{0}^{*}(x, t) \\
f_{1}(x+\Delta x, t+\Delta t)=f_{1}^{*}(x, t) \\
f_{2}(x-\Delta x, t+\Delta t)=f_{2}^{*}(x, t)
\end{gathered}
$$

Collision: $f_{i}^{*}(x, t)=(1-\omega) f_{i}(x, t)+\omega f_{i}^{e q}(x, t)$

$$
\begin{aligned}
& f_{0}^{*}(1,0)=\left(1-\frac{4}{3}\right)\left(\frac{4}{6}\right)+\frac{4}{3}\left(\frac{4}{6}\right)=\frac{4}{6} \\
& f_{1}^{*}(1,0)=\left(1-\frac{4}{3}\right)\left(\frac{1}{6}\right)+\frac{4}{3}\left(\frac{1}{6}\right)=\frac{1}{6} \\
& f_{2}^{*}(1,0)=\left(1-\frac{4}{3}\right)\left(\frac{1}{6}\right)+\frac{4}{3}\left(\frac{1}{6}\right)=\frac{1}{6}
\end{aligned}
$$

$$
\alpha=\tau-\frac{\Delta t}{2}
$$

$$
\omega=\frac{\Delta t}{\tau}
$$

$$
0.25=\frac{1}{\omega}-\frac{1}{2} \rightarrow \omega=\frac{4}{3}
$$

$f_{0}^{*}(2,0)=\left(1-\frac{4}{3}\right)(0)+\frac{4}{3}(0)=0 \quad f_{0}^{*}(3,0)=\left(1-\frac{4}{3}\right)(0)+\frac{4}{3}(0)=0$
$f_{1}^{*}(2,0)=\left(1-\frac{4}{3}\right)(1)+\frac{4}{3}(0)=-\frac{1}{3} f_{1}^{*}(3,0)=\left(1-\frac{4}{3}\right)(1)+\frac{4}{3}(0)=-\frac{1}{3}$
$f_{2}^{*}(2,0)=\left(1-\frac{4}{3}\right)(-1)+\frac{4}{3}(0)=\frac{1}{3} \quad f_{2}^{*}(3,0)=\left(1-\frac{4}{3}\right)(-1)+\frac{4}{3}(0)=\frac{1}{3}$

Streaming: $f_{i}\left(x+c_{i} \Delta t, t+\Delta t\right)=f_{i}^{*}(x, t)$

$$
\begin{gathered}
f_{0}(x, t+\Delta t)=f_{0}^{*}(x, t) \\
f_{1}(x+\Delta x, t+\Delta t)=f_{1}^{*}(x, t) \\
f_{2}(x-\Delta x, t+\Delta t)=f_{2}^{*}(x, t)
\end{gathered}
$$

$$
\begin{aligned}
& f_{0}(1,1)=f_{0}^{*}(1,0)=\frac{4}{6} \\
& f_{0}(2,1)=f_{0}^{*}(2,0)=0 \\
& f_{0}(3,1)=f_{0}^{*}(3,0)=0
\end{aligned}
$$

$$
\begin{gathered}
f_{1}(3,1)=f_{1}^{*}(2,0)=-\frac{1}{3} \\
f_{1}(2,1)=f_{1}^{*}(1,0)=\frac{1}{6} \\
f_{1}(1,1)=f_{1}^{*}(1,0)=\frac{1}{6}(\text { B.C. }) \\
\left.f_{2}(1,1)=f_{2}(1,0)=\frac{1}{6} \text { (B.C. }\right) \\
f_{2}(2,1)=f_{2}^{*}(3,0)=\frac{1}{3} \\
f_{2}(3,1)=f_{2}^{*}(3,0)=\frac{1}{3}
\end{gathered}
$$

Update Macroscopic Properties

$$
\begin{gathered}
T(x, t)=\sum_{i=1}^{3} f_{i}(x, t) \\
T(1,1)=f_{0}(1,1)+f_{1}(1,1)+f_{2}(1,1)=\frac{4}{6}+\frac{1}{6}+\frac{1}{6}=1 \\
T(2,1)=f_{0}(2,1)+f_{1}(2,1)+f_{2}(2,1)=0+\frac{1}{6}+\frac{1}{3}=\frac{1}{2} \\
T(3,1)=f_{0}(3,1)+f_{1}(3,1)+f_{2}(3,1)=0+\left(-\frac{1}{3}\right)+\frac{1}{3}=0
\end{gathered}
$$

Update Macroscopic Properties

$$
\begin{aligned}
f_{i}^{e q}(x, t) & =w_{i} T(x, t) \\
f_{0}^{e q}(1,1) & =\frac{4}{6}(1)=\frac{4}{6} \\
f_{1}^{e q}(1,1) & =\frac{1}{6}(1)=\frac{1}{6} \\
f_{2}^{e q}(1,1) & =\frac{1}{6}(1)=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
f_{0}^{e q}(2,1) & =\frac{4}{6}\left(\frac{1}{2}\right)=\frac{1}{3} \\
f_{1}^{e q}(2,1) & =\frac{1}{6}\left(\frac{1}{2}\right)=\frac{1}{12} \\
f_{2}^{e q}(2,1) & =\frac{1}{6}\left(\frac{1}{2}\right)=\frac{1}{12} \\
f_{0}^{e q}(3,1) & =\frac{4}{6}(0)=0 \\
f_{1}^{e q}(3,1) & =\frac{1}{6}(0)=0 \\
f_{2}^{e q}(3,1) & =\frac{1}{6}(0)=0
\end{aligned}
$$

Same problem for 100 units

Form of the solution with increasing T

Summary

Numerical example using OpenLB

Example problem - 2D flow around cylinder

- Steady flow around a cylinder in a channel
- Poiseuille flow profile at inlet
- Dirichlet boundary of $p=0$ at outlet
- Elastic bounce-back along walls
- Reynolds number = 20 and 100 for laminar and turbulent flows respectively
- D2Q9 system

2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	5	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	5	5	0	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	5	0	0	0	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	5	5	0	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	5	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

$0=$ Do nothing

 1=Fluid2=no slip/bounce back boundary
$3=$ velocity boundary
$4=$ constant (zero in our case) boundary 5=curved boundary (cylinder)

	characteristical va	
[LBconverter]	Dimension(d):	dim=2
[LBconverter]	Characteristical length(m):	charl=0.1
[LBconverter]	Characteristical speed(m/s):	charU=0.2
[LBconverter]	Characteristical time(s):	chart=0.5
[LBconverter]	Density factor (kg/m^d):	charRho=1
[LBconverter]	Characterestical mass(kg) :	charMass=0.01
[LBconverter]	Characterestical force(N):	charForce=0.004
[LBconverter]	Characterestical pressure(Pa):	charPressure=0.04
[LBconverter]	Pressure level(Pa):	pressureLevel=0
[LBconverter]	Phys. kinematic viscosity(m^2/s):	charNu=0.0002
[LBconverter]	lattice values	
[LBconverter]	DeltaX:	deltaX=0.05
[LBconverter]	Lattice velocity:	latticeU=0.02
[LBconverter]	Deltat:	deltaT=0.001
[LBconverter]	Reynolds number:	$\mathrm{Re}=100$
[LBconverter]	DimlessNu:	$\mathrm{dNu}=0.01$
[LBconverter]	Viscosity for computation:	latticeNu=0.004
[LBconverter]	Relaxation time:	tau=0.512
[LBconverter]	Relaxation frequency:	omega=1.95312
[LBconverter]	conversion factors	
[LBconverter]	latticeL(m):	latticeL=0.00
[LBconverter]	Time step (s):	physTime=0.0005
[LBconverter]	Velocity factor(m/s):	physvelocity=10
[LBconverter]	FlowRate factor (m^d/s):	physFlowRate=0.05
[LBconverter]	Mass factor(kg):	physMass=2.5e-05
[LBconverter]	Force factor(N):	physForce=0.5
[LBconverter]	Force factor massless(N/kg):	physMasslessForce=20000
[LBconverter]	Pressure factor(Pa):	physPressure=400
Bconverter]	latticePressure:	latticeP=0.01

[LBconverter] latticePressure:
[prepareGeometry] Prepare Goometry
[SuperGeometryStatistics2D] updated
[SuperGeometryStatistics2D] updated
SuperGeometry2D] cleaned 238 outer boundary voxel(s)
[SuperGeometry2D] the model is correct!
Cuboiddeometry2D] --Cuboid Stucture Statistics---
[CuboidGeometry2D] Number of Cuboids: 7
[LatticeStatistics] step=29800; t=14.9; uMax=0.0430039; avEnergy=0.000260975; avRho=1.00005
[getResults] pressure1=0.0808003; pressure2=-0.0149993; pressureDrop=0.0957996; drag=3.03107; lift=0.233117 [Timer] step=30000; percent=93.75; passedTime=65.355; remTime=4.357; MLUPs=14.2383
[LatticeStatistics] step=30000; $t=15$; uMax=0.04319; avEnergy=0.000261459; avRho=1.00007
[getResults] pressure1=0.0814775; pressure2=-0.0144718; pressureDrop=0.0959493; drag=3.03612; lift=0.313639 [LatticeStatistics] step=30200; t=15.1; uMax=0.0433338; avEnergy=0.00026197; avRho=1.00007
[getResults] pressure1=0.0815696; pressure2=-0.0145817; pressureDrop=0.0961513; drag=3.04155; lift=0.350273 [Timer] step=30400; percent=95; passedTime=66.112; remTime=3.47958; MLUPs=19.3716
[LatticeStatistics] step=30400; $\mathrm{t}=15.2$; uMax=0.0434153; avEnergy=0.000262455; avRho=1.00006
[getResults] pressure1=0.0811046; pressure2=-0.0152404; pressureDrop=0.096345; drag=3.04652; lift=0.334963 [Timer] step $=30600$; percent $=95.625$; passedTime $=66.625$; remTime=3.0482; MLUPs $=14.3493$
[LatticeStatistics] step=30600; t=15.3; uMax=0.0434215; avEnergy=0.000262861; avRho=1.00004
[getResults] pressure1=0.0801173; pressure2=-0.016321; pressureDrop=0.0964383; drag=3.04916; lift=0.267066 Timer] step=30800; percent=96.25; passedTime=66.996; remTime=2.61023; MLUPs=19.8951
[LatticeStatistics] step=30800; $t=15.4$; uMax=0.0433488; avEnergy=0.000263148; avRho=1.00001
[getResults] pressure1=0.0787531; pressure2=-0.0176492; pressureDrop=0.0964023; drag=3.04939; lift=0.153858 [Timer] step=31000; percent=96.875; passedTime=67.359; remTime=2.17287; MLUPs=20.2231
[LatticeStatistics] step=31000; $\mathrm{t}=15.5$; uMax=0.0432043; avEnergy=0.000263296; avRho=0.999988
[getResults] pressure1=0.0772504; pressure2=-0.0190148; pressureDrop=0.0962652; drag=3.04788; lift=0.00987331 [Timer] step=31200; percent=97.5; passedTime=67.885; remTime=1.74064; MLUPs=14.0213
[LatticeStatistics] step=31200; $\mathrm{t}=15.6 ;$ uMax=0.0430067; avEnergy=0.000263313; avRho=0.999964
[getResults] pressure1=0.0759254; pressure2=-0.0202007; pressureDrop=0.0961262; drag=3.04677; lift=-0.144876 [getResults] pressure $1=0.0759254 ;$ pressure2=-0.0202007; pressureDrop=0.0961262; drag $=3$
[Timer] step $=31400$; percent=98.125; passedTime $=68.253$; remTime $=1.3042$; MLUPs=19.9491
[LatticeStatistics] step=31400; $\mathrm{t}=15.7$; uMax=0.0428223; avEnergy=0.000263233; avRho=0.999947
[getResults] pressure1=0.0750589; pressure2=-0.0210431; pressureDrop=0.096102; drag=3.0484; lift=-0.287684 [Timer] step=31600; percent $=98.75$; passedTime $=68.633$; remTime $=0.868772$; MLUPs=19.3716
[LatticeStatistics] step=31600; t=15.8; uMax=0.043045; avEnergy=0.000263106; avRho=0.99994
[getResults] pressure $1=0.0747529$; pressure $2=-0.0214879$; pressureDrop=0.0962408; drag=3.0532; lift=-0.39655 [LatticeStatistics] step=31800; $t=15.9$; uMax=0.0432243; avEnergy $=0.000262978$; avRho=0.99994
[getResults] pressure1=0.0749513; pressure2=-0.0215298; pressureDrop=0.0964811; drag=3.05908; lift=-0.453635 [Timer]
[Timer] ----------------Summary:Timer
[Timer] measured time (rt) : 69.546 s
[Timer] measured time (rt): 69.546 s
[Timer] measured time (cpu): 68.938s
[CuboidGeometry2D]
Number of Cuboids: 7
[CuboidGeometry2D]
Delta (min):
0.005
(max): 0.005
[CuboidGeometry2D]
Ratio (min):
0.75
(max):
Nodes (min):
[CuboidGeometry2D]
[CuboidGeometry2D]
(max):

$R_{e}=20$ (laminar flow)

$R_{e}=100$ (turbulence with Karman vortex street)

$t=0 \mathrm{~s}$

$t=5 \mathrm{~s}$

$\mathrm{t}=10 \mathrm{~s}$

$t=15 \mathrm{~s}$

Example applications

Rayleigh-Benard flow
蚛 openlb.net

Flow of particulates through nasal cavity

Flow through lungs - parallel processing

Turbulent flow in volcanoes

Our favorite - flow in porous media

Time [s]: 0

