

Lattice Boltzmann Method

Presented by: Keith Doyle Liwei Li Chaoyi Wang Cooper Elsworth

Introduction & History

Let's get to know LBM

Introduction

- Two extreme scales for modeling fluid flow (Mele 2013)
 - Macro-Scale
 - Uses PDE Equations such as Navier Stokes equation
 - Normally solved numerically using FDM, FEM, or FVM
 - Micro-Scale
 - Models individual molecules
 - Behavior governed by Hamilton's equation
 - There are too many molecules to practically model virtually anything useful

Introduction

- LBM splits the gap between these two scales
 - Considers a collection of molecules as a unit
 - Able to accurately model macro-scale behavior by considering average behavior of these collections of molecules
 - Behavior governed by Boltzmann equation

Molecular dynamics Hamilton's equation

Presented By K,D L,L C,W C,E

EGEE 520 Final Presentation

Introduction

- Advantages
 - LBM solved locally so it is easy to break the problem into calculations that can be done in parallel by multiple computer processers (Mele 2013).
 - Meshing is quasi-instantaneous and computationally simple
- Disadvantages
 - Difficult to simulate scenarios with a high Mach numbers
 - Thermo-hydrodynamic scheme is absent

- Boltzmann Equation (1800's)
 - Developed by Ludwig Boltzmann
 - Describes the dynamics of an ideal gas
 - The Lattice Boltzmann Equation, which governs behavior in the LBM, is a discretized form of the Boltzmann Equation

- Lattice Gas Automata
 - Precursor to LBM
 - Developed by Hardy, Pomeau, and de Pazzis in the 1970's
 - Initially was widely praised as a revolutionary technique.
 - Featured on front page of Washington Post on November 19, 1985
 - Problems with LGA led to the need for the development of LBM

- Lattice Gas Automata
 - Disadvantages
 - Statistical noise
 - Needs to simulate a large number of particles in order to reach an acceptable solution
 - Computationally inefficient due to its discrete state calculations

- Lattice Boltzmann Method
 - Developed incrementally in the 1980's
 - Overcomes statistical noise associated with LGA by replacing boolean particle occupation variables with single particle distribution functions
 - Distribution functions are an averaged quantity, so there is no need to average the state of a large quantity of cells to define macroscopic behavior

General Principle

Essence of Lattice Boltzmann Method

General Principles

- LGA (Lattice Gas Automata)
- Lattice Boltzmann Equation
- Collision and Streaming Stages
- LBM vs. CFD (Computational Fluid Dynamics)
- Validation of LBM

Lattice Gas Automata (LGA)

- Originated from early 1990's.
- Lattice Automaton used to simulate fluid flows
- Comprises of a lattice with different states on sites.
- Lattice Gas: states are represented by particles with certain velocities.
- State at each site is purely boolean: there either *is* or *is not* a particle travel in each direction.
- Evolution is done by two steps in each time step: streaming and collision
- Precursor to Lattice Boltzmann Method

PENNSTATE

Microscopic Dynamics

Microscopic particles inside fluids

Fictitious particles moving along lattice links

Lattice Gas Automata (LGA)

PENNSTATE

185

Lattice Gas Automata (LGA)

FHP model First introduced in 1986 by Frisch, Hasslacher and Pomeau • Consider a set of boolean variables:

$$n_i(x,t), \quad i=0,1,\ldots M$$

- Particle presentation
 - $n_i(x,t) = 0$ No particles at site x and time t $n_i(x,t) = 1$ A particle is present at site x and time t
- Collision rules

$$\Omega_i(n(x,t)) = -1, 0, 1$$

Mass conservationMomentum conservation

PENNSTATE

8 5

LGA
$$n_i(x+e_i\delta t,t+\delta t) = n_i(x,t) + \Omega_i(n(x,t))$$

Probability distribution function

$$f_i = f_i(x, \xi, t)$$

LBM $f_i(x+e_i\delta t,t+\delta t) = f_i(x,t) + \Omega_i(f(x,t))$

PENNSTATE

8 5 5

Macroscopic Properties

Probability distribution function

Flow properties easily computed from particle distribution values per time step

$$\rho = \sum_{i} f_{i} \qquad u = \frac{\sum_{i} f_{i} e_{i}}{\rho} \qquad v = \frac{2\tau - 1}{6}$$

Presented By K,D L,L C,W C,E

Streaming on Lattice

A D2Q9 Lattice Model

Image from Indo-German winter academy 2011

EGEE 520 Final Presentation

Collision Computation

Bhatnagar-Gross-Krook (BGK) collision operator for equilibrium

$$\Omega_i = -\tau^{-1} \left(f_i(x,t) - f_i^{EQ}(\rho,u) \right)$$

where, $\boldsymbol{\tau}$ is the relaxation time

$$f_i^{EQ}(\rho, u) = \rho(A + B(e_i \cdot u) + Cu^2 + D(e_i \cdot u)^2)$$

where, -A, B, C, D are constants defined by lattice geometry

Boundary Handling

Microscopic Numerical Fluid Solver

PENNSTATE

1 8 5 5

PENNSTATE

1 8 5 5

Algorithm of LBM

Presented By K,D L,L C,W C,E

PENNSTATE

1 8 5

LBM vs. CFD

Conventional CFD Method

Construction of fluid equations

Navier-Stokes equation 2nd-order PDE, nonlinear convective term

Discrete approximation of PDE Finite difference, finite element, etc

Numerical integration

Solve the equations on a given mesh and apply PDE boundary conditions

Lattice Boltzmann Method

Discrete formulation of kinetic theory *Lattice Boltzmann equation* 1st-order PDE, simple advection

No further approximation The equations are already in discrete form

Numerical integration Solve on lattices and apply kinetic based BC

Simple conversion to fluid variables These are theoretically shown to obey the required fluid equations

Navier-Stokes equation for incompressible flow

 $\mu \frac{\partial^2 u}{\partial x^2} = \frac{\partial p}{\partial y}$

Available exact analytical solution

$$u(x) = \frac{\Delta P}{2\mu L} x(x - H)$$

У

Analytical Fluid Parabolic Velocity Profile

Validation of the LBM

• We can solve varies Fluid Dynamics problems with LBM

Image from nus.edu & combustion fundamental group

EGEE 520 Final Presentation

Governing Equation of LBM

Manipulation & Interpretation

We start from general Boltzmann Equation

$$\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla f + F \cdot \frac{\partial f}{\partial p} = \left(\frac{\partial f}{\partial t}\right)_{coll} - - -(1)$$

In which:

- f is a particle distribution function
- F is external force field acting on the particle
- m is particle mass
- p is particle momentum
- t is time

To derive LB equation, assume zero force field Also note that momentum over mass is particle velocity

Together with (1) yields:

$$\frac{\partial f}{\partial t} + \vec{\xi} \cdot \nabla f = \left(\frac{\partial f}{\partial t}\right)_{coll} - -(2)$$

In which:

• ξ is microscopic velocity $\frac{p}{\xi} = \xi$

Collision term is usually approximated using Bhatnagar-Gross-Krook (BGK) collision operator

$$\Omega_i = -\tau^{-1} \left(n_i - n_i^{EQ} \right)$$

In which:

- Ω is the collision term
- τ or λ is a relaxation time representing the amount of time it consumed to return to equilibrium state.
- n or f is the particle distribution function
- n^{EQ} or g is the distribution function in equilibrium state.

Assemble BGK collision term with LHS yields the general Lattice Boltzmann Equation:

in which:

- f is the single particle distribution function.
- ξ is the microscopic velocity vector
- λ is the relaxation time due to collision
- g is the Boltzmann-Maxwellian distribution function.

$$g \equiv \frac{\rho}{\left(2\pi RT\right)^{D/2}} \exp\left(-\frac{\left(\xi - u\right)^2}{2RT}\right)$$

in which:

- D is the dimension of space
- R is the ideal gas contant
- ρ, T and u are the macroscopic density of mass, temperature and velocity respectively. They are moments of distribution function f.

Compute macroscopic quantities (moments of distribution function f)

$$\rho = \int f d\xi = \int g d\xi$$

$$\rho u = \int \xi f d\xi = \int \xi g d\xi$$

$$\rho \varepsilon = \frac{1}{2} \int (\xi - u)^2 f d\xi = \frac{1}{2} \int (\xi - u)^2 g d\xi$$

Macroscopic quantities can be represented by integrating the distribution function in proper order

That's the beauty of LBM

Discretized LB Equation

Chapman-Enkog assumption

$$\int h(\xi) f(x,\xi,t) d\xi = \int h(\xi) g(x,\xi,t) d\xi$$
$$h(\xi) = A + B \cdot \xi + C\xi \cdot \xi$$

in which:

• A and C are arbitrary constants, B is an arbitrary constant vector

By writing LB equation in an ODE form and implementing Chapman-Enkog assumption

We can discretize LB equation in time

$$\frac{df}{dt} + \frac{1}{\lambda}f = \frac{1}{\lambda}g$$
$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \xi \cdot \nabla$$

The Equation can be formally integrated over time step δ_t

Discretized LB Equation

$$f(\mathbf{x} + \boldsymbol{\xi} \delta_t, \boldsymbol{\xi}, t + \delta_t) = \frac{1}{\lambda} e^{-\delta_t/\lambda} \int_0^{\delta_t} e^{t'/\lambda} g(\mathbf{x} + \boldsymbol{\xi} t', \boldsymbol{\xi}, t + t') dt' + e^{-\delta_t/\lambda} f(\mathbf{x}, \boldsymbol{\xi}, t).$$

Assuming that δ_t is small enough and g is smooth enough locally, the following approximation can be made:

$$g(\mathbf{x} + \boldsymbol{\xi}t', \boldsymbol{\xi}, t + t') = \left(1 - \frac{t'}{\delta_t}\right) g(\mathbf{x}, \boldsymbol{\xi}, t)$$

+ $\frac{t'}{\delta_t} g(\mathbf{x} + \boldsymbol{\xi}\delta_t, \boldsymbol{\xi}, t + \delta_t)$
+ $O(\delta_t^2), \quad 0 \leq t' \leq \delta_t.$

The leading terms neglected in the above approximation are of the order of $O(\delta_t^2)$. With this approximation, Eq. (8) becomes

$$\begin{aligned} f(\mathbf{x} + \boldsymbol{\xi} \delta_t, \boldsymbol{\xi}, t + \delta_t) &- f(\mathbf{x}, \boldsymbol{\xi}, t) \\ &= (e^{-\delta_t / \lambda} - 1) [f(\mathbf{x}, \boldsymbol{\xi}, t) - g(\mathbf{x}, \boldsymbol{\xi}, t)] \\ &+ \left(1 + \frac{\lambda}{\delta_t} \left(e^{-\delta_t / \lambda} - 1 \right) \right) \\ &\times [g(\mathbf{x} + \boldsymbol{\xi} \delta_t, \boldsymbol{\xi}, t + \delta_t) - g(\mathbf{x}, \boldsymbol{\xi}, t)]. \end{aligned}$$

If we expand $e^{-\delta_t/\lambda}$ in its Taylor expansion and, further, neglect the terms of order $O(\delta_t^2)$ or smaller on the right-hand side of Eq. (10), then Eq. (10) becomes

$$f(\mathbf{x} + \boldsymbol{\xi} \boldsymbol{\delta}_t, \boldsymbol{\xi}, t + \boldsymbol{\delta}_t) - f(\mathbf{x}, \boldsymbol{\xi}, t) = -\frac{1}{\tau} [f(\mathbf{x}, \boldsymbol{\xi}, t) - g(\mathbf{x}, \boldsymbol{\xi}, t)],$$

PENNSTATE

Discretized LB Equation

Recall: we can calculate macroscopic quantities by integrating in momentum space.

The integration can be approximated by quadrature up to a certain degree of accuracy.

Discretized LB Equation

The approximating quadrature takes the form:

$$\int \psi(\xi) g(x,\xi,t) d\xi = \sum_{\alpha} W_{\alpha} \psi(\xi_{\alpha}) g(x,\xi_{\alpha},t)$$

Where $\Psi(\xi)$ is a polynomial of ξ , W α is the weight coefficient of the quadrature, and $\xi \alpha$ is the discrete velocity set. Accordingly, the hydrodynamic moments can be computed by:

$$\rho = \sum_{\alpha} f_{\alpha} = \sum_{\alpha} g_{\alpha}$$

$$\rho u = \sum_{\alpha} \xi_{\alpha} f_{\alpha} = \sum_{\alpha} \xi_{\alpha} g_{\alpha}$$

$$\rho \varepsilon = \frac{1}{2} \sum_{\alpha} (\xi_{\alpha} - u)^{2} f_{\alpha} = \frac{1}{2} \sum_{\alpha} (\xi_{\alpha} - u)^{2} g_{\alpha}$$

Where:

$$f_{\alpha} \equiv f_{\alpha}(x,t) \equiv W_{\alpha}f(x,\xi_{\alpha},t)$$
$$g_{\alpha} \equiv g_{\alpha}(x,t) \equiv W_{\alpha}g(x,\xi_{\alpha},t)$$

Question becomes finding:

- **1. A approximation of distribution** function f
- 2. Weight coefficients

Approximation of Distribution Function

Recall Boltzmann-Maxwellian distribution function:

$$f \equiv \frac{\rho}{\left(2\pi RT\right)^{D/2}} \exp\left(-\frac{\left(\xi - u\right)^2}{2RT}\right)$$

Assume D=2, which means a 2-D case

$$f_{\alpha} = \rho w_{\alpha} \left[1 + \frac{\xi \cdot u}{RT} - \frac{u \cdot u}{2RT} + \frac{(\xi \cdot u)^2}{2(RT)^2} \right]$$
$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\xi \cdot u'}{RT} - \frac{u' \cdot u'}{2RT} + \frac{(\xi \cdot u')^2}{2(RT)^2} \right]$$

 $RT = c_s^2 = c^2/3$ Cs is the sound speed of the system

Weighting Coefficients

Weight $W\alpha$ depends on Lattice arrangements

$$w_{\alpha} = \begin{cases} \frac{4}{9}, & \alpha = 9\\ \frac{1}{9}, & \alpha = 1, 2, 3, 4\\ \frac{1}{36}, & \alpha = 5, 6, 7, 8 \end{cases}$$

Lattice Boltzmann Method

D3Q19 Lattice model Image from ASME Digital Collection

PENNSTATE

1 8 5

Summary

Presented By K,D L,L C,W C,E

PENNSTATE

1855

Calculation Example

Steady Channel Flow

Problem Description

- D2Q9 model
- 2 by 2 system, 4 lattices
- Channel flow from left to right
- Boundary condition--bounce back
- Initial parameter

$$\rho = 1.0$$

$$\tau = 1.0$$

$$du = 1 \times 10^{-7}$$

Presented By K,D L,L C,W C,E

PENNSTATE

1 8 5

For each lattice in D2Q9 model, we present velocity by combination of 9 matrices, each matrix contains distribution function f α , α =1,2,...,9

Assume a initial state:

$$f1 = f2 = \ldots = f9$$

$$f_{\alpha} = \rho / 9, \alpha = 1, 2, 3..., 9$$

PENNSTATE

Hand Calculation Example

Distribution Function

$$(f1) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix} (f2) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix} (f3) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix}$$
$$(f4) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix} (f5) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix} (f6) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix}$$
$$(f7) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix} (f8) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix} (f9) = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \end{pmatrix}$$

Presented By K,D L,L C,W C,E

EGEE 520 Final Presentation

Presented By K,D L,L C,W C,E

PENNSTATE

1 8 5

PENNSTATE

1 8 5 5

$$(f1 \rightarrow) \left(\begin{array}{c} \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9}$$

Presented By K,D L,L C,W C,E

PENNSTATE

1 8 5

Calculate Macroscopic Quantities

$$\rho = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{array}{c} U_x(1) + du \\ U_x(3) + du \end{array}$$

$$U_x = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{array}{c} U_x(1) + du \\ U_x(1) + du \end{pmatrix}$$

$$U_{x} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad U_{y} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$U \swarrow = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad U \swarrow = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$U \swarrow = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad U \searrow = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Calculate Macroscopic Velocities

 $\rho_{\alpha} = \sum_{\alpha} f_{\alpha} = \frac{1}{9} \times 9 = 1$ $U_{x} = \frac{1}{9} ((f1 + f5 + f6) - (f3 + f7 + f8))$ $U_{y} = \frac{1}{2} \left((f6 + f2 + f7) - (f5 + f4 + f8) \right)$ $U = U_{x}^{2} + U_{y}^{2}$ $U \nearrow = U_x + U_y$ $U \searrow = U_x - U_y$ $U \wedge = -U \wedge$ $U \swarrow = -U \nearrow$

 $U_x(1) + du$ $\rho = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad U_x(1) + du \\
U_x(3) + du \\
U_x = \begin{pmatrix} 1e - 7 & 0 \\ 1e - 7 & 0 \end{pmatrix} \qquad U_y = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $U = \left(\begin{array}{cc} 1e - 7 & 0 \\ 1e - 7 & 0 \end{array} \right)$ $U \nearrow = \begin{pmatrix} 1e-7 & 0 \\ 1e-7 & 0 \end{pmatrix} \quad U \swarrow = \begin{pmatrix} -1e-7 & 0 \\ -1e-7 & 0 \end{pmatrix}$ $U \searrow = \begin{pmatrix} -1e-7 & 0 \\ -1e-7 & 0 \end{pmatrix} \quad U \searrow = \begin{pmatrix} 1e-7 & 0 \\ 1e-7 & 0 \end{pmatrix}$

Presented By K,D L,L C,W C,E

EGEE 520 Final Presentation

Presented By K,D L,L C,W C,E

PENNSTATE

1 8 5 5

Calculate Equilibrium State Distribution Function

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\xi \cdot u'}{RT} - \frac{u' \cdot u'}{2RT} + \frac{(\xi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\xi \cdot u'}{RT} - \frac{u' \cdot u'}{2RT} + \frac{(\xi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2(RT)^{2}} + \frac{(\xi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\xi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

$$f_{\alpha}^{EQ} = \rho w_{\alpha} \left[1 + \frac{\psi \cdot u'}{RT} - \frac{\psi \cdot u'}{2RT} + \frac{(\psi \cdot u')^{2}}{2(RT)^{2}} \right]$$

Calculated Equilibrium State Distribution Function

$$\begin{pmatrix} f1^{EQ} \rightarrow \end{pmatrix} = \begin{pmatrix} 0.01234568 & 0.012345679 \\ 0.01234568 & 0.012345679 \end{pmatrix} \begin{pmatrix} f2^{EQ} \uparrow \end{pmatrix} = \begin{pmatrix} 0.012345679 & 0.012345679 \\ 0.012345679 & 0.012345679 \end{pmatrix} \begin{pmatrix} f3^{EQ} \leftarrow \end{pmatrix} = \begin{pmatrix} 0.01234567 & 0.012345679 \\ 0.01234567 & 0.012345679 \end{pmatrix} \begin{pmatrix} f3^{EQ} \leftarrow \end{pmatrix} = \begin{pmatrix} 0.01234567 & 0.012345679 \\ 0.01234567 & 0.012345679 \end{pmatrix} \begin{pmatrix} f3^{EQ} \leftarrow \end{pmatrix} = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \checkmark \end{pmatrix} = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \checkmark \end{pmatrix} = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \checkmark \end{pmatrix} = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \checkmark \end{pmatrix} = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \checkmark \end{pmatrix} = \begin{pmatrix} 0.00493827 & 0.0493827 \\ 0.0493827 & 0.0493827 \end{pmatrix}$$

Presented By K,D L,L C,W C,E

PENNSTATE

1 8 5

Bounce back collision

$$f(x+\xi\delta_t,\xi,t+\delta_t)-f(x,\xi,t)=-\frac{1}{\tau}\left[f(x,\xi,t)-f^{EQ}(x,\xi,t)\right]$$

$$\begin{aligned} \because \tau &= 1.0 \\ f(t + \delta t) - f &= -\frac{1}{\tau} \Big[f - f^{EQ} \Big] \\ \Rightarrow f(t + \delta t) &= f - \Big[f - f^{EQ} \Big] \\ \Rightarrow f(t + \delta t) &= f^{EQ} \end{aligned}$$

T=1.0 indicates that distribution function goes to equilibrium within the current time step

$$\begin{pmatrix} f1^{EQ} \rightarrow \end{pmatrix}' = \begin{pmatrix} 0.01234568 & 0.012345679 \\ 0.01234568 & 0.012345679 \end{pmatrix} \begin{pmatrix} f2^{EQ} \uparrow \end{pmatrix}' = \begin{pmatrix} 0.012345679 & 0.012345679 \\ 0.012345679 & 0.012345679 \end{pmatrix} \begin{pmatrix} f3^{EQ} \leftarrow \end{pmatrix}' = \begin{pmatrix} 0.01234567 & 0.012345679 \\ 0.01234567 & 0.012345679 \end{pmatrix} \begin{pmatrix} f4^{EQ} \downarrow \end{pmatrix}' = \begin{pmatrix} 0.012345679 & 0.012345679 \\ 0.012345679 & 0.012345679 \end{pmatrix} \begin{pmatrix} f5^{EQ} \searrow \end{pmatrix}' = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \nearrow \end{pmatrix}' = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \swarrow \end{pmatrix}' = \begin{pmatrix} 0.003086 & 0.003086 \\ 0.003086 & 0.003086 \end{pmatrix} \begin{pmatrix} f6^{EQ} \checkmark \end{pmatrix}' = \begin{pmatrix} 0.00493827 & 0.0493827 \\ 0.0493827 & 0.0493827 \end{pmatrix}$$

Presented By K,D L,L C,W C,E

PENNSTATE

1855

Calculation results and visualization

Problem Description

Steady Fluid Flow through a channel with a block in the middle

 $\tau = 1.0$ $\rho = 1.0$ RT = 1/3

D2Q9 MODEL 11×11 mesh 100 active lattice

PENNSTATE

1 8 5 5

MATLAB based calculation

Why?

- Every lattice contains a 9dimensional matrix
- Lengthy calculation hard to present by hand
- In MATLAB multi-dimensional matrix can be easily presented

MATLAB based calculation

Numerical Example

Implementation and Results

Motivation

- Porous Media Flow
 - Discrete Simulation (NS) vs. Averaged Flow (Darcy)
 - Couple with transport/heat transfer
- Lattice-Boltzmann Methods
 - Incompressible Navier-Stokes
 - Water/Oil
 - Complex/Stochastic Geometries
 - Simple Meshing
 - Scalable
 - Large simulations

PENNSTATE

1 8 5 5

PENNSTATE

PENNSTATE

PENNSTATE

PENNSTATE

PENNSTATE St. Con 185

END

PENNSTATE

PENNSTATE

PENNSTATE

Varying Grain Density (r = 2)

EGEE 520 Final Presentation

Presented By

PENNSTATE

PENNSTATE 1 8 5 5

Varying Grain Size (5%)

Presented By

Non-Uniform Porosity

Parallelism (Domain Decomposition)

Rock Sample Tomography

Example Applications

Fancy stuff we can do with LBM

Examples

• Air Conditioner

- LBM simulates two conditions
 - 1. Fixed Fan Air Conditioner
 - 2. Sweeping Fan Air Conditioner
- Parallelism
 - Extremely High Resolution Simulation Required
 - Parallel computations allow LBM to be extremely efficient with reasonable computer hardware
 - Allowed for the billion grid points required to accurately simulate this case

http://youtu.be/I82uCa7SHSQ?t=21m20s

Image: https://www.youtube.com/watch?v=I82uCa7SHSQ

- Blood Clotting in a Human Artery
 - Arteries that have been affected by disease can be at high risk to rupture.
 - These ruptures can possibly be prevented by blood clotting in the vulnerable area
 - Need to simulate red blood cell changing from liquid to solid behavior and stick to artery wall.
 - LBM is effective at achieving this because of its hybrid particle/continuum nature

Image: https://www.youtube.com/watch?v=I82uCa7SHSQ

- Blood Clotting in a Human Artery
 - Parallelism
 - Using LBM, it is very easy to send different calculations to different processors
 - Allows for high efficiency when using computers with a high number of processors

Image: https://www.youtube.com/watch?v=I82uCa7SHSQ

Examples

- Turbulence Modeling
 - Models flow between two parallel plates
 - Large- eddy simulation approach
 - Replace Lattice Boltzmann equation with a filtered form
- Comparison to Spectral Method
 - Solution is virtually identical
 - LBM able to simulate with a 200x reduction in resolution
 - LBM much less computationally intensive in this case

Image: https://www.youtube.com/watch?v=I82uCa7SHSQ

References

- Latt, J. (2013). Introduction to Lattice Boltzmann Method @ NasaGlenn 2013
- [Video]. https://www.youtube.com/watch?v=I82uCa7SHSQ
- Mele, I. (2013). Lattice Boltzmann Method. Univerza v Ljubljani.
- Fathi, Ebrahim, and I. Yucel Akkutlu. "Lattice Boltzmann method for simulation of shale gas transport in kerogen." *SPE Journal* 18.01 (2012): 27-37.
- Engler, Simon T. "Benchmarking the 2D lattice Boltzmann BGK model." *Short communication. Amsterdam Center for Computacional Science, Amsterdam, The Netherlands* (2003).
- Bao, Yuanxun Bill, and Justin Meskas. "Lattice Boltzmann Method for Fluid Simulations." (2011).
- Adhvaryu, Chinmay. "The Lattice Boltzmann Method For Computational Fluid Dynamics Applications." (2008).
- Xiaoyi He, Li-shi Luo. "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation." (1997).

Thank You!

Questions?