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Introduction & History 
Let’s get to know LBM 



Introduction 

• Two extreme scales for modeling fluid flow (Mele 2013) 

•  Macro-Scale 
•  Uses PDE Equations such as Navier Stokes equation 
•  Normally solved numerically using FDM, FEM, or FVM 

•  Micro-Scale 
•  Models individual molecules 
•  Behavior governed by Hamilton’s equation 
•  There are too many molecules to practically model virtually anything useful 
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Introduction 

• LBM splits the gap between these two scales 
•  Considers a collection of molecules as a unit 
•  Able to accurately model macro-scale behavior by considering average 

behavior of these collections of molecules 
•  Behavior governed by Boltzmann equation 
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Introduction 

• Advantages 
•  LBM solved locally so it is easy to break the problem into calculations that can 

be done in parallel by multiple computer processers (Mele 2013). 
•  Meshing is quasi-instantaneous and computationally simple 

• Disadvantages 
•  Difficult to simulate scenarios with a high Mach numbers 
•  Thermo-hydrodynamic scheme is absent 
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Historical Perspective 

• Boltzmann Equation (1800’s) 
•  Developed by Ludwig Boltzmann 
•  Describes the dynamics of an ideal gas 
•  The Lattice Boltzmann Equation, which 

governs behavior in the LBM, is a discretized 
form of the Boltzmann Equation 
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Historical Perspective 

•  Lattice Gas Automata 
•  Precursor to LBM 
•  Developed by Hardy, Pomeau, and de Pazzis in the 1970’s 
•  Initially was widely praised as a revolutionary technique. 
•  Featured on front page of Washington Post on November 19, 1985 
•  Problems with LGA led to the need for the development of LBM 
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Historical Perspective 

• Lattice Gas Automata 
•  Disadvantages 

•  Statistical noise 
•  Needs to simulate a large number of particles in order to reach an acceptable solution 
•  Computationally inefficient due to its discrete state calculations 
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Historical Perspective 

• Lattice Boltzmann Method 
•  Developed incrementally in the 1980’s 
•  Overcomes statistical noise associated 

with LGA by replacing boolean particle 
occupation variables with single 
particle distribution functions 
•  Distribution functions are an averaged 

quantity, so there is no need to average 
the state of a large quantity of cells to 
define macroscopic behavior 
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General Principle 
Essence of Lattice Boltzmann Method 



General Principles 

• LGA (Lattice Gas Automata) 

• Lattice Boltzmann Equation 

• Collision and Streaming Stages 

• LBM vs. CFD (Computational Fluid Dynamics) 

• Validation of LBM 
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Lattice Gas Automata (LGA) 
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•  Originated from early 1990’s. 

•  Lattice Automaton used to simulate fluid flows 

•  Comprises of a lattice with different states on sites. 

•  Lattice Gas: states are represented by particles with 
certain velocities. 

•  State at each site is purely boolean: there either is or is 
not a particle travel in each direction. 

•  Evolution is done by two steps in each time step: 
streaming and collision 

•  Precursor to Lattice Boltzmann Method 
Figure from wiki 
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Microscopic Dynamics 

Fictitious particles moving along 
lattice links

Microscopic particles inside fluids
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Figure 2: FHP model with six velocity vectors left. Head-on collision of two particles at three sequential
times centre. Head-on collision with boolean values right.

where n5 means negation of n5. This is one of the contributions to the ⌦. Between n’s is boolean AND
function. If the expression has a value of 1, then collision is possible. For example in figure 2 we get

1100 ! 1111 = 1.

So collision is possible.

3 From LGA to LBM
The main motivation for the transition from LGA to LBM was the desire to remove the statistical
noise by replacing particle occupation variables ni (boolean variables) with single particle distribution
functions

fk = hnki.

These functions are an ensemble average of nk and real variables [1, 4]. nk can be 0 or 1 whereas fk

can be any real number between 0 and 1. In order to obtain the macroscopic behaviour of a system
(streamlines) in the LGA, one has to average the state of each cell over a rather large patch of cells (for
example a 32 ⇥ 32 square) and over several consecutive time steps [5]. With the replacement nk ! fk,
noise is erased because fk is by definition an averaged, a smooth quantity [6]. On the other hand, we get
round-off errors. Now we will deal with the distribution function f(x, e, t). It depends on the position
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Figure 3: Phase diagram left. Position and velocity vector before and after applying force right. Adapted
after [2].

vector x, the velocity vector e and time t. f(x, e, t) represents the number of particles with mass m at
time t positioned between x + dx which have velocities between e + de. Now, we apply force F on these
particles. After time dt, position and velocity obtain new values.

position x ! x + edt

velocity e ! e +
F
m

dt
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4

Evolution Equation 

Lattice Gas Automata (LGA) 

Collision term
-1,0,1
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•  Consider a set of boolean variables: 
 
   ni x,t( ), i = 0,1,…M
•  Particle presentation 

No particles at site x and time t 

A particle is present at site x and 
time t 

FHP model 
First introduced in 1986 by 

Frisch, Hasslacher and Pomeau 

•  Collision rules 

Ø  Mass conservation 
Ø  Momentum conservation 
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Lattice Boltzmann Equation 

LGA

LBM

Probability distribution function 
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Macroscopic Properties 

Probability distribution function 

Flow properties easily computed from particle distribution values per time step
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Introduction to the Lattice Boltzmann Method

Abhijeet Tallavajhula, IIT Kharagpur 20

Algorithm-Streaming step

• In the streaming step, particles are simply shifted in the direction 
of motion to the adjacent nodes.

Introduction to the Lattice Boltzmann Method

Abhijeet Tallavajhula, IIT Kharagpur 20

Algorithm-Streaming step

• In the streaming step, particles are simply shifted in the direction 
of motion to the adjacent nodes.

Image from Indo-German winter academy 2011 

Streaming on Lattice 

A D2Q9 Lattice Model
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Collision Computation 

( )1 ( , ) ( , )EQ
i i if x t f uτ ρ−Ω = − −

Bhatnagar-Gross-Krook (BGK) collision operator for equilibrium  

2 2( , ) ( ( ) ( ) )EQ
i i if u A B e u Cu D e uρ ρ= + ⋅ + + ⋅

where,

- A, B, C, D are constants defined by lattice geometry

τ

where,

is the relaxation time
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Boundary Handling 

Undefined?

Microscopic Numerical 
Fluid Solver 

Figure from Fathi et al. (2012)
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Bounce-Back Method 
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Algorithm of LBM 

Initialize ρ,u fi and fi
eq

Streaming step: move fi to fi
* in 

the direction of ξi

Compute macroscopic ρ and u

Compute fi
eq

Collision step: update 
distribution function fi

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Conventional CFD Method

Construction of fluid equations
   Navier-Stokes equation 
2nd-order PDE, nonlinear convective term

Discrete approximation of PDE
Finite difference, finite element, etc

Numerical integration
Solve the equations on a given mesh and 
apply PDE boundary conditions

Lattice Boltzmann Method

Discrete formulation of kinetic theory
     Lattice Boltzmann equation
  1st-order PDE, simple advection

No further approximation
The equations are already in discrete form

Numerical integration
Solve on lattices and apply kinetic based BC

Simple conversion to fluid variables
These are theoretically shown to obey
the required fluid equations

LBM vs. CFD 
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Steady Poiseuille Flow 

Navier-Stokes equation for incompressible flow 

 

Available exact analytical solution

Flow 

x

y

P1 

P2 

H 

L 
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Analytical Fluid Parabolic Velocity Profile 

Flow 

x

y

P1 

P2 

H 

L 
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Validation of the LBM 

Flow 

x

y

P1 

P2 

H 
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• We can solve varies Fluid Dynamics problems with LBM 
Image from nus.edu & combustion fundamental group 
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Lattice Boltzmann Equation 

Fish motion simulation by LBM Simulation of turbulent mixing in a binary mixture 



Governing Equation of LBM 
Manipulation & Interpretation 



Lattice Boltzmann Equation 
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We start from general Boltzmann Equation 

∂ f
∂t

+ p
m
⋅∇f + F ⋅ ∂ f

∂p
= ∂ f

∂t
⎛
⎝⎜

⎞
⎠⎟ coll

− − − (1)

In which: 
•  f is a particle distribution function 
•  F is external force field acting on the 

particle 
•  m is particle mass 
•  p is particle momentum 
•  t is time 
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Lattice Boltzmann Equation 

To derive LB equation, assume zero force field 
Also note that momentum over mass is particle 
velocity 
Together with (1) yields: 

 

∂ f
∂t

+
!
ξ ⋅∇f = ∂ f

∂t
⎛
⎝⎜

⎞
⎠⎟ coll

− − − (2)

In which: 
•  ξ is microscopic velocity 

∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ coll

= ?
Collision term is 
usually complex and 
hard to interpret 

Collision term is usually approximated using  
Bhatnagar-Gross-Krook (BGK) collision operator  

Ωi = −τ −1 ni − ni
EQ( )

In which: 
•  Ω is the collision term 
•   τ or λ is a relaxation time representing the 

amount of time it consumed to return to 
equilibrium state.  

•  n or f is the particle distribution function 
•  nEQ or g is the distribution function in 

equilibrium state. 

p
m

= ξ

∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ coll

= − 1
λ

f − g( )
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Lattice Boltzmann Equation 

Assemble BGK collision term with LHS yields 
the general Lattice Boltzmann Equation: 

∂ f
∂t

+ ξ ⋅∇f = − 1
λ

f − g( )

in which: 
•  f is the single particle distribution 

function. 
•  ξ is the microscopic velocity vector 
•  λ is the relaxation time due to collision 
•  g is the Boltzmann-Maxwellian 

distribution function. 

g ≡ ρ
2πRT( )D/2

exp −
ξ − u( )2
2RT

⎛

⎝⎜
⎞

⎠⎟

in which: 
•  D is the dimension of space 
•  R is the ideal gas contant 
•  ρ, T and u are the macroscopic density of 

mass, temperature and velocity 
respectively. They are moments of 
distribution function f. 
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Lattice Boltzmann Equation 

Compute macroscopic quantities (moments of distribution function f) 

ρ = f dξ =∫ gdξ∫
ρu = ξ f dξ =∫ ξgdξ∫
ρε = 1

2
ξ − u( )2 f dξ = 1

2∫ ξ − u( )2 gdξ∫

Macroscopic quantities can be represented by integrating the distribution function in proper order 
 

That’s the beauty of LBM 



Discretized LB Equation 
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By writing LB equation in an ODE form and 
implementing Chapman-Enkog assumption 
 
We can discretize LB equation in time 

h ξ( ) f x,ξ,t( )∫ dξ = h ξ( )g x,ξ,t( )∫ dξ

Chapman-Enkog assumption 

h ξ( ) = A + B ⋅ξ +Cξ ⋅ξ

in which: 
•  A and C are arbitrary constants, B is an 

arbitrary constant vector 

df
dt

+ 1
λ
f = 1

λ
g

d
dt

≡ ∂
∂t

+ ξ ⋅∇

The Equation can be formally integrated over 
time step δt 
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Discretized LB Equation 

II. DISCRETIZATION OF THE BOLTZMANN EQUATION

In the following analysis, we shall use the Boltzmann
equation with the BGK, or single-relaxation-time, approxi-
mation @15–17#:

] f
]t 1j•π f52

1
l

~ f2g !, ~1!

where f[ f (x,j,t) is the single-particle distribution function,
j is the microscopic velocity, l is the relaxation time due to
collision, and g is the Boltzmann-Maxwellian distribution
function:

g[
r

~2pRT !D/2
expS 2

~j2u!2

2RT D , ~2!

where R is the ideal gas constant, D is the dimension of the
space, and r, u, and T are the macroscopic density of mass,
velocity, and temperature, respectively. The macroscopic
variables, r, u, and T are the ~microscopic velocity! mo-
ments of the distribution function, f :

r5E f dj5E gdj, ~3a!

ru5E jf dj5E jgdj, ~3b!

r´5
1
2 E ~j2u!2 f dj5

1
2 E ~j2u!2gdj. ~3c!

The energy can also be written in terms of temperature T:

´5
D0

2 RT5
D0

2 NAkBT , ~4!

where D0 , NA , and kB are the number of degrees of freedom
of a particle, Avogadro’s number, and the Boltzmann con-
stant, respectively. In Eqs. ~3!, an assumption of Chapman-
Enskog @16# has been applied:

E h~j! f ~x,j,t !dj5E h~j!g~x,j,t !dj, ~5!

where h(j) is a linear combination of collisional invariants
~conserved quantities!

h~j!5A1B•j1Cj•j. ~6!

In the above equation, A and C are arbitrary constants, and B
is an arbitrary constant vector.

A. Discretization of time

Equation ~1! can be formally rewritten in the form of an
ordinary differential equation:

d f
dt 1

1
l
f5

1
l
g , ~7!

where

d
dt [

]

]t 1j•“
is the time derivative along the characteristic line j. The
above equation can be formally integrated over a time step of
d t :

f ~x1jd t ,j,t1d t!5
1
l
e2d t /lE

0

d t
e t8/lg~x1jt8,j,t1t8!dt8

1e2d t /l f ~x,j,t !. ~8!

Assuming that d t is small enough and g is smooth enough
locally, the following approximation can be made:

g~x1jt8,j,t1t8!5S 12
t8
d t

D g~x,j,t !

1
t8
d t
g~x1jd t ,j,t1d t!

1O~d t
2!, 0<t8<d t . ~9!

The leading terms neglected in the above approximation are
of the order of O(d t

2). With this approximation, Eq. ~8! be-
comes

f ~x1jd t ,j,t1d t!2 f ~x,j,t !

5~e2d t /l21 !@ f ~x,j,t !2g~x,j,t !#

1S 11
l

d t
~e2d t /l21 ! D

3@g~x1jd t ,j,t1d t!2g~x,j,t !# . ~10!

If we expand e2d t /l in its Taylor expansion and, further,
neglect the terms of order O(d t

2) or smaller on the right-hand
side of Eq. ~10!, then Eq. ~10! becomes

f ~x1jd t ,j,t1d t!2 f ~x,j,t !52
1
t

@ f ~x,j,t !2g~x,j,t !# ,

~11!

where t[l/d t is the dimensionless relaxation time ~in the
unit of d t!. Therefore, Eq. ~11! is accurate to the first order in
d t . Equation ~11! is the evolution equation of the distribu-
tion function f with discrete time.
Although g is written as an explicit function of t , the time

dependence of g lies solely in the hydrodynamic variables r,
u, and T ~the Chapman-Enskog ansatz @16#!, that is,
g(x,j,t)5g(x,j;r ,u,T). Therefore, one must first compute
r, u, and T before constructing the equilibrium distribution
function, g . Thus, the calculation of r, u, and T becomes one
of the most crucial steps in discretizing the Boltzmann equa-
tion.

B. Calculation of the hydrodynamic moments

In order to numerically evaluate the hydrodynamic mo-
ments of Eq. ~3!, appropriate discretization in momentum
space j must be accomplished. With appropriate discretiza-
tion, integration in momentum space ~with weight function
g! can be approximated by quadrature up to a certain degree
of accuracy, that is,
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dependence of g lies solely in the hydrodynamic variables r,
u, and T ~the Chapman-Enskog ansatz @16#!, that is,
g(x,j,t)5g(x,j;r ,u,T). Therefore, one must first compute
r, u, and T before constructing the equilibrium distribution
function, g . Thus, the calculation of r, u, and T becomes one
of the most crucial steps in discretizing the Boltzmann equa-
tion.

B. Calculation of the hydrodynamic moments

In order to numerically evaluate the hydrodynamic mo-
ments of Eq. ~3!, appropriate discretization in momentum
space j must be accomplished. With appropriate discretiza-
tion, integration in momentum space ~with weight function
g! can be approximated by quadrature up to a certain degree
of accuracy, that is,
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II. DISCRETIZATION OF THE BOLTZMANN EQUATION

In the following analysis, we shall use the Boltzmann
equation with the BGK, or single-relaxation-time, approxi-
mation @15–17#:
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collision, and g is the Boltzmann-Maxwellian distribution
function:
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~j2u!2

2RT D , ~2!

where R is the ideal gas constant, D is the dimension of the
space, and r, u, and T are the macroscopic density of mass,
velocity, and temperature, respectively. The macroscopic
variables, r, u, and T are the ~microscopic velocity! mo-
ments of the distribution function, f :
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ru5E jf dj5E jgdj, ~3b!

r´5
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2 E ~j2u!2 f dj5
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2 E ~j2u!2gdj. ~3c!

The energy can also be written in terms of temperature T:

´5
D0

2 RT5
D0

2 NAkBT , ~4!

where D0 , NA , and kB are the number of degrees of freedom
of a particle, Avogadro’s number, and the Boltzmann con-
stant, respectively. In Eqs. ~3!, an assumption of Chapman-
Enskog @16# has been applied:

E h~j! f ~x,j,t !dj5E h~j!g~x,j,t !dj, ~5!

where h(j) is a linear combination of collisional invariants
~conserved quantities!

h~j!5A1B•j1Cj•j. ~6!

In the above equation, A and C are arbitrary constants, and B
is an arbitrary constant vector.
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d f
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1
l
f5

1
l
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where

d
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]

]t 1j•“
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d t :
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where t[l/d t is the dimensionless relaxation time ~in the
unit of d t!. Therefore, Eq. ~11! is accurate to the first order in
d t . Equation ~11! is the evolution equation of the distribu-
tion function f with discrete time.
Although g is written as an explicit function of t , the time

dependence of g lies solely in the hydrodynamic variables r,
u, and T ~the Chapman-Enskog ansatz @16#!, that is,
g(x,j,t)5g(x,j;r ,u,T). Therefore, one must first compute
r, u, and T before constructing the equilibrium distribution
function, g . Thus, the calculation of r, u, and T becomes one
of the most crucial steps in discretizing the Boltzmann equa-
tion.

B. Calculation of the hydrodynamic moments

In order to numerically evaluate the hydrodynamic mo-
ments of Eq. ~3!, appropriate discretization in momentum
space j must be accomplished. With appropriate discretiza-
tion, integration in momentum space ~with weight function
g! can be approximated by quadrature up to a certain degree
of accuracy, that is,
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where t[l/d t is the dimensionless relaxation time ~in the
unit of d t!. Therefore, Eq. ~11! is accurate to the first order in
d t . Equation ~11! is the evolution equation of the distribu-
tion function f with discrete time.
Although g is written as an explicit function of t , the time

dependence of g lies solely in the hydrodynamic variables r,
u, and T ~the Chapman-Enskog ansatz @16#!, that is,
g(x,j,t)5g(x,j;r ,u,T). Therefore, one must first compute
r, u, and T before constructing the equilibrium distribution
function, g . Thus, the calculation of r, u, and T becomes one
of the most crucial steps in discretizing the Boltzmann equa-
tion.

B. Calculation of the hydrodynamic moments

In order to numerically evaluate the hydrodynamic mo-
ments of Eq. ~3!, appropriate discretization in momentum
space j must be accomplished. With appropriate discretiza-
tion, integration in momentum space ~with weight function
g! can be approximated by quadrature up to a certain degree
of accuracy, that is,
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d t . Equation ~11! is the evolution equation of the distribu-
tion function f with discrete time.
Although g is written as an explicit function of t , the time
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u, and T ~the Chapman-Enskog ansatz @16#!, that is,
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r, u, and T before constructing the equilibrium distribution
function, g . Thus, the calculation of r, u, and T becomes one
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space j must be accomplished. With appropriate discretiza-
tion, integration in momentum space ~with weight function
g! can be approximated by quadrature up to a certain degree
of accuracy, that is,
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Discretized LB Equation 

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− g x,ξ,t( )⎡⎣ ⎤⎦

Above is the evolution equation of the distribution function f with discrete 
time 
 

τ ≡ λ
δ t

In which                is the dimensionless relaxation time  

Recall: we can calculate macroscopic quantities by integrating in momentum space. 
 
The integration can be approximated by quadrature up to a certain degree 
of accuracy. 

ρ = f dξ =∫ gdξ∫
ρu = ξ f dξ =∫ ξgdξ∫
ρε = 1

2
ξ − u( )2 f dξ = 1

2∫ ξ − u( )2 gdξ∫



Presented By K,D L,L C,W C,E EGEE 520 Final Presentation 36 

Discretized LB Equation 

ψ ξ( )∫ g x,ξ,t( )dξ = Wαψ ξα( )
α
∑ g x,ξα ,t( )

The approximating quadrature takes the form: 

Where Ψ(ξ) is a polynomial of ξ, Wα is the 
weight coefficient of the quadrature, and ξα is 
the discrete velocity set. Accordingly, the 
hydrodynamic moments can be computed by: 

ρ = fα
α
∑ = gα

α
∑

ρu = ξα fα
α
∑ = ξαgα

α
∑

ρε = 1
2

ξα − u( )2 fα
α
∑ = 1

2
ξα − u( )2 gα

α
∑

fα ≡ fα x,t( ) ≡Wα f x,ξα ,t( )
gα ≡ gα x,t( ) ≡Wαg x,ξα ,t( )

Where: 

Question becomes finding: 
1.  A approximation of distribution 

function f 
2.  Weight coefficients 
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Approximation of Distribution Function 

Recall Boltzmann-Maxwellian distribution function: f ≡ ρ
2πRT( )D/2

exp −
ξ − u( )2
2RT

⎛

⎝⎜
⎞

⎠⎟

Assume D=2, which means a 2-D case 

f = ρ
2πRT( )D/2

exp −
ξ − u( )2
2RT

⎛

⎝⎜
⎞

⎠⎟

= ρ
2πRT( ) exp − ξ ⋅ξ

2RT
⎛
⎝⎜

⎞
⎠⎟
exp 2ξ ⋅u − u ⋅u

2RT
⎛
⎝⎜

⎞
⎠⎟

≈ ρ
2πRT( ) exp − ξ ⋅ξ

2RT
⎛
⎝⎜

⎞
⎠⎟
1+ ξ ⋅u

RT
− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

fα = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

fα
EQ = ρwα 1+ ξ ⋅ ′u

RT
− ′u ⋅ ′u
2RT

+
ξ ⋅ ′u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

RT = cs
2 = c2 3 Cs is the sound speed 

of the system 
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Weighting Coefficients 

Weight Wα depends on Lattice arrangements 

wα =

4
9
, α = 9

1
9
, α = 1,2,3,4

1
36
, α = 5,6,7,8

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

D2Q9 model 
Image from nus.edu 



Lattice Boltzmann Method 

Presented By K,D L,L C,W C,E EGEE 520 Final Presentation 39 

D3Q19 Lattice model 
Image from ASME Digital Collection 

 

wα =

2
36

α = 1!6

1
36

α = 7!18

12
36

α = 19

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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Summary 

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦

f = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

wα =

4
9
, α = 0

1
9
, α = 1,2,3,4

1
36
, α = 5,6,7,8

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑



Presented By K,D L,L C,W C,E EGEE 520 Final Presentation 41 

Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step	&	Boundary:	
move	fi	to	fi*	in	the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦



Calculation Example 
Steady Channel Flow 



• D2Q9 model 
•  2 by 2 system, 4 lattices 
• Channel flow from left to right 
• Boundary condition--bounce back 
•  Initial parameter 
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Problem Description 

ρ = 1.0
τ = 1.0
du = 1×10−7



Hand Calculation Example 
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Y	

ρ = 1.0
τ = 1.0
du = 1×10−7
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Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step:	move	fi	to	fi*	in	
the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Hand Calculation Example 

For each lattice in D2Q9 model, we present 
velocity by combination of 9 matrices, each matrix 
contains distribution function fα, α=1,2,…,9 

Assume a initial state: 

 f1= f 2 =…= f 9

fα = ρ / 9,α = 1,2,3...,9



Hand Calculation Example 
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Hand Calculation Example 
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Hand Calculation Example 

f1( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 2( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 3( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 4( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 5( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 6( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 7( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 8( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 9( ) =
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Distribution Function 
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Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step:	move	fi	to	fi*	in	
the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Hand Calculation Example 

Streaming 

f1

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

f 6

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Hand Calculation Example 

 

f1→( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 2 ↑( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 3←( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 4 ↓( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 5↘( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 6↗( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 7↖( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 8↘( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 9 $( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝
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⎜
⎜
⎜

⎞
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⎟
⎟
⎟
⎟
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Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step:	move	fi	to	fi*	in	
the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Hand Calculation Example 
Calculate Macroscopic Quantities 

ρα = fα
α
∑ = 1

9
× 9 = 1

Ux =
1
ρ

f1+ f 5 + f 6( )− f 3+ f 7 + f 8( )( )
ρ = 1 1

1 1
⎛
⎝⎜

⎞
⎠⎟

 

Ux =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Uy =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

U↗= 0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

U↙= 0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

U↖= 0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

U↘= 0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Uy =
1
ρ

f 6 + f 2 + f 7( )− f 5 + f 4 + f 8( )( )

 

U↗=Ux +Uy

U↘=Ux −Uy

U↖= −U↘
U↙= −U↗

Ux (1)+ du
Ux (3)+ du
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Hand Calculation Example 
Calculate Macroscopic Velocities  

ρα = fα
α
∑ = 1

9
× 9 = 1

Ux =
1
ρ

f1+ f 5 + f 6( )− f 3+ f 7 + f 8( )( )
ρ = 1 1

1 1
⎛
⎝⎜

⎞
⎠⎟

 

Ux =
1e− 7 0
1e− 7 0

⎛
⎝⎜

⎞
⎠⎟

Uy =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

U = 1e− 7 0
1e− 7 0

⎛
⎝⎜

⎞
⎠⎟

U↗= 1e− 7 0
1e− 7 0

⎛
⎝⎜

⎞
⎠⎟

U↙= −1e− 7 0
−1e− 7 0

⎛
⎝⎜

⎞
⎠⎟

U↖= −1e− 7 0
−1e− 7 0

⎛
⎝⎜

⎞
⎠⎟

U↘= 1e− 7 0
1e− 7 0

⎛
⎝⎜

⎞
⎠⎟

Uy =
1
ρ

f 6 + f 2 + f 7( )− f 5 + f 4 + f 8( )( )

 

U =Ux
2 +Uy

2

U↗=Ux +Uy

U↘=Ux −Uy

U↖= −U↘
U↙= −U↗

Ux (1)+ du
Ux (3)+ du
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Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step:	move	fi	to	fi*	in	
the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Hand Calculation Example 

Calculate Equilibrium State Distribution Function 

 

fα
EQ = ρwα 1+ ξ ⋅ ′u

RT
− ′u ⋅ ′u
2RT

+
ξ ⋅ ′u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ξ ⋅ ′u =Ux;Uy;U↗;U↙;U↘;U↖ .

u′ ⋅u′ =U 2

RT = cs
2 = c2 3

c = 1.0

 

f1
EQ = ρw1 1+

Ux

RT
− U 2

2RT
+

Ux( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f5
EQ = ρw5 1+

U↗
RT

− U 2

2RT
+
U↗( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f2
EQ = ρw2 1+

Uy

RT
− U 2

2RT
+

Uy( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f6
EQ = ρw6 1+

U↖
RT

− U 2

2RT
+
U↖( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f3
EQ = ρw3 1+

−Ux

RT
− U 2

2RT
+

−Ux( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f7
EQ = ρw7 1+

U↙
RT

− U 2

2RT
+
U↙( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f4
EQ = ρw4 1+

−Uy

RT
− U 2

2RT
+

−Uy( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f8
EQ = ρw8 1+

U↘
RT

− U 2

2RT
+
U↘( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f9
EQ = ρw9 1+

−U %
RT

− U 2

2RT
+

−U %( )2
2 RT( )2

⎡

⎣
⎢

⎤

⎦
⎥
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Hand Calculation Example 

 

f1EQ →( ) = 0.01234568 0.012345679
0.01234568 0.012345679

⎛
⎝⎜

⎞
⎠⎟
f 2EQ ↑( ) = 0.012345679 0.012345679

0.012345679 0.012345679
⎛
⎝⎜

⎞
⎠⎟
f 3EQ ←( ) = 0.01234567 0.012345679

0.01234567 0.012345679
⎛
⎝⎜

⎞
⎠⎟

f 4EQ ↓( ) = 0.012345679 0.012345679
0.012345679 0.012345679

⎛
⎝⎜

⎞
⎠⎟
f 5EQ↘( ) = 0.003086 0.003086

0.003086 0.003086
⎛
⎝⎜

⎞
⎠⎟
f 6EQ↗( ) = 0.003086 0.003086

0.003086 0.003086
⎛
⎝⎜

⎞
⎠⎟

f 7EQ↖( ) = 0.003086 0.003086
0.003086 0.003086

⎛
⎝⎜

⎞
⎠⎟
f 8EQ↘( ) = 0.003086 0.003086

0.003086 0.003086
⎛
⎝⎜

⎞
⎠⎟
f 9EQ $( ) = 0.0493827 0.0493827

0.0493827 0.0493827
⎛
⎝⎜

⎞
⎠⎟

Calculated Equilibrium State Distribution Function 
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Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step:	move	fi	to	fi*	in	
the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Hand Calculation Example 

Bounce back collision 
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Hand Calculation Example 

Bounce back collision 

f 4

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒ f 2

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 2

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒ f 4

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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Hand Calculation Example 

 

f 2 ↑( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 4 ↓( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 5↘( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 6↗( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 7↖( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f 8↘( )
1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

1
9

1
9

1
9

1
9

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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Hand Calculation Example 

 

∵τ = 1.0

f (t +δ t)− f = − 1
τ

f − f EQ⎡⎣ ⎤⎦

⇒ f (t +δ t) = f − f − f EQ⎡⎣ ⎤⎦
⇒ f (t +δ t) = f EQ

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦

Τ=1.0 indicates that 
distribution function goes 
to equilibrium within the 
current time step 
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Hand Calculation Example 

 

f1EQ →( )′ = 0.01234568 0.012345679
0.01234568 0.012345679

⎛
⎝⎜

⎞
⎠⎟
f 2EQ ↑( )′ = 0.012345679 0.012345679

0.012345679 0.012345679
⎛
⎝⎜

⎞
⎠⎟
f 3EQ ←( )′ = 0.01234567 0.012345679

0.01234567 0.012345679
⎛
⎝⎜

⎞
⎠⎟

f 4EQ ↓( )′ = 0.012345679 0.012345679
0.012345679 0.012345679

⎛
⎝⎜

⎞
⎠⎟
f 5EQ↘( )′ = 0.003086 0.003086

0.003086 0.003086
⎛
⎝⎜

⎞
⎠⎟
f 6EQ↗( )′ = 0.003086 0.003086

0.003086 0.003086
⎛
⎝⎜

⎞
⎠⎟

f 7EQ↖( )′ = 0.003086 0.003086
0.003086 0.003086

⎛
⎝⎜

⎞
⎠⎟
f 8EQ↘( )′ = 0.003086 0.003086

0.003086 0.003086
⎛
⎝⎜

⎞
⎠⎟
f 9EQ $( )′ = 0.0493827 0.0493827

0.0493827 0.0493827
⎛
⎝⎜

⎞
⎠⎟
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Algorithm of LBM 

Initialize	ρ,u	fi	and	fieq	

Streaming	step:	move	fi	to	fi*	in	
the	direction	of	ξi	

Compute	macroscopic	ρ	and	u	

Compute	fieq	

Collision	step:	calculate	
updated	distribution	function	fi	

using	evolution	equation	

ρ = fα
α
∑

u = 1
ρ

ξα fα
α
∑

f x + ξδ t ,ξ,t +δ t( ) = f x,ξ,t( )
ρ = fα

α
∑

u = 1
ρ

ξα fα
α
∑

f EQ = ρwα 1+ ξ ⋅u
RT

− u ⋅u
2RT

+
ξ ⋅u( )2
2 RT( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f x + ξδ t ,ξ,t +δ t( )− f x,ξ,t( ) = − 1
τ

f x,ξ,t( )− f EQ x,ξ,t( )⎡⎣ ⎤⎦
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Hand Calculation Example 
Calculation results and visualization 



Problem Description 
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Steady Fluid Flow through a channel with a 
block in the middle 

τ = 1.0
ρ = 1.0
RT = 1 3

D2Q9 MODEL 
11×11 mesh 

100 active lattice 

dU	
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MATLAB based calculation 

Why? 
•  Every lattice contains a 9-

dimensional  matrix 

•  Lengthy calculation hard to 
present by hand 

•  In MATLAB multi-dimensional 
matrix can be easily presented 

Introduction to the Lattice Boltzmann Method

Abhijeet Tallavajhula, IIT Kharagpur 14

Derivation of LB Equations-Discretization

• A FCHC model in 4 dimensions is considered and projected onto 3 
dimensional space. The general type of lattice is denoted by DXQY, where 
X is the dimension and Y is the number of velocity directions.
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MATLAB based calculation 

Flow pattern calculated by LBM  



Numerical Example 
Implementation and Results 



Motivation 

• Porous Media Flow 
•  Discrete Simulation (NS) vs. 

Averaged Flow (Darcy) 
•  Couple with transport/heat transfer 

• Lattice-Boltzmann Methods 
•  Incompressible Navier-Stokes 

•  Water/Oil 
•  Complex/Stochastic Geometries 

•  Simple Meshing 
•  Scalable 

•  Large simulations 
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Implementation 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 
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Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

Initialize all fields and values for memory preallocation 

Build Lattice Geometry 
(m*n*9 DOFs) 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

isSolid[m][n] = Boolean value 
Ensure periodicity 
of solid geometry 

Determine 
Solid Nodes 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

rho[m][n] = constant and  
                    uniform density 

f [m][n][9] = density * lattice weights 

Populate fields 
(ρ,f) 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

ρ = fα
α
∑

 

u = 1
ρ
eα fα

a
∑

Compute macroscopic 
fields (ρ,u) 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

 
feq = wα ρ 1+ 3

eα ⋅
u

c2
+ 9
2
(eα ⋅
u)2

c4
− 3
2

u 2

c2
⎡

⎣
⎢

⎤

⎦
⎥Add gravity:  

u = u +τ g

Compute equilibrium 
distribution function 

(feq) 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Streaming 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

Bounceback condition 
on solid 

f = f − 1
τ
( f − feq )

Collision 
Step 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Check 
Convergence 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

Ensure periodicity of 
streaming at boundaries 

Streaming 
Step 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Check 
Convergence START END 

Time Loop 

Yes No 

Output velocity CSV files 
to visualize in Matlab 

Output 
Solution 
Fields 
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Build Lattice Geometry 
(m*n*9 DOFs) 

Determine 
Solid Nodes 

Populate fields 
(ρ,f) 

Initialization 

Compute macroscopic 
fields (ρ,u) 

Compute equilibrium 
distribution function 

(feq) 

Collision 
Step 

Streaming 
Step 

Output 
Solution 
Fields 

START END 

Time Loop 

Yes No 

iter < maxIter 
  

u − uold
u

< 

Check 
Convergence 



Varying Grain Density (r = 2) 
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5% 10% 20% 40% 80% 

g	



Varying Grain Size (5%) 
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r = 4 r = 2 r = 6 r = 8 r = 10 

g	



Non-Uniform Porosity 
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g	



Parallelism (Domain Decomposition) 

Collision/
Streaming [All] 

Collision/
Streaming 

[1,2] 

Collision/
Streaming 

[3,4] 

Collision/
Streaming 

[4,5] 

Collision/
Streaming 

[5,6] 

Collision/
Streaming 

[7,8] 

Presented By EGEE 520 Final Presentation 85 

Enforce 
Boundaries [All] 

Proc	1	 Proc	2	 Proc	8	Proc	7	Proc	6	Proc	5	Proc	4	Proc	3	
Cluster 



Rock Sample Tomography 
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Example Applications 
Fancy stuff we can do with LBM 



Examples 

• Air Conditioner 
•  LBM simulates two conditions 

•  1. Fixed Fan Air Conditioner 
•  2. Sweeping Fan Air Conditioner 

•  Parallelism 
•  Extremely High Resolution Simulation Required 
•  Parallel computations allow LBM to be extremely 

efficient with reasonable computer hardware 
•  Allowed for the billion grid points required to 

accurately simulate this case 

http://youtu.be/I82uCa7SHSQ?t=21m20s 
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Image:	https://www.youtube.com/watch?v=I82uCa7SHSQ	



Examples 

• Blood Clotting in a Human Artery 
•  Arteries that have been affected by disease can be 

at high risk to rupture. 
•  These ruptures can possibly be prevented by 

blood clotting in the vulnerable area 
•  Need to simulate red blood cell changing from 

liquid to solid behavior and stick to artery wall. 
•  LBM is effective at achieving this because of its 

hybrid particle/continuum nature 
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Image:	https://www.youtube.com/watch?v=I82uCa7SHSQ	



Examples 

• Blood Clotting in a Human Artery 

•  Parallelism 

•  Using LBM, it is very easy to send 
different calculations to different 
processors 

•  Allows for high efficiency when using 
computers with a high number of 
processors 
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Image:	https://www.youtube.com/watch?v=I82uCa7SHSQ	



Examples 

• Turbulence Modeling 
•  Models flow between two parallel plates 
•  Large- eddy simulation approach 
•  Replace Lattice Boltzmann equation with 

a filtered form 
• Comparison to Spectral Method 
•  Solution is virtually identical 
•  LBM able to simulate with a 200x 

reduction in resolution 
•  LBM much less computationally 

intensive in this case 
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Image:	https://www.youtube.com/watch?v=I82uCa7SHSQ	
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Thank You! 
Questions? 


