Strain Tuning of Ferroelectric Thin Films

Darrell G. Schlom, Long-Qing Chen, Chang-Beom Eom, Karin M. Rabe, Stephen K. Streiffer, and Jean-Marc Triscone

1Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005; email: schlom@ems.psu.edu
2Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005; email: lgc3@psu.edu
3Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706; email: eom@engr.wisc.edu
4Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019; email: rabe@physics.rutgers.edu
5Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439; email: streiffer@anl.gov
6DPMC, University of Geneva, 1211 Geneva 4, Switzerland; email: jean-marc.triscone@physics.unige.ch

Key Words
substrates, theory and simulation, ferroelectric characterization methods, epitaxial oxide films, superlattices, multicomponent oxides

Abstract
Predictions and measurements of the effect of biaxial strain on the properties of epitaxial ferroelectric thin films and superlattices are reviewed. Results for single-layer ferroelectric films of biaxially strained SrTiO$_3$, BaTiO$_3$, and PbTiO$_3$ as well as PbTiO$_3$/SrTiO$_3$ and BaTiO$_3$/SrTiO$_3$ superlattices are described. Theoretical approaches, including first principles, thermodynamic analysis, and phase-field models, are applied to these biaxially strained materials, the assumptions and limitations of each technique are explained, and the predictions are compared. Measurements of the effect of biaxial strain on the paraelectric-to-ferroelectric transition temperature (T_C) are shown, demonstrating the ability of percent-level strains to shift T_C by hundreds of degrees in agreement with the predictions that predated such experiments. Along the way, important experimental techniques for characterizing the properties of strained ferroelectric thin films and superlattices, as well as appropriate substrates on which to grow them, are mentioned.
Ferroelectric: a material possessing a macroscopic spontaneous polarization that can be reoriented through the application of an external electric field.

Polarization: an electric dipole moment per unit volume (polarization is a vector quantity).

Paraelectric-to-ferroelectric transition temperature (T_C): also known as the Curie point, the temperature at which a material goes from having no reorientable macroscopic spontaneous polarization (paraelectric) to possessing a spontaneous polarization that can be reoriented through the application of an external electric field (ferroelectric).

Piezoelectric: a linear relationship between an applied electric field and the resulting strain ($\varepsilon \propto E$) in some (so-called piezoelectric) materials.

Substrate: the macroscopic base material upon which a film is grown. For epitaxial films this is a wafer of a single crystal that is chemically and structurally compatible with the film to be grown on it.

Strain: a symmetric second-rank tensor describing the deformation of a material.

INTRODUCTION

All materials are electrostrictive (see p. 600 for sidebar: More on Electrostriction), but in ferroelectrics the quadratic coupling between polarization and strain can be especially strong. This strong polarization-strain coupling is responsible for the changes in the paraelectric-to-ferroelectric transition temperature (T_C, also called the Curie point), piezoelectric coefficients, and dielectric and electrooptic properties when the mechanical boundary conditions of a ferroelectric are altered. It has long been understood that for bulk ferroelectric ceramics and single crystals under Gibbsonian conditions of constant pressure, the ferroelectric phase transition temperature is reduced, and the piezoelectric and dielectric properties are strongly modified by the application of hydrostatic pressure (1–3). But for thin films the opportunity arises to apply huge, nonhydrostatic strains well beyond where their bulk counterparts would crack. For sufficiently thin films, biaxial strains1 of several percent can be tolerated (4, 5; 6, pp. 283–90).2 Such strains have previously been used to improve the mobility of semiconductors in transistors (7, 8) and to alter the transition temperature of ferromagnetic (9, 10) and superconducting (11–13) materials. Strain-induced enhancements in T_C as large as tens of degrees have been observed for the latter phenomena (9). Although conventional wisdom is that the best possible properties of any ferroelectric are found in a single crystal of that material, the synthesis of highly perfect ferroelectric thin films on suitable substrates has demonstrated that appropriately strained ferroelectric thin films can exhibit properties that are greatly superior to their bulk counterparts. Owing to the strong coupling between strain and ferroelectricity, T_C shifts of hundreds of degrees are expected (14–23) and have been observed (20, 21, 24–30) in strained ferroelectric thin films. The tuning of ferroelectric properties through the application of strain to ferroelectric thin films is the subject of this review. We note that, in addition to the mechanical boundary conditions (strain) discussed here, electrical boundary conditions can also significantly modify the phase transitions, phase stability, and domain structures (31–36).

Strains can be imparted into thin films through differences in lattice parameters and thermal expansion behavior between the film and the underlying substrate, or they can arise from defects formed during film deposition (6, pp. 60–83, 387–461; 37–39). Fully coherent, epitaxial films have the advantage that high densities of threading dislocations [e.g., the $\sim 10^{11}$ dislocations cm$^{-2}$ observed in partially relaxed ferroelectric films (40, 41)] are avoided. The strain field around dislocations locally alters the properties of the film, making its ferroelectric properties inhomogeneous and often degraded (42–44). Because we desire to describe the intrinsic effect of strain on ferroelectric properties, we limit our review to experiments involving fully coherent epitaxial films. This approach is shown schematically in Figure 1. To achieve coherent strained films, high-quality substrates are required.

1The biaxial strain $\varepsilon = \frac{a - a_0}{a_0}$, where a_0 is the lattice parameter of the ferroelectric material in its cubic state under stress-free conditions (free-standing) and a_1 is the in-plane lattice parameter of the biaxially strained ferroelectric film.

2The limit of strain is given by the Griffith criteria for crack formation (4, 5); $\varepsilon_c = \frac{1}{E} \sqrt{2 \gamma / (\pi E t)}$, where the film has Poisson’s ratio ν, surface energy γ, Young’s modulus E, and thickness t and the biaxial strain ε_c arises from lattice mismatch with the underlying substrate, i.e., $\varepsilon_c = \frac{a_1}{a_0}$ for fully coherent epitaxial growth.

Schlom et al.
Figure 1
Schematic of a fully coherent epitaxial ferroelectric film biaxially strained to match an underlying substrate. In this example, both the ferroelectric film and substrate have ABO_3 perovskite structures, with the larger A ion (red and green) nominally centered within a corner-shared framework of octahedra, the smaller B ion nominally centered within these octahedra, and oxygen at the vertices of the octahedra.

After a brief description of the status of available substrates that can be used to strain common ferroelectric materials in thin film form via lattice mismatch, theoretical predictions of the effect of strain on ferroelectric properties are described. These predictions are then compared with experimental observations for (a) single-layer ferroelectric films as well as (b) superlattices containing ferroelectric layers. Along the way, several important experimental techniques for characterizing the ferroelectric properties of strained ferroelectric thin films and superlattices are described.

SUBSTRATES FOR STRAINING FERROELECTRIC FILMS

The importance of the quality of the underlying crystalline template, on which an epitaxial film is grown, cannot be overemphasized. For conventional semiconductors (e.g., silicon and GaAs), highly perfect single crystals, chemical mechanical polishing, chemical etching methods to prepare smooth and damage-free surfaces for epitaxial growth, and detailed knowledge of surface reconstructions all exist and are a key to the success of semiconductor technology. For the growth of ferroelectric thin films and superlattices, for which it is desired to establish the intrinsic effect of strain on film properties, the availability of appropriate substrates and methods to prepare smooth and highly perfect surfaces on which epitaxial growth is initiated is also crucial.

For oxide ferroelectrics with perovskite structures [e.g., BaTiO_3, $(\text{Ba,Sr})\text{TiO}_3$, PbTiO_3, $\text{Pb(Zr,Ti)}_2\text{O}_3$], chemically and structurally compatible perovskite substrate materials are needed. Intensive work on high-temperature superconductors

Superlattice: a sequence of thin film layers whose thickness and order is precisely repeated many times.
stimulated the production of many perovskite single crystals (45–54) to diameters up to four inches as well as spawned a number of new perovskite and perovskite-related substrates (55–58). These single-crystal perovskite and perovskite-related substrates include YAlO₃ (50), LaSrAlO₄ (55), LaAlO₃ (52, 54), LaSrGaO₄ (56), NdGaO₃ (46, 51), (LaAlO₃)₀.₉₋₀.₇₅(Sr₁₋₀₂Al₁₋₀₂TaO₃)₀.₇₁ (LSAT) (57), LaGaO₃ (45), SrTiO₃, and KTaO₃ (48); many are produced with structural perfection rivaling that of conventional semiconductors. Figure 2 shows the pseudotetragonal or pseudocubic a-axis lattice spacings offered by these commercial substrates, together with the corresponding lattice spacings of several ferroelectrics. As can be seen in Figure 2, the lattice constants of the available perovskite substrates tend to be smaller than many of the ferroelectric materials of current interest. This is because most of the commercially available perovskite substrates were developed for high-temperature superconductors, which typically have lattice constants in the 3.8–3.9-Å range. Rare-earth scandate ($REScO₃$) substrates have been recently developed with the larger lattice constants of ferroelectric perovskites in mind (59–61).

In addition to appropriate substrate single crystals, a method to prepare substrates with a specific chemical termination of the surface is a prerequisite for atomic-layer-controlled thin film growth of epitaxial heterostructures. For example, chemical-mechanically polished (100) SrTiO₃ substrates display a mixture of SrO- and TiO₂-terminated surfaces. Kawasaki et al. (62) showed that an NH₄F-buffered HF solution with controlled pH enables etching of the more basic SrO layer and leaves a completely TiO₂-terminated surface on the substrate (62). Koster et al. (63) have further perfected this method of preparing a TiO₂-terminated (100) SrTiO₃ surface. SrO-terminated (100) SrTiO₃ substrates can also be prepared (64). A means to prepare defect-free surfaces with controlled termination has also been developed...
for (110) LaAlO$_3$ (65; D.H.A. Blank, private communication), (110) NdGaO$_3$ (65; D.H.A. Blank, private communication), (100) LSAT (65), (100) KTaO$_3$ (66), and (110) DyScO$_3$ substrates (D.H.A. Blank, private communication).

THEORY AND SIMULATION OF THE EFFECTS OF STRAIN ON FERROELECTRICS

The theoretical approaches developed to understand and model ferroelectric thin films cover essentially the entire spectrum of methods that have been developed for condensed matter systems. In approximate order of increasing required input of external information and increasing ability to treat larger system sizes, these include first-principles calculations that determine electronic structure by solving Schrödinger's equation at zero temperature, effective Hamiltonian methods that parameterize the Hamiltonian in a way such that finite temperature calculations can be performed, molecular dynamics simulations utilizing interatomic potentials based on parameters that have been fit to either experimentally or first-principles-derived results, phenomenological models based on Ginzburg-Landau theory that capture the salient features of the thermodynamic free energy for a particular set of boundary conditions as a function of internal and external variables, and phase-field and finite-element models that are able to treat truly complex microstructures.

First-principles calculations allow the prediction of atomic arrangements and polarization-related properties without input of experimental information. Rapid progress over the past 15 years in algorithms—particularly ultrasoft pseudopotentials, efficient implementations (including VASP, Abinit, PWscf, SIESTA, and Wien2K), the modern theory of polarization, and density functional perturbation theory—has been key to making these methods into useful tools for the prediction of the properties of ferroelectric thin films and superlattices, increasing the size and complexity of the structures that can be accurately investigated (67). At the same time, the length scales of control of atomic ordering achievable in ferroelectric heterostructures have been decreasing (34, 68–74), enabling the same systems to be studied both experimentally and from first principles (75). To be more precise, first-principles density-functional-theory methods can handle supercells of up to approximately 100 atoms, allowing calculations for perovskite superlattices with a period of up to 20 perovskite cells and slab calculations for surfaces that include adequate bulk and vacuum layers. At longer time- and length scales, a multiscale approach can be implemented. Interatomic potentials and effective Hamiltonians constructed from first-principles input can be used for supercells with up to several thousand atoms (76–79). Phenomenological approaches that reach macroscopic continuum scales, such as Landau-Devonshire theory, can draw on first-principles results to determine theoretical parameters and thus can extend accurate phenomenological analysis to regimes of high strain and electric fields for which experimental information is not available (80). Furthermore,

3The Miller indices given for the surfaces of LaAlO$_3$, NdGaO$_3$, and DyScO$_3$ reflect their noncubic symmetry at room temperature. In pseudocubic notation these are all [100] pseudocubic surfaces.
if the phase-field method based on time-dependent Ginzburg-Landau equations is employed, it is possible to predict the domain structures and properties of ferroelectric thin films and their dependence on temperature, substrate constraint, electrical boundary conditions (31–36), thickness, and inhomogeneous defect distributions (81).

Strain-Phase Diagrams of Single-Layer Ferroelectric Thin Films

The effects of biaxial strain and temperature on ferroelectric transitions and domain structures have been theoretically studied for a number of ferroelectrics. These include (001)$_p$-oriented PbTiO$_3$ (15, 16, 18, 19), BaTiO$_3$ (15, 21, 22, 78), and Pb(Zr$_x$Ti$_{1-x}$)O$_3$ (81a, 81b) as well as (001)$_p$ SrTiO$_3$ (17, 20, 21), which is not normally ferroelectric but can become ferroelectric when strained; the subscript p refers to the pseudocubic index. The orientation relationship of an (001)$_p$-oriented, biaxially strained ferroelectric perovskite film on an (001)$_p$ perovskite substrate is shown schematically in Figure 1. Strain-phase diagrams for these thin films, which graphically display the ferroelectric phase transition temperatures and domain structures as a function of strain, have been constructed via thermodynamic analysis and phase-field simulations.

The initial versions of strain-phase diagrams for PbTiO$_3$ and BaTiO$_3$ were generated via thermodynamic analyses by assuming a single, homogeneous domain state for all possible ferroelectric phases in a thin film. The most stable phase for a given temperature and strain was determined by comparing the energies of all possible ferroelectric phases as well as the parent paraelectric phase (15). Because under a given temperature and strain a ferroelectric state in a thin film almost always contains more than one type of domain, improved versions of strain-phase diagrams were obtained by allowing each ferroelectric phase to form simple two-dimensional, two-domain ferroelectric states with a priori domain-wall orientations. The most stable ferroelectric state was then determined by comparing the energies of single-domain or two-domain states of all possible ferroelectric phases (16). To take into account the full three-dimensional domain structures that contain all possible types of domains, phase-field models have been developed to predict strain-phase diagrams (19, 81). Phase-field models, although computationally more expensive, do not make a priori assumptions on the possible ferroelectric phases and domain structures that might appear under a given temperature and substrate constraint. The domain structures in a phase-field model are predicted by annealing a quenched paraelectric state with a fixed substrate constraint and temperature.

Different levels of approximations and assumptions for the ferroelectric phases, e.g., single-domain states or two-dimensional two-domain states in thermodynamic analysis, or full three-dimensional multidomain states in phase-field simulations, have been utilized in theoretical investigations aimed at understanding equilibrium strain-phase diagrams of ferroelectric films. Depending on the approximations and assumptions used, quantitatively and often qualitatively different results are obtained as the level of sophistication is increased for treating the energetics of what is generally a complex three-dimensional microstructure. Figure 3 shows examples of strain-phase diagrams for (001)$_p$-oriented PbTiO$_3$ films from thermodynamic analysis and
Figure 3

Four strain-phase diagrams of (001)-oriented PbTiO₃ calculated using thermodynamic analysis or phase-field simulations and different assumptions of the ferroelectric domain states. (a) Single domain for all ferroelectric states (reprinted from Reference 15, with permission; copyright 1998 by the American Physical Society). (b) Either single- or double-domain states with domain-wall orientations restricted to be 45° from the film/substrate interface (reprinted from Reference 16, with permission; copyright 2000 by the American Physical Society). (c) Single- or double-domain states with domain-wall orientations restricted to be either 45° or 90° from the film/substrate interface (reprinted from Reference 18, with permission; copyright 2001 by the American Physical Society). (d) From three-dimensional phase-field simulations that automatically predict the possible multidomain states without assuming the domain-wall orientations (reprinted from Reference 81, with permission; copyright 2002, Elsevier).
Figure 4
The strain-phase diagram of (001)\textsubscript{p}-oriented BaTiO\textsubscript{3} obtained from phase-field simulations. The letters T, O, and M used in the phase notations indicate tetragonal, orthorhombic, and monoclinic crystallographic symmetries, respectively, under a constraint. The paraelectric and ferroelectric natures of the phases are revealed by the superscripts P and F, respectively. M\textsubscript{T} + O\textsubscript{F} implies a mixture of M\textsubscript{T} and O\textsubscript{F} phases. The components of the polarization vector P corresponding to the phases (along the crystallographic directions of pseudocubic BaTiO\textsubscript{3}) are indicated within the parentheses following the phase notation (adapted from Reference 22, with permission; copyright 2006, American Institute of Physics).

Phase-field simulations, indicating clear differences for different approximations and assumptions about the domain configurations. For BaTiO\textsubscript{3}, multiple ferroelectric phase transitions are involved, and the strain-phase diagram is more complicated than that of PbTiO\textsubscript{3}. Figure 4 is an example of a strain-phase diagram for BaTiO\textsubscript{3} that was obtained by phase-field simulations (22). At low temperatures, unstrained bulk SrTiO\textsubscript{3} undergoes a structural transition involving the rotation of oxygen octahedra. Figure 5 gives the strain-phase diagram derived from thermodynamic analysis, assuming a single-domain state for SrTiO\textsubscript{3} thin films; this figure indicates room-temperature ferroelectricity of a SrTiO\textsubscript{3} with sufficiently large tensile strains, which is otherwise nonferroelectric.

Quantitative predictions by either thermodynamic analysis or phase-field simulations are possible only for ferroelectrics whose properties have been sufficiently characterized to determine their bulk thermodynamic properties. Recently, with the assumption of a single-domain state for the ferroelectric phases, Diéguez et al. (78) demonstrated that it is also possible to obtain strain-phase diagrams directly through first-principles methods. Figure 6 shows an example for (001)\textsubscript{p} BaTiO\textsubscript{3} (78). A future direction will be to combine first-principles calculations and phase-field simulations, making it possible to predict strain-phase diagrams for a wide variety of ferroelectric materials while taking full three-dimensional domain structures into account. These theoretical predictions, represented in the form of strain diagrams in Figures 3–6,
Figure 5
The strain-phase diagram of (001)-oriented SrTiO$_3$ calculated assuming a single-domain state for all structural and ferroelectric phases (adapted from Reference 23, with permission; copyright 2006 by the American Physical Society). Nomenclature identical to that of Figure 4 is used to describe the crystallographic symmetry of the phases and order parameters. This diagram has only a minor difference from that presented in Reference 17.

Figure 6
The strain-phase diagram of (001)-oriented BaTiO$_3$ calculated from first principles. p, paraelectric phase; c, out-of-plane tetragonal phase; aa, orthorhombic phase with polarization components $p_x = p_y$ and $p_z = 0$; r, a ferroelectric phase with $p_x = p_y \neq p_z \neq 0$ (reprinted from Reference 78, with permission; copyright 2004 by the American Physical Society).

Domains in Strained Ferroelectric Films
A common feature of all ferroelectric crystals is the formation of domain structures when a paraelectric phase is cooled through the ferroelectric transition temperature.
Each individual domain is a micro/nanoscale region with uniform electrical polarization. The type of domain structures formed in a thin film depends critically on the crystallographic relationship between the paraelectric and ferroelectric phases, the film orientation, the substrate constraint, electrical boundary conditions on the surface and at the film/substrate interface, and the inhomogeneous distribution of defects within a thin film. With the theoretical tools available, it is now possible to study systems that develop domain structures under boundary conditions realized in experimental configurations. For example, the rich phase diagram of PbTiO$_3$ films on an SrTiO$_3$ substrate (29) (shown in Figure 12, below) contains uniform states and stripe domains of different widths as thickness and temperature vary. First-principles calculations of the PbTiO$_3$/SrTiO$_3$ interface, the free PbTiO$_3$ surface, and the domain-wall energies in the film geometry can establish the boundary conditions and surface energy terms for a continuum treatment of the domain structures such as thermodynamic analysis of domain stability or phase-field simulations of domain formation. Figure 7 shows examples of domain structures in BaTiO$_3$ thin films under three different substrate constraints and temperatures (22). Dislocations often exist in thin films, and their density depends on the lattice mismatch and film thickness. It is possible to incorporate both static and mobile interfacial dislocations into the models.

Figure 7

Domain morphologies in BaTiO$_3$ films as a function of temperature (T) and substrate constraint strain (ε_s). Domain definitions: a_1: $(P_1,0,0)$; a_2: $(0,P_1,0)$; c: $(0,0,P_1)$; R_1: $(-P_1,-P_1,P_1)$; R_2: $(P_1,-P_1,P_1)$; O_1: $(P_1,P_1,0)$; O_2: $(-P_1,-P_1,0)$; O_3: $(P_1,0,P_1)$; O_4: $(P_1,0,-P_1)$; O_5: $(0,P_1,P_1)$; O_6: $(0,P_1,-P_1)$.

(a) Tetragonal c domains separated by 180° domain walls at $T = 25^\circ$C and $\varepsilon_s = -1.0\%$. (b) Three variants of distorted tetragonal domains, $c/a_1/a_2$, at $T = 75^\circ$C and $\varepsilon_s = 0.0\%$. (c) Two variants of in-plane distorted tetragonal domains, a_1/a_2, separated by 90° domain walls (twin walls) at $T = 50^\circ$C and $\varepsilon_s = 0.2\%$. (d) Three variants of orthorhombic domains, $O_1/O_4/O_5$, at $T = -25^\circ$C and $\varepsilon_s = -0.05\%$. (e) Six variants of orthorhombic domains O_1-O_6 at $T = -25^\circ$C and $\varepsilon_s = 0.1\%$. (f) Two variants of O_1/O_2 domains at $T = 25^\circ$C and $\varepsilon_s = 1.0\%$. (g) Mixture of tetragonal a_1/a_2 domains and orthorhombic O_1/O_2 domains at $T = 25^\circ$C and $\varepsilon_s = 0.25\%$. (h) Rhombohedral R_1/R_2 domains at $T = -100^\circ$C and $\varepsilon_s = 0.1\%$ (reprinted from Reference 22, with permission; copyright 2006, American Institute of Physics).
a phase-field model and study the interactions between dislocations and domains in ferroelectric thin films. Fundamental understanding achieved through these theoretical tools can then suggest new combinations of materials, substrates, and interface buffer layers to achieve the stabilization of desired phases and domain structures.

CHARACTERIZATION METHODS RELEVANT TO STUDYING STRAINED FERROELECTRIC THIN FILMS

In recent years, scanning probe microscopy has emerged as one of the key techniques for the study of ferroelectric materials. Using a metallic scanning probe microscope (SPM) tip as an electrode to generate a local switching field allows precise and reversible control of ferroelectric polarization at the nanoscale. The polarization state itself can be directly probed at the same scales by using the SPM tip to measure the local piezoelectric response of the film to a small applied oscillating voltage (piezo-force microscopy, or PFM; see below), its local nonlinear dielectric permittivity (scanning nonlinear dielectric microscopy), the voltage derivative of the capacitance between the tip and the surface (scanning capacitance microscopy), or the electrostatic force gradient and effective surface potential (scanning surface potential microscopy) of stray electric fields above the ferroelectric film due to the presence of surface charge. Local studies of the optical properties of the surface, using near-field optical microscopy, can also provide information on the ferroelectric polarization. A detailed review of these different methods may be found elsewhere (82).

Transmission electron microscopy (TEM) plays an important role in establishing the limits to which ferroelectric thin films and superlattices can be strained. As the key approach for imaging interface structure and extended defects in thin films, it has been essential in experimentally determining the critical thickness for epitaxial strain relaxation by dislocation introduction and in understanding the resulting dislocation arrays and their impact on properties (40, 41, 44, 83–86).

As the polarization of a ferroelectric is directly related to the noncentric positions of atoms in the unit cell, significant ferroelastic strains are frequently developed as the phase transition occurs. Methods that provide direct information on structure therefore can be used to probe ferroelectricity. Laboratory-source experiments can determine the strain in ferroelectric films with thicknesses down to a few unit cells (87). This strain information can be analyzed in terms of an underlying polarization through an understanding of electrostriction. Researchers have developed synchrotron X-ray scattering techniques that make use of the extremely high X-ray brilliance that is provided at synchrotron-light-source user facilities (88). Such techniques enable in situ measurements as a function of, for instance, temperature (89) or electric field (90, 91) and detailed structural analysis beyond average lattice parameter measurements by the measurement of crystal truncation rod intensities well away from Bragg peaks (92). These approaches allow atomic positions as a function of depth within a film to be determined with unit-cell precision and therefore give insight into the structural gradients at surfaces and interfaces.

Another interesting approach to probe ferroelectricity in ultrathin films is to use X-ray photoelectron diffraction (XPD) (93), a technique applied mostly to studies
MORE ON ELECTROSTRICTION

Electrostriction is elastic strain ε induced by the application of an electric field or by spontaneous or induced polarization, P, that is quadratic in nature ($\varepsilon \propto P^2$) and thus produces a strain that is independent of the sign of the applied field. Piezoelectric properties in ferroelectric materials can be formally derived in terms of the temperature-independent electrostrictive properties of the material (that do not change across the paraelectric-to-ferroelectric phase transition) and the temperature-dependent polarization in the ferroelectric state. Thus, generally the simplest fundamental description of the electromechanical properties of ferroelectrics is based on electrostriction.

XRD: X-ray diffraction

Figure 8
Evolution of the c/a ratio at room temperature with film thickness for commensurate (001)$_n$-oriented PbTiO$_3$ films grown on Nb-doped (100) SrTiO$_3$ substrates. XPD results (left scale, blue circles) are compared with XRD results (red circles, right scale) (reprinted from Reference 94, with permission; copyright 2006 by the American Physical Society).
of the strong strain polarization coupling in PbTiO$_3$, the material tetragonality is strongly influenced by the polarization. The evolution of c/a is therefore taken as a signature of the progressive reduction of P and suppression of ferroelectricity in ultrathin films. This decrease in polarization can be explained by a residual unscreened depolarizing field, as predicted in Reference 33.

The good agreement between the XPD (94), which is very surface sensitive, and the XRD data (87), which average over the whole film, implies that the polarization evolves at the surface in the same way as in the interior of the film and that there is no thick paraelectric dead layer at the surface. The XPD tetragonality measurement also shows a continuous decrease of tetragonality down to a thickness of one unit cell. The tetragonality of a one-unit-cell-thick paraelectric film was obtained from ab initio calculations (94). The value obtained is in good agreement with the experimental one, suggesting that the one-unit-cell-thick PbTiO$_3$ film is paraelectric. The calculations also show that at this thickness the interlayer atomic distances are strongly affected by surface relaxation and rumpling (94).

XPD was also used to directly probe the intracell atomic displacements associated with ferroelectricity in PbTiO$_3$ films as thin as 20 Å (the experimental limit when O is chosen as the emitter, a limit linked to the presence of O in the substrate). The results unambiguously demonstrate that the O atoms have a noncentrosymmetric position in the Pb cage in films down to this thickness (94). The XPD data combined with ab initio calculations suggest that PbTiO$_3$ films as thin as three unit cells are still ferroelectric. For films with thicknesses of one or two unit cells, the asymmetry of the atomic relaxations at the free surface and at the substrate interface makes the film naturally polar. Switching of this polar distortion is, however, unlikely.

A technique that is finding increasing application to ferroelectric thin films is Raman spectroscopy. The ferroelectric phase transition is intimately related to specific phonon modes whose frequency depends on temperature. These excitations can in turn be observed via Raman scattering by the use of heterostructures that provide high selectivity for a ferroelectric film over its underlying substrate, for instance by having an interposed Raman-inactive electrode that screens the substrate. Mode structure has been tracked in films with thicknesses of the order of a few hundred nanometers. Even though this is not strictly thin, given recent results on ferroelectricity in films, it has allowed researchers to observe changes in mode structure that advance our understanding of the ferroelectric phase transition in constrained geometries (95). Alternatively, ultraviolet (UV) illumination limits penetration into a heterostructure and thus enhances signal from a film; therefore, UV illumination has become a promising method for tracking symmetry and phase behavior in much thinner ferroelectric thin films (tens of nanometers) and superlattices (74).

T_C has been determined on strained thin films through the use of several experimental methods. The conventional method of measuring a hysteresis loop is problematic when the electrical leakage current is high, e.g., for extremely thin films in which currents due to electron tunneling are high or at elevated temperatures at which significant ionic conductivity can occur. The conventional method also requires electrodes, which alter the electrical boundary conditions and can impose experimental complications. For sufficiently thick ferroelectric films and superlattices,
UV Raman can be used to determine T_C (74). Two methods that at high temperatures are applicable to extremely thin ferroelectric films have become popular. One method involves measuring the temperature dependence of the out-of-plane lattice parameter of the strained film. A kink in the out-of-plane lattice parameter occurs at T_C, as is shown in Figure 9 for a coherent PbTiO$_3$ film. Such kinks at T_C have been observed in a number of coherently strained ferroelectric films (21, 24, 29) and are expected from theory (21, 29, 96). A second method is to use second harmonic generation (SHG). Figure 10 shows the results of an SHG measurement on a coherently strained BaTiO$_3$ film. Only materials that lack inversion symmetry exhibit an SHG signal. All ferroelectrics must lack inversion symmetry, but there are many materials that lack inversion symmetry and are not ferroelectric. This makes SHG a necessary but insufficient probe for ferroelectricity. A better test for ferroelectricity with SHG is to monitor changes in the symmetry of the SHG response that occur when external electric fields are applied; such changes imply the presence and rearrangement of ferroelectric domains (97, 98).

EXPERIMENTAL RESULTS ON SINGLE-LAYER STRAINED FERROELECTRIC FILMS

Strained (001)$_p$ SrTiO$_3$ Films

The strain-phase diagrams in Figures 3–6 imply that ferroelectrics can be very sensitive to strain. These predictions imply that a biaxial tensile strain of order 1% will shift the T_C of SrTiO$_3$, a material that normally is not ferroelectric at any temperature, to the vicinity of room temperature. Comparable shifts in transition temperature, roughly 300 K per percent biaxial strain, are expected for PbTiO$_3$ and...
Figure 10
Optical second harmonic generation (SHG) signals from a coherent 1000-Å-thick (001)$_p$-oriented BaTiO$_3$ film grown by molecular-beam epitaxy (MBE) on a (110) GdScO$_3$ substrate. The inset shows polar plots of SHG intensity (radius) versus fundamental polarization (azimuth). In the inset, circles represent data from experiments, and solid lines represent theory. The kink in the SHG-versus-temperature plot occurs at the same temperature as does the kink in the out-of-plane lattice parameter versus temperature (shown in Figure 13), i.e., at T_C (from Reference 21).

BaTiO$_3$. These predictions have been borne out by experiments on strained SrTiO$_3$ (Figure 11) (20), PbTiO$_3$ (Figures 9 and 12) (29, 35), and BaTiO$_3$ (Figure 13) films (21); large strain effects of comparable magnitude were observed earlier in KTaO$_3$/KNbO$_3$ (24, 26), SrTiO$_3$/SrZrO$_3$ (25), and SrTiO$_3$/BaZrO$_3$ superlattices (30) and strained (Ba,Sr)TiO$_3$ films (27, 28). These strained SrTiO$_3$ films grown on (110) DyScO$_3$ substrates show a tunability of the dielectric constant at room temperature of 82% at 10 GHz (20) and dielectric constant maxima near 20,000 at 500 Hz (99).

An example of the structural perfection possible in strained ferroelectric films is shown in Figure 14, in which the rocking-curve full width at half maximum (FWHM) of (a) strained SrTiO$_3$ films and typical commercial SrTiO$_3$ single crystals and (b) strained BaTiO$_3$ films and commercial BaTiO$_3$ single crystals are compared. With
Figure 11

In-plane dielectric constant (ε_r) and dielectric loss ($\tan \delta$) in strained epitaxial (001)$_p$-oriented SrTiO$_3$ films as a function of temperature at a measurement frequency, f of 10 GHz. Panels a and b contrast in-plane ε_r and $\tan \delta$, respectively, of 500-Å-thick SrTiO$_3$(110) DyScO$_3$ and SrTiO$_3$(100) (LaAlO$_3$)$_{0.29}$-(Sr$_{1/2}$Al$_{1/2}$TaO$_3$)$_{0.71}$ (LSAT) epitaxial films grown by molecular-beam epitaxy (MBE). These nearly coherent films are under $\varepsilon_s = +0.9\%$ biaxial tensile and $\varepsilon_s = -0.9\%$ compressive strain, respectively. The simultaneous peak in ε_r and $\tan \delta$ indicates that the T_C of (001)$_p$ SrTiO$_3$ under biaxial tension of $\varepsilon_s = +0.9\%$ is ~ 293 K. The inset in a shows a Curie-Weiss fit to $1/\varepsilon_r$. The shaded region in a corresponds to the expected value of the in-plane ε_r for a (001)$_p$ SrTiO$_3$ film coherently strained to LSAT ($\varepsilon_s = -0.9\%$), on the basis of thermodynamic analysis and the range of relevant reported property coefficients for SrTiO$_3$. Subpanels a and b are from Reference 20. (c) Hysteresis loops measured at room temperature (black) and in liquid nitrogen at 77 K (red). The large slope is due to uncorrected parasitic capacitance. Panel c is reprinted from Reference 99, with permission; copyright 2006, American Institute of Physics.
rocking-curve widths as narrow as 7 arc s (99), these epitaxial SrTiO\(_3\)/DyScO\(_3\) films not only have the highest structural quality ever reported in heteroepitaxial films of any oxide grown by any technique but even have better structural perfection than do SrTiO\(_3\) single crystals (100, 101). Similarly, the growth of BaTiO\(_3\) films on GdScO\(_3\) substrates has achieved films with narrower rocking curves than do BaTiO\(_3\) single crystals (21). This structural perfection arises from the excellent structural perfection of commercially available \(R\)ScO\(_3\) substrates (61); they are grown by the Czochralski method, which is not applicable to either SrTiO\(_3\) or BaTiO\(_3\). The rocking-curve widths of these strained films are within instrumental error identical to those of the substrates upon which they are grown.

Strained (001)\(_p\) PbTiO\(_3\) and (001)\(_p\) Pb(Zr\(_x\)Ti\(_{1-x}\))O\(_3\) Films

Figure 12 shows the thickness dependence of fully coherent (001)\(_p\) PbTiO\(_3\) films grown on (100) SrTiO\(_3\). In the absence of any thickness dependence, the nearly
Figure 13

Temperature dependence of the lattice parameters of single-crystal BaTiO$_3$ and strained BaTiO$_3$ thin films grown by MBE on DyScO$_3$ and GdScO$_3$ substrates. The in-plane and out-of-plane lattice constants of the BaTiO$_3$ thin films and underlying substrates are shown. The change in slope at high temperature signals a phase transition. The error bars (± standard deviation) of the measured lattice constants are shown at the left edge of each curve. The measured values of the out-of-plane spacing of biaxially strained BaTiO$_3$ are compared with theoretical predictions with (solid line) and without (dashed line) a ferroelectric transition. Figure from Reference 21.

1% biaxial compressive strain of this system is predicted to increase T_C by approximately 260°C for perfectly coherent (001)$_b$ PbTiO$_3$/SrTiO$_3$. This enhancement is approached in the thicker films, but for thin films a clear reduction of T_C is evident. This result shows that in addition to strain and electrical boundary conditions (31–36) size also has a dramatic influence on ferroelectric properties (33–35, 67, 103).

A system that has been extensively studied experimentally is (001)$_b$-oriented Pb(Zr$_x$Ti$_{1-x}$)O$_3$ deposited onto (100) SrTiO$_3$, with x chosen from within the tetragonal region of the phase diagram, 0 ≤ x ≤ 0.52 (34, 103–105). Several reasons account for the popularity of the (001)$_b$ Pb(Zr$_x$Ti$_{1-x}$)O$_3$ system. First, it is possible to synthesize very-high-quality epitaxial (001)$_b$ Pb(Zr$_x$Ti$_{1-x}$)O$_3$ films on (100) SrTiO$_3$ substrates with the Pb(Zr$_x$Ti$_{1-x}$)O$_3$ film under biaxial compressive strain. This tends to force the ferroelectric polarization to be out of the substrate plane, which is the orientation that is most straightforward to probe by most methods. Furthermore, the Pb(Zr$_x$Ti$_{1-x}$)O$_3$ ferroelectric phase transition occurs at convenient temperatures in the bulk (although T_C is dependent on x), and the spontaneous polarizations and strains of Pb(Zr$_x$Ti$_{1-x}$)O$_3$ are large.
SrTiO$_3$ crystal
BaTiO$_3$ film (1000 Å)
SrTiO$_3$ crystal (FZ) 391 arc s
7 arc s
SrTiO$_3$ crystal 63 arc s
SrTiO$_3$ film (350 Å) 319 arc s

Figure 14
(a) Rocking curves and full width at half maximum (FWHM) of three commercial SrTiO$_3$ single crystals [one grown by floating zone (FZ) and two grown by flame fusion] showing the variation in structural quality together with an epitaxial 350-Å-thick SrTiO$_3$/DyScO$_3$ film grown by MBE at 650°C under biaxial tension of $\varepsilon_s = +1.1\%$. Adapted from Reference 102.
(b) Rocking curves and FWHM of a commercial BaTiO$_3$ single crystal and an epitaxial 1000-Å-thick BaTiO$_3$/GdScO$_3$ film grown by MBE at 650°C under biaxial compression of $\varepsilon_s = -1.0\%$.

Strained (001)$_p$ BaTiO$_3$ Films

The ferroelectric properties of BaTiO$_3$ thin films have been dramatically enhanced through the use of biaxial compressive strains up to 1.7% imposed by coherent epitaxial film growth on ReScO$_3$ substrates (21). In addition to a significant increase in the remanent polarization (P_r), T_C was increased by nearly 500°C (21). To establish T_C, a combination of techniques was employed because of the high temperatures involved and the electrical leakage of the thin BaTiO$_3$ films at high temperatures. The conventional test for ferroelectricity, hysteresis measurements, was used at room temperature to establish ferroelectricity. Then, SHG and the temperature dependence of the out-of-plane lattice parameter were measured from the temperature of the hysteresis loops to where kinks were seen in the temperature-dependent XRD (Figure 13) and SHG (Figure 10) to establish T_C. The temperatures seen by both methods were in agreement with each other and with the predictions of thermodynamic analysis (21).

The resulting ferroelectric properties are comparable to those exhibited by unstrained Pb(Zr$_x$Ti$_{1-x}$)O$_3$, but in a more environmentally benign composition that is free of lead. These results demonstrate how strain can be used as a route to a lead-free ferroelectric for device applications, e.g., nonvolatile memories and electro-optic devices.
Epitaxy: the growth of a film on a substrate whereby the arrangement of the atoms in the film is inherited from the arrangement of the atoms in the underlying substrate

MBE: molecular-beam epitaxy

MOCVD: metalorganic chemical vapor deposition

FERROELECTRIC SUPERLATTICES: THEORY AND EXPERIMENTS

Thin film techniques offer powerful ways to assemble new materials, including metastable ones, that cannot be made by other methods. For single-layer films, metastable materials may be accessed through epitaxial stabilization (106–108). Here appropriate substrates are chosen to provide an interfacial free energy bias that for sufficiently thin films can overcome the volume free energy differences between polymorphs to make a desired metastable form have the lower total free energy (volume + interfacial free energies). In multilayer films the tremendous difference between the diffusion coefficient at the surface of the growing thin film compared with the much lower diffusion coefficient within the bulk of the film, including buried interfaces, makes it possible to make two-phase mixtures of end-member phases, in which in bulk solid solutions would exist. This is employed in the synthesis of many compound semiconductor device structures (7), e.g., AlAs/GaAs heterostructures, which are metastable heterostructures because their solid solution has a lower free energy over their entire composition range (109, pp. 126, 130). Similarly, heterostructures involving ferroelectrics such as PbTiO3/SrTiO3 or BaTiO3/SrTiO3 are metastable; it is energetically favorable for these oxides to dissolve into each other, forming (Pb,Sr)TiO3 and (Ba,Sr)TiO3 solid solutions (110; 111, p. 195). As Figure 15 shows, the interface abruptness and layer thickness control of today's oxide superlattices involving ferroelectrics (34, 68–74) are comparable to what has become commonplace for AlAs/GaAs superlattices grown by molecular-beam epitaxy (MBE) (112) and metalorganic chemical vapor deposition (MOCVD) (113).

Superlattices consisting of a periodic stacking of thin ferroelectric and nonferroelectric perovskite layers have been predicted (75, 114–117) or reported (25, 30, 71, 72, 118–121) to possess many improved physical properties over homogeneous thin films of the same compositions. Among the improved properties are reported enhancements of dielectric constants and P_r in short-period two-component (118, 120, 121) and three-component (72) superlattices. Such reports need to be
carefully evaluated because the movement of space charge in the superlattices can spuriously produce an apparent significant enhancement of dielectric constant (122, 123). The improved properties, however, could result from the large lattice mismatch, leading to huge strains for commensurate epitaxial growth (72, 118, 120, 121).

Layered heterostructures including superlattices are just one type of epitaxial composite involving ferroelectrics. Epitaxial heterostructures that make use of phase separation to form connectivities beyond the 2-2 connectivity (124) of superlattices are also being explored by thin film techniques. These include 1-3 epitaxial nanocomposites involving pillars of magnetic oxides in a ferroelectric matrix (125) or pillars of ferroelectric oxides in a magnetic matrix (126). Such heterostructures are being explored in ferroelectric systems to enhance the coupling between ferroelectric and magnetic oxides and thus form artificial magneto-electric heterostructures.

Artificially layered ferroelectric superlattices have enormous appeal from both a technological and a fundamental standpoint. The degree of control that can be achieved with modern deposition techniques is astounding, and superlattices with essentially perfect interfaces and single-unit-cell constituent layers are well within our grasp. In terms of technology, ferroelectric superlattices with appropriate electrical and mechanical boundary conditions hold the potential of tailoring ferroelectric properties precisely for an application. There are some indications that under certain circumstances the properties of a superlattice of two or more materials may be far superior to the parent materials from which they have been fabricated.

Crucial to the enlightened (non-Edisonian) synthesis of superior materials is an understanding of how the properties of the resulting superlattice material are related to those of the parent materials used. In superlattices in which the in-plane lattice parameter of all the constituents is constrained to that of the underlying substrate, the primary interaction that determines the overall properties of the superlattice seems to be electrostatic; the principal consideration is the minimization of polarization mismatch between layers, any mismatch giving rise to very high electrostatic energy penalties (116). This does not restrict the possibility of strain engineering, as the elastic constraint imposed by the substrate is an important factor in determining the orientation of the polarization in the superlattice layers and thus has a dramatic effect on the properties of the superlattice. Similarly, should a superlattice suffer relaxation owing to misfit dislocations, changes in the orientation of the polarization can arise, as seen in the SrTiO$_3$ layers of relaxed BaTiO$_3$/SrTiO$_3$ superlattices (127, 128). Beyond the commercial appeal of precisely tailored exceptional materials, these systems also allow an extraordinary opportunity for the exploration of the fundamentals of ferroelectricity. In essence, one can produce a system whose physics is defined by ultrathin components and interfaces, but with a larger total sample size allowing simple, precise characterization and a detailed exploration of the physics of ferroelectricity in strained ultrathin systems.

(001)$_p$ PbTiO$_3$/SrTiO$_3$ Superlattices

PbTiO$_3$/SrTiO$_3$ is an attractive combination: At room temperature the in-plane lattice parameter of (001) PbTiO$_3$ is an excellent match to the cubic lattice parameter
of (001) SrTiO$_3$, allowing straightforward coherent growth of a (001) PbTiO$_3$/SrTiO$_3$ superlattice on a conducting Nb-doped (100) SrTiO$_3$ substrate. Owing to the similarities between the materials in the superlattice we can expect all interactions besides electrostatics to be minimized. To test this idea, Dawber et al. (73) fabricated a number of such PbTiO$_3$/SrTiO$_3$ superlattices, using off-axis radio frequency magnetron sputtering in which the PbTiO$_3$ layer thickness was varied while the SrTiO$_3$ layer thickness was maintained at three unit cells. The average c-axis lattice parameter was measured via XRD and used as a probe of the ferroelectric polarization. In thin films, as the film thickness is decreased, imprecision is introduced as the diffraction peak is broadened, owing to the finite thickness of the film. Bearing this and the reduction in signal strength in mind, determination of the tetragonality of the film is possible but takes a great deal of time and care. In contrast, for superlattices, although it is difficult to extract the individual lattice parameters of the constituent layers, the average lattice parameter is easily and accurately extracted from XRD measurements. When the PbTiO$_3$ layer is thicker than the SrTiO$_3$ layer, electrostatics can describe the behavior of the system well; electrostatics forces the polarization in both layers to be similar and decreases the magnitude of the polarization as the PbTiO$_3$ volume fraction is reduced (73). For samples in which the PbTiO$_3$ layer is thinner than the SrTiO$_3$ layer, however, the polarization is seen to recover strongly. PFM measurements have confirmed this result (73). The ability to use PFM is another appeal of studying the effect of strain on very thin ferroelectric layers in superlattices; thin films of only a few-unit-cell total thickness are too thin to be electrically written and probed by PFM, but there is no such problem for a superlattice, whose total thickness can be chosen to suit the measurement while extremely thin constituent layers are maintained.

Through the use of an electrostatic model, it was found that, as in constrained (001)$_p$ BaTiO$_3$/SrTiO$_3$ superlattices (116, 128), much of the behavior in constrained (001)$_p$ PbTiO$_3$/SrTiO$_3$ superlattices (73) could be understood via the concept that the two materials are forced to have similar polarizations because of the electrostatic energy cost involved in having different polarizations in the adjacent layers. The magnitude of the polarization is then determined by the balance between the energy cost or benefit of polarization of the two materials. The anomalous recovery cannot be understood on this basis and furthermore did not appear in full first-principles simulations of (001)$_p$ PbTiO$_3$/SrTiO$_3$ superlattices. This suggests that closer attention needs to be paid to aspects that do not appear naturally in these theoretical approaches, such as the exact nature of the interfaces in the system (both those between superlattice layers and also the substrate-superlattice interface), conduction processes, the possibility of the formation of new entropically stabilized phases similar to that predicted to occur under negative hydrostatic pressure by Tinte et al. (129), or the formation of multiple domains (130).

B) (001)$_p$ BaTiO$_3$/SrTiO$_3$ Superlattices

(001)$_p$ BaTiO$_3$/SrTiO$_3$ superlattices have also been extensively studied to investigate the effect of strain on thin layers of the ferroelectric BaTiO$_3$. In a recent study (74), these superlattices were grown on (100) SrTiO$_3$ substrates, and the (001)$_p$...
Figure 16

\(\theta-2\theta \) X-ray diffraction scan of a \((\text{BaTiO}_3)_{1}/(\text{SrTiO}_3)_{13}\) superlattice grown on (100) \text{SrTiO}_3. The substrate peaks are marked by asterisks (*), and the superlattice peaks are indexed according to the out-of-plane repeat wavelength \((\text{BaTiO}_3)_{1}/(\text{SrTiO}_3)_{13} \) \((n = 1 \text{ and } m = 13)\), which was repeated 20 times to form the superlattice.

The \text{BaTiO}_3 layer in the superlattice was varied from 1 to 8 unit cells in thickness, whereas the \((001)\) \text{SrTiO}_3 spacer layer thickness was fixed to be either 4 unit cells or 13 unit cells thick. These superlattices can be denoted by \((\text{BaTiO}_3)_n/(\text{SrTiO}_3)_m\), where \(n\) and \(m\) refer to the thickness, in unit cells, of the \((001)\) \text{BaTiO}_3 and \((001)\) \text{SrTiO}_3 layers, respectively. The regularity of these superlattices grown by MBE is demonstrated by the presence and sharpness of all of the superlattice reflections in their XRD patterns. Figure 16 shows an example of the \((\text{BaTiO}_3)_1/(\text{SrTiO}_3)_{13}\) superlattice studied, with \(n = 1\) and \(m = 13\).

Characterizing the resulting superlattices by UV Raman \((a)\) made it possible to confirm the prediction that the unstrained \text{SrTiO}_3 layer in these superlattices is polarized owing to the electrostatic effect described above and \((b)\) enabled the \(T_C\) of the ferroelectric superlattice to be established. Figure 17 shows \(T_C\) as a function of \(n\) for a series of superlattices with \(m = 4\) and \(m = 13\), together with two different phase-field models of these superlattices. When the phase-field model is limited to a single-domain assumption (dashed lines in Figure 17), the agreement between theory and experiment is good for \(m = 4\) but poor for \(m = 13\). Put another way,
Figure 17
The dependence of T_C on n and m in $(\text{BaTiO}_3)_n/(\text{SrTiO}_3)_m$ superlattices. The blue symbols are for $m = 4$, and red symbols are for $m = 13$. T_C was determined by UV Raman (closed symbols) and temperature-dependent X-ray diffraction (XRD) (open symbols) measurements. A phase-field model with a single domain assumption yields the dashed curves. The solid lines are from full three-dimensional phase-field calculations. The T_C of bulk unstrained BaTiO$_3$ is also shown (adapted from Reference 74).

the (001)$_p$ BaTiO$_3/(001)_p$ SrTiO$_3$ superlattices show disagreement with theory when the BaTiO$_3$ layer is thinner than the SrTiO$_3$ layer, just as was seen for the (001)$_p$ PbTiO$_3/(001)_p$ SrTiO$_3$ superlattices described above. First-principles calculations also operate under a single-domain assumption because of the limited number of atoms in the calculation. When a full three-dimensional phase-field simulation is performed (solid lines in Figure 17), the agreement between theory and experiment becomes good for both $m = 4$ and $m = 13$ over the entire range. These calculations indicate that the low-energy configuration is a multiple-domain state, which allows the polarization in the (001)$_p$ SrTiO$_3$ layers to drop considerably when the (001)$_p$ BaTiO$_3$ layer is much thinner than the (001)$_p$ SrTiO$_3$ layer and results in a significant increase of T_C compared with the single-domain state (74).

With full first-principles methods, it is currently possible to investigate superlattices of up to approximately period 10, yielding full microscopic information about the atomic and electronic structure, polarization, zone-center phonons, and dielectric response. Systems for which results have been reported include BaTiO$_3$/SrTiO$_3$ (116, 128), PbTiO$_3$/SrTiO$_3$ (73), and an assortment of two-component and three-component systems containing CaTiO$_3$, SrTiO$_3$, and BaTiO$_3$, with varying epitaxial strain (75). Some interesting features emerge. For example, superlattices of even a single-unit-cell-thick layer of BaTiO$_3$ and PbTiO$_3$ with SrTiO$_3$ have a ferroelectric ground state. These predictions have been verified experimentally (73, 74). With a 1×1 lateral supercell and $P4mmm$ symmetry, CaTiO$_3$ has a polarization even larger than that of BaTiO$_3$, resulting from the suppression of the oxygen
octahedral rotational and tilting instabilities (75). This latter feature is strongly dependent on a sufficient thickness of the CaTiO$_3$ layer, with a single layer showing no significant polarization.

On the basis of these results, a class of simple models has been developed. The starting point is to treat the component layers as bulk materials under the appropriate mechanical and electrical boundary conditions (73, 116). The effects of in-plane epitaxial strain are obtained from first-principles calculations for bulk material with constrained lattice vectors (131). The full first-principles results so far obtained for PbTiO$_3$ (132), SrTiO$_3$ (133), BaTiO$_3$ (78), and BiFeO$_3$ (134) have been extended to an additional five perovskite oxides through the use of a parameterized form for the total energy (135). The in-plane strain leads to changes in the unconstrained lattice vectors; for example, compressive in-plane strain increases the tetragonality of $P4mm$ BaTiO$_3$. A characteristic property of perovskites, although not of all ferroelectric oxides (136), is that the change in strain state is strongly coupled to changes in the polarization. For example, for compressed BaTiO$_3$ an increase in tetragonality produces a substantial increase in the in-plane polarization. In the superlattice, the local polarization of each unit-cell layer is defined through the use of the atomic displacements from a centrosymmetric reference structure and Born effective charges. Considerations of electrostatic energy dominate, favoring superlattices with zero macroscopic electric field and a constant normal component of the polarization; the energy cost of nonzero fields can be obtained by first-principles computations of bulk materials (137, 138) in nonzero electric fields. The most stable superlattice structures thus are those that have low in-plane lattice mismatch and good polarization matching. Strain-enhanced polarization can be readily achieved; BaTiO$_3$/SrTiO$_3$ superlattices on SrTiO$_3$ substrates show polarizations above bulk BaTiO$_3$ for BaTiO$_3$ content of greater than 50% (116). A phase-field approach by solving the coupled micromechanics, electrostatics, and equilibrium equation for the polarization distribution predicts the transition temperatures and polarization distributions for a number of BaTiO$_3$/SrTiO$_3$ superlattices, which are in excellent agreement with the measured values from UV Raman spectroscopy (74). Superlattice strain and fields can also stabilize nonbulk phases, such as ferroelectric SrTiO$_3$ (20, 133). Thicker layers have been studied using interatomic potentials (77).

As the database of first-principles results grows, refinements to this basic model are suggested. In particular, the above example of constraining the symmetry of CaTiO$_3$ suggests a generalization to a model of interacting unit-cell layers (117). For three-component superlattices, additional terms sensitive to the relative orientation of the polarization and the interface can be added to reproduce the up-down asymmetry in the polarization associated with the inversion symmetry breaking (115). Depending on the materials combinations, the interfaces may involve nonbulk atomic and electronic rearrangement and require additional modeling. Energy associated with atomic-scale bonding arrangements in the interface may in some configurations be sufficient to dominate over the electrostatic and strain energies, especially with ultrathin layers in which the interface density is high. Identification and investigation of relevant materials combinations would guide the development of interface terms in such cases.
APPLICATION OPPORTUNITIES

Although the focus of this review has been on scientific challenges, many important applications are moving toward the utilization of ferroelectric constituents that are truly nanoscale. Examples include tunable dielectrics for which degradation in interface behavior severely impacts performance, high-density nonvolatile memories that can be scaled for deep submicron cell sizes, and ferroelectric storage media for scanning probe–based memories (34, 103).

The significant enhancements in T_C and P_r in strained ferroelectrics can be used in applications suited for thin ferroelectric films (for which large strains to enhance T_C and P_r can be achieved without film cracking). Ferroelectric random-access memory (FeRAM) are one such application for the introduction of more environmentally benign ferroelectrics that attain the properties of current bulk ferroelectric materials via strain. The major disadvantages of the two materials most widely being pursued for FeRAM (139), Pb(Zr,Ti)O$_3$ and SrBi$_2$Ta$_2$O$_9$, are (a) the volatility of the lead and bismuth constituents of these materials, which complicates their introduction into semiconductor fabrication facilities, and (b) environmental issues associated with the toxicity of lead. The potential of strain to enhance a lead-free ferroelectric composition is just beginning to be explored, but the ferroelectric properties of strained BaTiO$_3$ are already suitable for ferroelectric memory applications (21), provided these properties can be achieved on technologically important substrates, e.g., silicon.

Although the structural quality of perovskite films grown on semiconductor substrates is far from the quality of perovskites grown on perovskite substrates, significant improvements have been made over the past two decades since perovskites were first epitaxially integrated with semiconductors (140). There are now several routes for the epitaxial integration of perovskites with semiconductors including (100) Si (140–142), (100) Ge (142), (100) GaAs (143, 144), and (0001) GaN (145, 146). Via these means, a multitude of ferroelectrics, with conducting top and bottom electrodes when desired, have been epitaxially integrated with semiconductor materials (140, 142, 145, 146). This capability may play a significant role in future hybrid devices.

The emerging experimental and theoretical capabilities in short-period superlattices open up promising avenues to design and create new artificially structured materials with unprecedented properties. With modeling of first-principles results, it is possible to search a large parameter space of materials and layer-thickness sequences to identify nontrivial candidates to produce, optimize, or tune desired properties. Extending the exploration of the strain-electric-field phase diagrams to more materials will lead to the identification of nonbulk phases by appropriate boundary conditions, for example, highly polar states of bulk paraelectrics, ferroelectric states for bulk antiferroelectric or antiferrodistortive compounds, and low-symmetry monoclinic or triclinic polar states with large dielectric and piezoelectric responses. Even more novel behavior can be obtained by pursuing the investigation of distinctive interfaces, with order parameters distinct from the surrounding matrix, and by building up superlattice materials in which interface properties dominate. Layer sequences that lack inversion symmetry in superlattices give freedom in tailoring gradients of the polarization that can be tuned by the choice of sequence details. The inclusion of solid
solutions as superlattice components will become feasible, with the possibility of accessing nonbulk compositions through the use of epitaxial stabilization (106–108). Novel magnetic behavior can also be expected; magnetic ordering could be stabilized in bulk nonmagnetic materials under the electrical and mechanical boundary conditions of the superlattice. There is also increasing interest in the incorporation of magnetic materials into the superlattice. First-principles studies of magnetic ferroelectric oxides, such as hexagonal manganites (147, 148), have been demonstrated to be accurate and are ripe for extension to predicting the behavior of superlattices. These strategies may provide a path to enhance magnetic ferroelectrics with entirely new coupling mechanisms between the magnetic and ferroelectric order parameters, allowing switching to occur by spin-phonon interactions rather than elastic interactions (149).

Strong coupling between the magnetic and ferroelectric order parameters via a spin-phonon interaction was recently predicted to occur in appropriately strained EuTiO$_3$ (150). Although unstrained EuTiO$_3$ is paraelectric and antiferromagnetic at low temperatures, first-principle calculations indicate that (001)$_b$ EuTiO$_3$ under a biaxial compressive strain of \sim1% EuTiO$_3$ is on the verge of a transition to a ferroelectric and ferromagnetic state. For such strained EuTiO$_3$ films, the application of a modest electric field of order 10^5 V cm$^{-1}$ is predicted to induce ferromagnetism with a magnetization of 7 μ_B per europium atom. Similarly, the application of a modest magnetic field of order 1 T is predicted to induce ferroelectricity with a spontaneous polarization of \sim10 μC cm$^{-2}$ (150). The predicted coupling between the magnetic and ferroelectric order parameters in this strain-enabled material is orders of magnitude larger than any known multiferroic and a fantastic opportunity for strain tuning.

SUMMARY POINTS

1. Percent-level strains can have a tremendous effect on the properties of ferroelectric thin films and superlattices. They can make materials that are not ferroelectric at any temperature ferroelectric. They can enhance T_C by hundreds of degrees and simultaneously enhance P_s.

2. Although bulk ferroelectric oxides normally break long before they are strained to percent levels, such strains are readily applied to ferroelectric thin films through the use of epitaxy on appropriate substrates.

3. The maturity, power, and complementary nature of theoretical approaches, including first principles, thermodynamic analysis, and phase-field models, to accurately predict the properties of strained ferroelectrics bode well for the future of theory-driven research in this area. The huge changes in properties resulting from strain, first quantitatively predicted by theory, have been borne out in experiment. Also in agreement with theory is the observation of ferroelectricity in superlattices containing layers of bulk ferroelectric materials just one unit cell in thickness, provided that appropriate mechanical and electrical boundary conditions are met.
4. A broad range of suitable substrates that are appropriate for ferroelectric thin film and superlattice growth have been developed, with good progress toward large-size, commercially viable solutions. Advances in ferroelectric film deposition have led to materials with excellent structural and electrical properties.

FUTURE ISSUES
1. Improved theory is needed to (a) provide an understanding of the effects of strain and defects on coercive field and switching dynamics and (b) allow the huge parameter space of composition, strain, layer thickness, and gradients that are possible on an atomic-layer level in modern multilayer heterostructures to be intelligently navigated to enable a new era of theory-driven research yielding improved materials for society.

2. Improved substrates and film synthesis techniques are necessary to customize the strain and composition in ferroelectric films and superlattices with greater precision and allow a multitude of new directions to be explored: all-interface systems, new epitaxially stabilized artificial materials, and exotic polarization states, e.g., by clamping CaTiO$_3$ and preventing its octahedra from rotating.

3. Improved characterization tools—nanofocused and time-resolved XRD, time-resolved electron microscopy, and ultrafast SPM—are crucial to locally study switching dynamics in strained ferroelectrics.

4. Improved devices exploiting these advances are key to transition these benefits to society. Such devices include strained ferroelectrics with enhanced nonlinear optical coefficients for modulators; strain-enhanced ferroelectrics that offer breakthrough electromechanical performance for nanoscale actuation and sensing; strain-enhanced ferroelectrics that are simultaneously ferromagnetic for dual electric- and magnetic-field-tunable microwave and optical devices; strain-enhanced antiferroelectrics for improved energy storage; and more environmentally benign strain-enhanced ferroelectric compositions that can replace lead-containing ferroelectric in applications for improved health and safety.

ACKNOWLEDGMENTS
We gratefully acknowledge our colleagues and collaborators for sharing their insights and helping us to explore and better understand the exciting area of strained ferroelectric thin films. We especially thank P. Aebi, A. Antons, O. Auciello, G.R. Bai, M.D. Biegalski, D.H.A. Blank, E. Bousquet, C.D. Brandle, A. Bruchhausen, C. Bungaro, A. Cantarero, M. Cantoni, W. Chang, Y.B. Chen, K.J. Choi, S. Choudhury, H.-M. Christen, F. Clerc, B. Craigo, L.E. Cross, M. Dawber, L. Despont, O. Diéguez,

LITERATURE CITED

www.annualreviews.org • Strained Ferroelectric Thin Films

85. Misirlioglu IB, Vasiliev AL, Alpay SP, Aindow M, Ramesh R. 2006. Defect microstructures in epitaxial PbZr$_{0.7}$Ti$_{0.3}$O$_3$ films grown on (001) SrTiO$_3$ by pulsed laser deposition. *J. Mater. Sci.* 41:697–707

622 Schlom et al.

113. Thoma S, Cerva H. 1994. Comparison of the information content in (110)- and (100)-projected high-resolution transmission electron microscope images for the quantitative analysis of AlAs/GaAs interfaces. *Ultramicroscopy* 53:37–51

RELATED RESOURCES
Contents

MATERIALS CHARACTERIZATION

Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants
Jerôme Chevalier, Laurent Gremillard, and Sylvain Deville .. 1

Single-Molecule Micromanipulation Techniques
K. C. Neuman, T. Lionnet, and J.-F. Allemand .. 33

Spin-Polarized Scanning Tunneling Microscopy of Magnetic Structures and Antiferromagnetic Thin Films
Wulf Wulfhekel and Jürgen Kirschner ... 69

Microscale Characterization of Mechanical Properties
K. J. Hemker and W. N. Sharpe, Jr. .. 93

Three-Dimensional Atom-Probe Tomography: Advances and Applications
David N. Seidman .. 127

The Study of Nanovolumes of Amorphous Materials Using Electron Scattering
David J. H. Cockayne .. 159

Nanoscale Electromechanics of Ferroelectric and Biological Systems:
A New Dimension in Scanning Probe Microscopy
Sergei V. Kalinin, Brian J. Rodriguez, Stephen Jesse, Edgar Karapetian, Boris Mirman, Eugene A. Eliseev, and Anna N. Morozovska ... 189

AFM and Acoustics: Fast, Quantitative Nanomechanical Mapping
Bryan D. Huey .. 351

Electron Holography: Applications to Materials Questions
Hannes Lichte, Petr Formanek, Andreas Lenk, Martin Linck, Christopher Matzeck, Michael Lehmann, and Paul Simon ... 539

Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction
Anthony D. Rollett, S.-B. Lee, R. Campman, and G.S. Robrer 627
Atom Probe Tomography of Electronic Materials
Thomas F. Kelly, David J. Larson, Keith Thompson, Roger L. Alvis,
Joseph H. Bunton, Jesse D. Olson, and Brian P. Gorman 681

Electron Holography: Phase Imaging with Nanometer Resolution
Martha R. McCartney and David J. Smith .. 729

FERROELECTRICS AND RELATED MATERIALS, David R. Clarke
and Venkatraman Gopalan, Guest Editors

Atomic-Level Simulation of Ferroelectricity in Oxides: Current Status
and Opportunities
Simon R. Phillpot, Susan B. Sinnott, and Aravind Asthagiri 239

Ferroelectric Domain Breakdown
Michel Molotskii, Yossi Rosenwaks, and Gil Rosenman 271

Local Structure of Ferroelectric Materials
T. Egami .. 297

Terahertz Polaritonics
T. Feurer, Nikolay S. Stoyanov, David W. Ward, Joshua C. Vaughan,
Eric R. Statz, and Keith A. Nelson .. 317

Spiral Magnets as Magnetoelectrics
T. Kimura ... 387

Universal Domain Wall Dynamics in Disordered Ferroic Materials
W. Kleemann ... 415

Defect–Domain Wall Interactions in Trigonal Ferroelectrics
Venkatraman Gopalan, Volkmar Dierolf, and David A. Scrymgeour 449

Influence of Electric Field and Mechanical Stresses on the Fracture of
Ferroelectrics
Gerold A. Schneider ... 491

Strain Tuning of Ferroelectric Thin Films
Darrell G. Schlom, Long-Qing Chen, Chang-Beom Eom, Karin M. Rabe,
Stephen K. Streiffer, and Jean-Marc Triscone 589

Ferroelectric Epitaxial Thin Films for Integrated Optics
Bruce W. Wessels ... 659

Index
Cumulative Index of Contributing Authors, Volumes 33–37 769

Errata
An online log of corrections to Annual Review of Materials Research chapters (if any,
1997 to the present) may be found at http://matsci.annualreviews.org/errata.shtml