
Fundamental Modes and Abrupt Changes in North Atlantic 

Circulation and Climate over the last 60 ky– Concepts,

Reconstruction and Numerical Modeling

Michael Sarnthein1, Karl Stattegger1, Derek Dreger1,2, Helmut Erlenkeuser3,
Pieter Grootes3, Bernd J. Haupt1,2, Simon Jung2,4, Thorsten Kiefer1, Wolfgang

Kuhnt1, Uwe Pflaumann1, Christian Schäfer-Neth2, Hartmut Schulz1,5,
Michael Schulz1,2, Dan Seidov1,6, Johannes Simstich1,2, Shirley van Kreveld1,

Elke Vogelsang1,2, Antje Völker1,2 and Mara Weinelt1,2

Abstract: Centennial- to millennial-scale changes in global climate over the last 60 ky were first
documented in ice cores from Greenland, with ice sheets around the North Atlantic and its thermo-
haline circulation (THC) as prime candidates for a potential trigger mechanism. To reach a new
quality in understanding the origin and causal links behind these changes, two strategies were inti-
mately tied together in this synthesis, high-resolution 3-D ocean modeling and paleoceanographic
reconstructions. Here, five time series with a time resolution of several decades and various time
slices of surface and deep-water paleoceanography were established from hundreds of deep-sea
cores for the purpose of monitoring rapid changes across the North Atlantic and testing or initiat-
ing model results. Three fundamental modes were found to operate Atlantic THC. Today, mode I
shows intensive formation of North Atlantic Deep Water (NADW) and strong heat and moisture
fluxes to the continents adjacent to the North Atlantic. Peak glacial mode II leads to a reduction in
NADW formation by 30–50%, in line with a clear drop in heat flux to Europe. The glacial Nordic
Seas, however, remain ice-free during summer and little influenced by meltwater, in contrast to the
sea west of Ireland, where iceberg meltwater blocks an eastbound flow into the Norwegian Sea and
induces a cold longshore current from Faeroe to the Pyrenees. The subsequent Heinrich 1 (H1)
meltwater mode III leads to an entire stop in NADW and intermediate-water production as well as
a reversed pattern of THC, stopping any heat advection from the central and South Atlantic to the
north. In contrast to earlier views, the Younger Dryas, possibly induced by Siberian meltwater,
began with mode I and ended with mode III, continuing into the Preboreal. Modeling the impact
of modes I to III on the global carbon budget, we find that the atmosphere has lost 34–54 ppmv
CO2 from interglacial to glacial times, but has gained 23–62 ppmv CO2 at the end of H1 within a
few decades, equivalent to 33–90% of modern, man-made CO2 release. The robust 1500-y Dans-
gaard-Oeschger (D-O) cycles and their multiples of as much as 7200 years, the Heinrich event cy-
cles, are tied to periodical changes between THC modes I / II and II / III. In the Irminger Sea rapid
D-O coolings are in phase with initial meltwater injections from glaciers on East Greenland, here
suggesting an internal trigger process in accordance with binge-purge models. Ice rafting from East
Greenland and Iceland occurs only 240–280 y later, probably inducing a slight sea-level rise and,
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Introduction

The Northern North Atlantic: Amplifier and 
Potential Trigger of Climate Variability

In contrast to the North Pacific, both the extension into
very high latitudes and the funnel-style narrow geo-
metry of the northern North Atlantic result in a bundle
of unique effects on the climate system. Here, warm sur-
face water originates from the Caribbean Sea via the
Gulf Stream and North Atlantic Drift. This inflow water,
which is more saline than anywhere else in the high-
latitude oceans, is finally advected to sites with extreme
cooling and deep-water formation, sites which mark the
onset and terminus of the Atlantic and global thermo-
haline circulation system (Fig. 1; Schmitz 1995). Deep-
water convection results in a huge release of heat and
moisture to the atmosphere, the Nordic “heat pump” of
Europe (Berger et al. 1987), which is partly based on
“heat piracy” (Berger and Wefer 1996) in the central 
and South Atlantic. The Arctic connection across the 
Barents shelf and the Fram Strait further enhances this
potential of high-latitude climatic forcing via Arctic
sea-ice export, freshwater advection from Siberian 
rivers, differential states of albedo linked to variable sea-
ice cover, and finally, by deep-water formation, current-
ly an important factor, on the Barents shelf. The features
and variability of modern oceanography in the northern
North Atlantic have recently been reviewed by Hopkins
(1991), Lozier et al. (1995), Dickson et al. (1996), Sy et
al. (1997) and Schäfer-Neth and Paul (this volume).
Some major structures relevant to this study are summa-
rized in Figure 1.

Different from the Southern Ocean, North Atlantic
deep-water formation follows a long-lasting exposure
of Atlantic surface water to the atmosphere and hence
leads to oxygen enrichment in the deep Atlantic, which
finally provides the principal oxygen source of the
global deep ocean (Bainbridge 1981). In addition, the
modern North Atlantic also forms an important sink for

CO2 transfer in deep water from the northern to the
southern hemisphere (Tans et al. 1990; Broecker and
Peng 1992).

The strong cooling induced by the Greenland ice
sheet results in a zonal temperature contrast unique to
the Nordic Seas. It has lasted, at least, over the last three
million years (Thiede et al. 1998; Jansen et al. 1996;
Henrich 1990). Over this time, the high latitudes of the
Greenland-Iceland-Norwegian (GIN) Seas and the ad-
jacent Eurasian landmass were particularly sensitive to
changes in summer insolation, that is, to Milankovitch
orbital forcing, as has been established for the nume-
rous major and minor glacial-to-interglacial cycles in
many studies (Thiede et al. 1998; Raymo et al. 1989;
Ruddiman et al. 1989; Ruddiman and McIntyre 1981;
Imbrie et al. 1992, 1993; Robinson and McCave 1994).
Variations in both atmospheric CO2 concentration and
the size of continental ice sheets via their crustal
isostasy are important in modifying the orbital perio-
dicities of climate. Many authors link the origin of
quasi-100-ky glacial cycles to these two variables, par-
ticularly since there is little insolation forcing in this
frequency band (e.g. Imbrie et al. 1993; Saltzman and
Verbitsky 1993).

What Makes the Last 60 ky Special?

The results presented here focus on climate variability
over the last 60 ky, that is, nearly half a 100-ky glacial
cycle, for a number of reasons:

(1) During this time, chronostratigraphic resolution
has reached a precision of decades to centuries in both
14C datings of marine sediments and annual layer counts
in polar ice records, back to more than 50 ky ago (ka).

(2) Based on ice-core records, the climate showed an
extreme natural variability over the time span 60–10 ka
(Dansgaard et al. 1993; Grootes and Stuiver 1997). 
Similar variations, but of smaller amplitude, were re-
cently discovered in marine and ice-core records from
the Holocene (Sirocko et al. 1996; Bond et al. 1997;
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in turn, Heinrich ice rafting from the Laurentian ice sheet during H1, H2, H4, H5. At H1 a major
surge from the Barents shelf has lagged initial cooling by 1500 y and entails the most prominent
and extended reversal in Atlantic THC over the last 60 ky (probably also at the end of glacial stage
4, at H6). Meltwater stratification in the Irminger Sea reaches its maximum only 640 y after ini-
tial meltwater injection and induces, via seasonal sea-ice formation, brine-water injections down
to 4 km water depth, signals leading the classic D-O jump to maximum warmth by only 125 y. It
may be inferred from this short-phase lag that brine water-controlled deep-water formation prob-
ably entrains warm water from further south, thereby forming the key trigger mechanism for the
final turn-on of the Atlantic THC mode II roughly within a decade (or mode I, in case of favorable
Milankovitch forcing).
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Fig. 1: Modern Atlantic thermohaline circulation, presented as a four-layer system (modified after Schmitz 1995; Dickson and Brown
1994; Schmitz and McCartney 1993). Numbers denote water transport in Sverdrups (1 million m3 per second). AABW = Antarctic
Bottom Water; IC = Irminger Current; LSD = Labrador Sea Water; MOW = Mediterranean Outflow Water; NAD = North Atlantic Drift;
NADW = North Atlantic Deep Water; NC = Norwegian Current; SSBW = Southern Source Bottom Water, a dilute derivative of AABW

U-Sarnthein Layout.qxd  06.11.2000 17:47 Uhr  Seite 367 [SFB-Synthesis book]



Wang et al. 1999). Great hemispheric temperature
changes probably took less than ten years (Dansgaard
et al. 1989; Alley et al. 1993). These short-term changes
imply various alternative “pacemakers”, such as pro-
cesses in the ocean and atmosphere, which remain 
poorly understood. In Table 1 an overview of current
prime objectives and alternative concepts in North
Atlantic paleoceanography is given. While three major
modes of Atlantic thermohaline circulation now appear
as basically established (Sarnthein et al.1994; Alley and
Clark 1999), the processes responsible for abrupt, that
is, on a scale of decades, changes in climate and on a
scale of centuries to millennia in climate periodicities,
remain generally unknown. This particularly applies to
questions of high vs. low latitude and external vs. in-
ternal forcing of changes in the ocean. The vast quan-
tity of new findings, arguments and controversial con-
ceptual models is partly listed in Table 1. It urgently
requires an up-to-date review and synthesis, the goal of
this paper.

(3) Finally, some technical constraints enforce a fo-
cusing of our high-resolution studies in the Nordic Seas
to the last 60 ky. Because of high concentrations of ice-
rafted debris (IRD) the length of sediment sections ob-
tained in conventional marine kasten and piston cores
rarely exceeds 7–9 m. These cores, retrieved from a total
of nearly 120 sites, provide a sound spatial and temporal
(spanning several decades) sampling density for pale-
oceanographic proxy data in the Greenland-Iceland-
Norwegian Seas, required as input for our numerical
modeling experiments. Only recently have a number of
ODP and IMAGES-CALYPSO cores overcome this
“magic” boundary in core length (Dreger 1999; Jansen
et al. 1998; Jansen et al. 1996; Thiede et al. 1996).

To improve our understanding of the complex cli-
matic modes and the external and internal forcing
mechanisms listed in Table 1, a “new quality” in the re-
construction of North Atlantic paleoceanographic time
series and time slices, which each represent extreme
climatic states, has been attempted. In particular, two
different strategies were inherently interrelated, (1) the
generation of space filling (Fig. 2) and ultrahigh-reso-
lution, quantitative proxy data which serve for either
model boundary conditions or an appropriate valida-
tion of the model output, and (2) high-resolution
(0.5–1.0°) three-dimensional (3-D) ocean modeling
(Fig. 3 /Table 3).

Both the initialization of these numerical models
and the calibration of paleoceanographic proxy data are
based on the modern ocean temperature and salinity
data set of Levitus et al. (1994) and Levitus and Boyer
(1994). These data were modified by Seidov et al.

(1996) to cope with the loss of important fine structures
in the Levitus data such as the Polar Front, a loss large-
ly due to gridding long-term data series. For recent and
more precise calibrations of the δ18O signal of plank-
tonic foraminifera, the new superior “Hydro-Base”
data set (Curry 1996; Lozier et al.1994; Simstich 1998)
was employed. The data base for the proxy data used
in this paper is outlined in Figure 4. More details on 
the transfer functions, quality and error ranges of the
proxy data are given by Weinelt et al. (this volume). 
All proxy data are stored in the PANGAEA data bank
<http://www.pangaea.de>.

Records and Mechanisms of Climatic Change
on a Scale of Millennia to Centuries

The Ice-Core Record

The Milankovitch orbital cycles (Berger and Loutre
1991; Koç and Jansen 1994; Stoner et al. 1998) set the
stage for the pronounced and global climate variability
observed on time scales of decades to millennia. Such
variability reaching back to 110,000 y B.P. was first
demonstrated convincingly in the twin ice cores from
the Greenland summit (Dansgaard et al. 1993; Grootes
et al. 1993; Taylor et al. 1993). Counting of annual
layers in the GISP2 ice core provided age control back
to 50,000 years B.P. (Meese et al. 1994; Bender et al.
1994). Brief but large climate fluctuations, with warm
phases lasting from approximately one hundred to sev-
eral thousand years, are most prominent in marine iso-
tope stage (MIS) 3, 58–30 ka (Fig. 5). The most striking
features of these climate oscillations are rapid jumps
from episodes of peak cold to phases of moderately
warm climate, the Dansgaard-Oeschger (D-O) events.
The jumps occur within less than 10–20 years (Dans-
gaard et al. 1989; Alley et al. 1993) and correspond to a
warming of 7–15 °C/20 °C (Johnsen et al.1995; Cuffey
et al. 1995). The D-O events terminate with a gradual
deterioration of climate over time, ending with a jump
back to peak cold.

The major sub-Milankovitch period in the GISP2
ice-core record is approximately 1470 years between
60 and 10 ka (Fig. 5; Grootes and Stuiver 1997). This
periodicity weakens or disappears from the ice δ18O 
record under extremely cold (MIS 2) and warm (MIS
1 and 5.1–5.3) conditions, but persists in chemical sig-
nals of atmospheric change in both high and low lati-
tudes (O’Brien et al. 1995; Sirocko et al. 1996) in the
GISP2 record dominated by a strong 2300-y cyclicity
(Mayewski et al. 1997).
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Fig. 2: Location of sediment cores (Sarnthein et al. 1995, supplemented by positions from Jung 1996; Rasmussen et al. 1996; Kroon
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Table 1: Prime objectives in paleoceanography to be tested by proxydata and ocean modeling in the Northern North Atlantic
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Potential Mechanisms of Rapid Change

To explain the severe and rapid temperature variations on
top of Greenland many models have been put forward
(Broecker et al. 1985; Broecker et al. 1990; Broecker
1991; Broecker and Denton 1991). Some models use
internal ocean oscillators akin to El Niño events (e.g.

Clement and Cane 1998, in prep.). Others employ ice-
and /or meltwater-caused disturbances of ocean ther-
mohaline circulation as external forcing in the presence
of continental ice sheets in one way or another (MacAyeal
1993a, b; Paillard and Labeyrie 1994). The bifurcation
process in the Rahmstorf model (1995), which uses an
iceberg surge-derived low-salinity meltwater lid off-
shore Labrador to throttle Atlantic thermohaline cir-
culation (THC), may come closest to reproducing the
climate features observed. It shows that meltwater
produces a prolonged initial phase of strong climatic
instability, but little deterioration, lasting up to 700
years, followed by an abrupt cooling over approxi-
mately a decade. The cooling leads to a cold phase of
undefined length, terminated by a nearly instantaneous
transition back to stable warm conditions. This THC
mechanism may also help to explain, by turning North
Atlantic “heat piracy” off or on (Berger and Wefer
1996; Stocker 1998), the interhemispheric anti-phase
relationship of short-term climate variability recently
found in ice cores from parts of Antarctica (Blunier et
al. 1998) and in South Atlantic sediment cores (Little
et al. 1997).

Over the past ten years some of the postulated events
of giant glacial surges during MIS 1–3 and the resulting
tracks of iceberg armadas across the North Atlantic have
been in fact identified as “Heinrich” layers of ice-rafted
debris in many marine sediment cores (Heinrich 1988;
Bond et al. 1992, 1993; Grousset et al. 1993; Cortijo et
al. 1997). Moreover, Maslin et al. (1995), Rasmussen et
al. (1996), Jung (1996), Vidal et al. (1997) and Elliot 
et al. (1998) have documented linkages between past
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Iceberg Drift
IRD Deposition

1. Global
4° 6°

12 Lay.
×

2. NA
1° °

12 Lay.
×1

Carbon Cycle
(Basin Scale)

OGCMs

3. NNA
0.5° 0.5°
17 Lay.

× Sedimentation
Particle Tracing

FORCING

MODELS

EVALUATION

RESULTS

Circulation Pattern
Sedimention Pattern

Carbon Budget

Paleoceanographic
Tracers

SST and SSS (Measured or Reconstructed)
Wind Field (Modeled)

Fig. 3: Scheme of Ocean General Circulation Models (OGCMs)
employed in this paper (modeling constraints in Table 3).
NNA = Northern North Atlantic; NA = North Atlantic; Lay. =
Layers; SST = sea surface temperature; SSS = sea surface salin-
ity; IRD = Ice rafted debris

Core Latitude Longitude Water Depth

ENAM 93-21 62°44.0' N 03°59.9' W 1020 m
M 15612 44°21.6' N 26°32.6' W 3050 m
M 23071 67°05.1' N 02°54.5' E 1308 m
M 23259 72°02.0' N 09°16.0' E 2518 m
M 23414 53°32.2' N 20°17.3' W 2196 m
M 23415 53°10.7' N 19°08.7' W 2472 m
M 23416 51°34.1' N 20°00.0' W 3616 m
M 23417 50°40.1' N 19°25.9' W 3850 m
M 23418 52°33.0' N 20°20.0' W 2841 m
M 23419 54°57.7' N 19°45.3' W 1491 m
MD 95-2011 66°58.2' N 07°38.4' E 1048 m
MD 95-2012 72°09.1' N 11°26.1' E 2094 m
ODP 609 50°00.0' N 24°00.0' W 3900 m
PS 2644 67°52.0' N 21°45.9' W 778 m
SO 82-5 59°11.2' N 30°54.3' W 1416 m
V 23-81 54°15.0' N 16°50.0' W 2393 m

Table 2: Core locations mentioned in the text
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changes in Atlantic THC and both the high-frequency
D-O cycles and the low-frequency Heinrich events su-
perimposed.

Variations in Surface-Water Oceanography

A number of new paleoceanographic records with an
ultrahigh resolution of 20–80 years over MIS 2–3
(Fig. 5) define the various processes linked to D-O
cycles on a more precise time scale (Table 4) and thus
help to better constrain the origin of Heinrich (H) and
D-O events. The records stem from a four-core transect
extending from the Irminger Sea across the Icelandic
Sea to the northeastern Norwegian Sea, from 59°–72° N
(Fig. 2). Age control is based both on tuning character-

istic features of SST, planktonic δ18O minima, or IRD
records to the GISP2 ice record and on a total of more
than 320 accelerator mass spectrometry (AMS) 14C ages
(Voelker et al. 1998; Dreger 1999; van Kreveld et al.
subm.). In this manner the age uncertainty of the (nar-
rowly spaced) age control points may reach one-third of
a D-O cycle (500 y), in most cases 50–100 y (equal to
one sample spacing) relative to the GISP2 record, which
is sufficient for high-resolution phase analyses within
the 1460- (or 1470-)y frequency band (Fig. 6).

Based on this transect summer sea-surface temper-
atures (SST) in the Nordic Seas have only varied at the
low level of 1–5 °C from 60–11.6 cal. ka (Fig. 5).
Hence, the short-term but marked planktonic δ18O 
minima in cores PS2644, M23071 and MD952012,
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Fig. 4: Derivation and quality of paleoceanographic proxy data (Weinelt et al. this volume) used in this paper
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and Stuiver 1997). δ18O minima of planktonic N. pachyderma (sin) reflect low-salinity meltwater spikes, where SST values (based
on planktonic foraminifera census counts) are low

U-Sarnthein Layout.qxd  06.11.2000 17:47 Uhr  Seite 374 [SFB-Synthesis book]



Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate 375

543

P
S2

64
4,

 6
7°

 N
 

 

%
 N

. p
ac

hy
 (

s)

10
0

9692

δ18
O

 (
‰

)

024

0
20

40
60

SO
82

-5
, 5

9°
 N

 
 

543
δ18

O
 (

‰
)

SS
T

 (
°C

)

12
.1

159
2

3
4

5
6

7
8

?9
10

11
12

14
15

16

A
Z

 I
I

A
ge

 (
ca

l. 
ka

) 
  

H
1

H
2

H
3

H
4

H
5

H
6

A
Z

 I
I

IR
D

 (
10

3 /g
)

7.
5 

°C
 

IR
D

(1
03 /g

)

024

H
5.

2

Fig. 5 (continued): Gray bars mark Heinrich events H1–H6. AZ 2 = Ash Zone II. IRD = Ice rafted debris. N. pachy (s) = N. pachy-
derma (sin). Time scale based on total of > 320 AMS 14C ages and on fine tuning to annual layer counted GISP2 time scale (Meese
et al. 1994), with relative age uncertainties of 50–100 y, rarely up to 500 y (Voelker et al. 1998; Dreger 1999; van Kreveld et al. subm.).
Horizontal lines serve intercore comparison of data
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Ocean Circulation 1. Global 2. North Atlantic (NA) 3. Northern North
Atlantic (NNA)

Model Type MOM (Pacanowski et al. 1993) IM (Seidov 1996) MOM (Pacanowski et al. 1993)

Setup Description Seidov and Haupt (1999) Seidov et al. (1996) Schäfer-Neth (1998)

Parameters

Resolution (lon. × lat.) / 6° × 4° / 12 1° × 1° / 12 0.5° × 0.5° / 17 
Vertical Layers

Horizontal Diffusivity / 2 × 107 / 2.5 × 109 1× 107 / nonexistent 5 ×106 / 5× 108

Viscosity [cm2 s−1]

Vertical Diffusivity / 1.0 / 10.0 1.0 / 2.5 1.0 / 1.0
Viscosity [cm2 s−1]

Surface Relaxation Time [d] 50 50 30

Surface Layer Thickness [m] 100 100 50

Tracer Time Step [d] 1 2 0.5

Modern Forcing * = Summer ** = Winter *** = Annual Mean

SST Levitus and Boyer (1994)*** Idem*** Idem**

SSS Levitus et al. (1994)*** Idem*** Idem**

Wind Lorenz et al. (1996)*** Lautenschlager Hellermann and 
(unpubl.)*** Rosenstein (1983)**

Integration Time [a] 10000 1200 500

LGM Forcing

SST from planktonic Sarnthein et al. (1995); Idem*** Weinelt et al. (1996); 
foraminifera census counts Schulz (1995); CLIMAP (1981);

Weinelt et al. (1996); supplemented by new
CLIMAP (1981)*** Kiel data*

SSS from foraminifera δ18O Duplessy (1982); Duplessy Sarnthein et al. (1995); Sarnthein et al. (1995);
and SST et al. (1991, 1996)*** Weinelt et al. (1996)*** Weinelt et al. (1996); supple-

mented by new Kiel data*

Wind Lorenz et al. (1996)*** Lautenschlager (unpubl.)*** Hoffmann (unpubl.)*

Integration Time [a] 8500 950 500

Meltwater Forcing

SST from planktonic Sarnthein et al. (1995); Idem*** Diagnosed LGM fluxes*
foraminifera census Schulz (1995);
counts / Heat Flux Weinelt et al. (1996)***

SSS from foraminifera δ18O Sarnthein et al. (1995); Idem*** Freshwater input (from
and SST / Freshwater Flux Weinelt et al. (1996) new Kiel data) added to

plus LGM data*** diagnosed LGM fluxes*

Wind as for LGM*** Idem*** Idem*

Integration Time [a] 1200 1050 50–100

Sea Ice No air-sea heat and momentum fluxes if SST drops below −1.88 °C.

Table 3a: Ocean circulation models employed and modeling constraints
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Heinrich- Marine 14C Ages Calendar Age Interval (ky)
Event (corr. for −400 y) (GISP2) (between age means of H.E.)

H1 > 12.8–14.8 ka 14.67–18.1 ka (!)
∆ 7.4

(LGM) (15.0–18.0 ka) (18.0–21.5 ka)

H2 20.4–21.0 ka 23.4–24.2 ka
∆ 5.8

H3 25.6–26.4 ka 29.0–30.2 ka
∆ 9.6

H4 32.4–34.2 ka 38.4 – < 40.0 ka
∆ 6.7

H5 43.5–44.4 ka 45.4–46.4 ka
∆ 13.6 = 2 · 6.8

H6 > 57 ka 58.3 – about 60 ka
Average: 7.2 ± 2.4

(for spatial variations of 14C ages at base of H4 compare Fig. 10)

Table 4: Timing of Heinrich Events and the LGM on 14C and calendar time scales, primarily based on newly 14C dated IRD and 
δ18O meltwater records in cores 23071 and PS2644, choosing dates with a minimum 14C reservoir effect. Details of the location of
Heinrich events in the marine sediment record and their definition in GISP2 as in Figure 5 (Voelker et al. 1998; Voelker 1999)

Icebergs, IRD Deposition (Schäfer-Neth and Stattegger 1998)
• Free drifting cylindrical icebergs (diameter = 10 km; height = 300 m)
• IRD deposition proportional to iceberg melt rate (IRD concentration = 1‰ per volume)
• Techniques:

– ocean-iceberg feedbacks including:
– currents (passive drift transport)
– temperature (using an empirical temperature vs. melt-rate relationship)
– heat transfer from ocean to icebergs (proportional to amount of melting ice)
– meltwater runoff from the icebergs into the ocean

– iceberg drift velocity enhanced by wind; proportional to wind speed (based on observations)

Sedimentation, Particle Tracing (Haupt et al. 1998)
• Sediment volume transport and pelagic sediment dynamics
• Sediment distribution pattern on the sea floor
• Pathways of particle transport
• Routes of the major ocean currents and / or transports of settling particles
• Techniques:

– semi-Lagrangian formulation
– particles with uniform settling velocity (0.05 cm s−1)
– sedimentation and erosion rates based on observations (flocculation ignored)
– benthic boundary layer with smooth topography (thickness = 1 cm)
– fluvial and aeolian sediment sources
– particle transport velocity affected by bottom slope

Carbon Cycle (Schulz et al. in press)
• Ocean-atmosphere distribution of inorganic carbon and carbon isotopes (δ13C, ∆14C)
• Techniques:

– formation / remineralization of particulate organic matter and CaCO3-skeletons
– export production as function of nutrients available in surface water
– temperature-dependent isotope fractionation during gas exchange
– isotopic composition of particulate organic matter as function of the ambient CO2-concentration

• Resolution: 5 major oceanic basins (12 layers) plus homogeneous atmosphere
• Forcing: Water fluxes derived from global OGCM velocity fields (annual average)

Table 3b: Models of iceberg drift, sediment dispersal and the oceanic carbon cycle
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Fig. 6: Centennial-to-millennial-scale periodicities (with spectral power normalized to 1) in the GISP2 δ18O-record and in marine
sediment records of climatic change (f = frequency; p = periods; horizontal bars = bandwidth; further abbreviations see Figure 5,
where most records are shown in the time domain). Core locations in Table 2. Abundance (abun.) of Cibicides at site PS2644 reflects
intensity of overflow, δ18O of C. wuellerstorfi brine-water signals in the deep water. Dominant Dansgaard-Oeschger cycles are marked
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and Stattegger 1997), dotted 80 % confidence line with AnalySerie program (Paillard et al. 1996)
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which comprise shifts of up to 1.5‰, in many cases 
opposed to the SST trend, are largely ascribed to short-
term meltwater pulses. The larger δ18O spikes corre-
spond to Heinrich events H1–H6, as confirmed by
coeval IRD spikes and planktonic foraminiferal δ13C
minima (lit. cit.). Following the ice-surge model, melt-
water pulses have been connected to the cold episodes
in the age-calibrated isotopic temperature record of
GISP2 to create a common time scale (lit. cit.). In con-
trast to the Nordic Seas, summer SST in the warm 
Irminger Current southwest of Iceland (core SO82-5)
vary over a broad range of < 2–9 °C and depict in great
detail the rapid warmings and coolings of each D-O
cycle in the ice record. However, the δ18O record in this
part of the Irminger Sea remains largely unaffected by
meltwater, except for a distinct meltwater signal at H3
(Fig. 5; van Kreveld et al. subm.).

The surface-water records of MIS 2–3 also reveal
striking zonal difference (Fig. 5): In the west, the IRD
and δ18O records of cores SO82-5 and PS2644 were
able to depict every single D-O cycle with distinct am-
plitudes. In the east, in cores M23071 and MD952012
from the Norwegian Sea, most δ18O oscillations rarely
exceed the noise level and can only be recognized 
by comparison with parallel, stronger variations in
planktonic δ13C (Völker 1999). In addition to these,
several wide-spaced, modest δ18O excursions reflect
Heinrich meltwater events H3 and H4 and, more pro-
nouncedly, H1 and H6. H1 spikes are most prominent
near the Faeroe Islands (ENAM 93–21) and to the west
of the Barents shelf (23259, MD952012; compare
Fig. 12c). Here, however, the onset of the event was
possibly delayed by 1500 14C years (Fig. 7; Dreger
1999).

In conclusion, the origin of frequent, possibly melt-
water-induced, climate disturbances during MIS 2–3
may be more closely constrained, in part, similar to 
Elliot et al. (1998): Surging ice sheets on Greenland
and Iceland, easily traced by hematite-stained quartz
(Bond et al. 1997) and volcanic glass produced flows
of meltwater and icebergs along with each D-O stadial,
whereas surges from Canada, traced by dolomite de-
bris, and from Europe only accentuated some major
stadials, the Heinrich events. Surges from the Barents
Shelf contributed particularly to H6 and late H1.
Moreover, since basaltic glass from Iceland always 
increased prior to the increase of any other IRD in the
Heinrich layers (Bond and Lotti 1995), it is evident
that the Nordic iceberg discharge clearly preceded,
thus in some way triggered ice surges and IRD input
from North America and elsewhere at any stadial
event.

Variations in North Atlantic Deep Water 
Oceanography

The variations in surface-water oceanography outlined
above correspond to major changes in the origin and
ventilation of North Atlantic Deep and Intermediate
Water (Rasmussen et al. 1996). Jung (1996) traces their
spatial variability along the southern slope of the Rockall
Plateau in the (epi-) benthic stable-isotope records of six
cores (Figs. 2 and 8). The records form a 1-D time
transect from 1500–3800 m depth over the last 60 ky,
with a mean time resolution of 350 – > 1000 y, rising to
160–250 y across the H events.

Beyond some ongoing problems in precisely match-
ing the “wiggle-waggles” of the six stable-isotope re-
cords on centennial time scales, major long-term change
can be identified between (1) the warm and fairly stable
THC regime over the last 11.6 ky, i.e., since the end of
the Younger Dryas, and (2) the highly instable regime
of MIS 2–3, 11.6–60 ka, with abundant bottom water
momentarily advected from sources in the Southern
Ocean (SSBW; δ13C values of < 0.4 – < 0.8‰), which
ascended up to < 2.6–2.0 km depth, in contrast to depths
of > 3.6 km today. Nevertheless, the glacial regime of
MIS 2–3 also finally reached some stability between H1
and H2 (Fig. 8a).

(3) Superimposed upon these long-term trends in
deep-water chemistry, flickering extreme ventilation
minima (< 0.2 – < 0.4‰ δ13C) record the incursion of
SSBW along with the Heinrich events (including a
Heinrich-style event H5.2 prior to D-O event 14) and
many other stadials. On the other hand, the short-term
δ13C-ventilation maxima reaching down to > 3 km
(blue spikes > 0.8‰ in Fig. 8a) are characteristic of
North Atlantic Deep Water (NADW) and match most
warm D-O events, such as D-O 5–8 and 11–14 between
H3 and H5.2.

(4) In parallel, the δ18O transect in Figure 8b 
reveals some short-term but extreme δ18O minima
(∆ 0.5–1.0‰), extending across all water depths during
H1, H3–H6 and once more, during the early LGM
(confined to less than 2300 m w.d.). Jansen and Veum
(1990) first suggested that these synglacial δ18O mini-
ma may record cold brine-water spikes. They bear an
excellent, barely fractionated δ18O signal of extensive
seasonal sea-ice formation which was tied to the
highly 18O depleted meltwater lids of iceberg flotillas
during Heinrich and, less importantly, during other 
D-O stadials. The deep-water records of Figure 8 thus
closely match the various surface-water records of 
frequent meltwater incursions into the North Atlantic
during MIS 2–3.

Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate 379
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Fig. 8: Vertical 1-D paleoceanographic time transect of the last 60 ka, showing a) a δ13C record of changes in deep-water ventilation
and b) a δ18O record of changes in temperature and brine-water content. Records are based on C. wuellerstorfi in sediment cores
23214–23419 from the southern flank of the Rockall Plateau (core locations in Table 2 and Fig. 2). Stable isotope data correspond
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graphy based on AMS-14C ages and IRD layers (Jung 1996; Weinelt et al. unpubl. data)
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D-O and Heinrich Events in the Spectral Domain

Detailed records of THC variability provide a new age
basis for calibrating Heinrich events on the calendar
time scale (Table 4; Voelker et al. 1998). In part, the new
ages differ considerably from previous estimates (Bond
et al. 1993; Cortijo 1995; Elliot et al. 1998). From H1
to H5 the average time span between two successive
Heinrich events in the records presented here amounts
to 7.4 ka, but increases to 13.6 ky between H5 and H6.
If the probable Heinrich event 5.2 between H5 and H6
is included, prior to D-O event 14 near 52 ka (Fig. 8),
the average spacing between Heinrich events 1 and 6
drops to a relatively uniform time span of 7.2 ± 2.4 ky,
equal to several D-O cycles. The postulated “5.2” event
is indeed supported by major IRD layers found at the
respective depths in various cores from the Rockall
Bank (Jung 1996) and in core SO82-5 (Fig. 5).

In the spectral domain, however, dominant power
is centered on 1.5 ky (1460–1510 years) for most of
the marine proxy records in the four cores, such as for
GISP2 (Fig. 6; Grootes and Stuiver 1997; van Kreveld
et al. subm.; Völker 1999). Further prominent period-
icities occur near 2.9 (such as with D-O cycles 8, 12
and 14) and 5.1 ky, probably multiples of the 1500-y
cycle. A weak periodicity near 620–740 years may
reflect a harmonic. A minor periodicity persists near
1.05 ky, possibly a harmonic of the 2.3 ky cycle found
by Mayewski et al. (1997). Unexpectedly, little power
is centered near 7.2 ky for the Heinrich events, except
for the stable isotope records of core 23071, salinity
at site SO82-5 and the IRD record of core MD952012
(Fig. 6).

The 1480- /2900-y cycles in the marine sediment re-
cord rarely show the characteristic asymmetry of D-O
cycles in the Greenland ice records (Fig. 5; SO82-5). 
As is the case on Greenland, they also begin with an
abrupt jump from peak cold to moderately warm cli-
mate, which in some cases is interrupted by a very short
“Younger Dryas-style” setback (van Kreveld et al.
subm.). The warm interstadials, however, have each per-
sisted over a few hundred up to 1,500 years, prior to
jumping back directly to peak cold.

In the frequency domain (Fig. 9), the maximum cool-
ings at site SO82-5 lie in phase with SSS minima, which
means with meltwater injections to the Irminger Sea
(van Kreveld et al. subm.). This evidence clearly sup-
ports the models invoking glacial surges and meltwater
as the ultimate source of climatic instability during MIS
3 (Broecker et al. 1990; MacAyeal 1993a, b; Paillard
and Labeyrie 1994; Rahmstorf 1995). On the other
hand, the 240-y lag of IRD spikes vs. sea-surface cool-

ing at site SO82-5, similar to early findings by Bond
and Lotti (1995), appears to be opposed to these mod-
els, but is of little significance. Not the icebergs but
their meltwater injections to the specific sites of deep-
water convection (such as the Irminger and Labrador
Seas) are crucial in throttling Atlantic THC. Over the
first 250 years, the melting icebergs from East Green-
land were obviously jammed in the narrow Denmark
Strait and advanced to the south only later, after size
reduction. This view is supported by the timing of 
IRD spikes to the north of the Denmark Strait, at site
PS2644, where they appear > 100 years earlier, nearly
in phase with the SSS minima to the south and cooling
(Fig. 9; Voelker 1999).

The IRD spikes, in turn, lead (1) the planktonic δ13C
minima by nearly 300 y, recording a maximum in sur-
face-water stratification, (2) the related brine-water sig-
nals in the benthic δ18O record by approximately 330 y,
and (3) the final abrupt returns to maximum warmth by
460 y (van Kreveld et al. subm.). Accordingly, the brine-
water signals lead the D-O events of abrupt warming 
by less than 130 y, nearly within our sampling resolu-
tion. Based on these leads and lags it is evident that in-
tensive brine-water formation has finally triggered the
enigmatic abrupt onset of THC and flushing of the deep
Atlantic within approximately a decade through entrain-
ing further deep water and, in consequence, further
surface water from farther south. Thereby, a long-term
slow-down or even reversal of THC during the last 
third of the D-O cycles was suddenly ended, initiating
the D-O events which remain unexplained.

Résumé on Processes Driving the 1500-Year D-O
Cycles

The spatial and temporal patterns in short-term SST
variability and iceberg-derived meltwater injections
yield a number of features in North Atlantic paleocean-
ography, which in total may have controlled climatic
variability between 60 and 10 ka at periodicities of cen-
turies to millennia:
• Based on clear phase relationships (Fig. 9) it is
clear that, in harmony with various models, the rapid
cooling of the D-O stadials was indeed linked to melt-
water injections throttling the convection of NADW.
As surmised by Bond and Lotti (1995) this meltwater
primarily originated from icebergs surging from Ice-
land, East Greenland and /or farther north, as shown by
(1) the dispersal of low SSS, (2) a persistent input of he-
matite-stained quartz to the Irminger Sea during D-O
stadials (van Kreveld et al. subm.), and (3) a decline 
in the accumulation rates of IRD from the Icelandic to 
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the Irminger Sea by a factor of ∼ 2 (Fig. 5; PS2644 vs.
SO82-5, when data are supplemented by differential
sedimentation rates). Thus, internal binge-purge pro-
cesses in parts of the East Greenland ice sheet with a
time constant of 1500 / 3000 years may have acted as
the pacemaker of global cooling.
• Prior to reaching the “open” North Atlantic via the
Irminger Sea, most icebergs from Greenland were
probably jammed in the Denmark Strait for nearly 250
years, as shown by the lead of IRD and SSS signals in
the western Icelandic Sea.
• In the Irminger and Icelandic Seas prominent IRD
spikes equally mark both the Heinrich events and the
other cold D-O stadials. Therefore, no basic but only
gradual differences in the origin of average D-O sta-
dials and the major Heinrich events can be seen, ap-
parently accentuating some “normal” D-O stadials.
• Based on a phase lead of Icelandic IRD, each Hein-
rich event was probably induced by a slight sea-level
rise proceeding from initial D-O surges from Iceland
and East Greenland and triggering much larger surges
from major ice sheets near sea level with an internal
time constant of ∼ 7.2 ky. In particular, H5, H4 and H2
resulted from great iceberg and meltwater injections
from eastern Canada, in addition to abundant meltwater
in the North Iceland and East Greenland Currents
(Grousset et al. 1993; Gwiazda et al. 1996b; Cortijo et
al. 1997). Only during H3 did the flux of meltwater and
icebergs from East Greenland, which passed across the
Icelandic and Irminger Seas, dominate any other Hein-
rich meltwater discharge (in harmony Grousset et al.
1993). Relatively modest traces of European meltwater
and IRD occur in the Norwegian Sea, except for H6 and

H1. Here most prominent δ18O meltwater signals south-
west of the Barents shelf (Figs. 5, 7 and 12c; Sarnthein
et al. 1995) suggest large surges from a glaciated 
Barents shelf (Laberg and Vorren 1995; Landvik et al.
1998), which produced the most extended and pro-
nounced reversals in Atlantic THC together with major
ice rafting from Labrador to the mid-latitudes, marking
the end of glacial stages 4 and 2.
• In view of its extremely short phase lead (< 130 y 
in core SO82-5; Fig. 9) to the SST maximum in the 
D-O cycles, intensive brine-water convection in the
northern North Atlantic is considered to be the crucial
process which has finally entrained warm surface water
from the subtropics and thereby triggered the resump-
tion of the “conveyor belt” and rapid warming, the
“jump” characteristic of D-O events which each corre-
sponded to a general recovery of northern hemisphere
climate.
• However, a major problem remains unsolved, i.e.
how the mechanisms of D-O cycles during MIS 2–3
continued over the Holocene (Sirocko et al. 1996; Bond
et al. 1997; Wang et al. 1999) and MIS 5 (Ninnemann et
al. 1999), since no major surges are known at these
times (only once, 8.2 cal. ka) and the climate proxies on
Greenland exhibit much smaller variability on a scale of
centuries to millennia during the Holocene than was the
case during MIS 2–3 (Grootes and Stuiver 1997).

Age of the LGM and Heinrich 1 Time Slices:
Problems by the 14C Reservoir Effect

Finally, the high-resolution time series has permitted
improvements on the age definition of two time slices
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which represent the most prominent climatic extremes
over the last 60 ky, the Last Glacial Maximum (LGM)
and Heinrich event 1. Both time slices present intervals
of short-term relative climatic stability, sufficiently
long for assembling basin- and ocean-wide sets of pale-
oceanographic data at sedimentation rates of > 2.5 –
> 5.0 cm/ky to parameterize and validate general ocean
circulation models discussed in the section below. In
the North Atlantic the LGM is clearly defined at the age
interval between D-O interstadial 2 and Heinrich event
1, that is, at 18–15 14C ka (equal to approximately
22–18.1 cal. ka; Fig. 5; Table 3). However, the precise
age boundaries of Heinrich event 1 appear to be more
controversial.

In cores from the Rockall Plateau and mid-Atlantic
ridge, directly below the “Heinrich IRD track” (Bond
and Lotti 1995), the base of IRD layer H1 is largely
coeval with the abrupt decrease in benthic and plank-
tonic δ13C and δ18O values (Fig. 7; Jung 1996; Vidal 
et al. 1997; Kiefer 1998; Chapman and Shackleton
1998). This is different from the upper continental
margin of Portugal, where Zahn et al. (1997) found an
enigmatic 1000-y lag in the local IRD signal vs. the
benthic and planktonic δ18O and δ13C signals at 1100 m
water depth.

Based on rough 14C dates of planktonic N. pachy-
derma (sin), H1 first began northwest of Iceland 16.1
14C ka, in the central North Atlantic approximately 15
14C ka and west of the Barents shelf only < 14.5 /< 13.6
14C ka (Fig. 7; Sarnthein et al. 1995; Völker et al. 1998;
Dreger 1999). This age transgression may only partial-
ly reflect a real time lag between initial ice surges from
Iceland and / or Greenland, subsequent surges from
Labrador, and a final response of the ice sheet on the
Barents shelf, where Laberg and Vorren (1996) dated a
last glacial advance near 13.7 14C ka.

In part, age differences in Figure 7 merely reflect a
variable 14C reservoir effect in different marine regions,
implying that the onset of Heinrich 1 may have been
coeval all over the northern North Atlantic. This model
is supported (1) by the benthic 14C ages in core PS2644
northwest of Iceland which are systematically younger
than the planktonic 14C ages measured in parallel and
fully confirm the general base age of approximately
15 ka. (2) Similar to Heinrich 1, extremely variable 14C
reservoir effects also mark the base of the Heinrich-4
IRD layers and meltwater signals, supposed to be
generated synchronously across the northern North
Atlantic. Here, local shifts in 14C age reach as much as
2.5 ky, with maximum ages directly below the center
of the Heinrich meltwater track as traced by Cortijo 
et al. (1997) and minimum ages along its periphery

(Fig. 10). This small-scale variability in 14C reservoir
ages may come from long-term suppressing exchange
with the atmosphere. It may also result from the wind-
driven transport of Heinrich icebergs, entrenching sev-
eral hundred meters deep below the sea surface (down
to > 800 m according to sidescan records of plough
marks; von Bodungen et al. 1988) and inducing mul-
tiple processes to vertically admix “old” intermediate
water of unknown origin. In addition, the extensive
release of “old” CO2 and CH4 from air bubbles in
melting iceberg flotillas may significantly increase the
local reservoir age by as much as > 5000 y (Domack
et al. 1989).

However, low planktonic 14C ages in front of the 
Barents shelf, which put the base of the most prominent
local “H1” meltwater spike at much less than 14.5 and
at less than 13.6 ka (Fig. 7, cores MD952012 and
23259), indeed reflect a date which is significantly 
younger than the base of H1 in the North Atlantic else-
where (Dreger 1999; in accordance with Vorren and 
Laberg 1996). The higher 14C age of 14.8 ky in core
MD952012 is ascribed to the local 14C reservoir effect,
rising with the onset of meltwater discharge. Based on
an age reversal in core 23074, the same bias can be as-
sumed for most 14C ages near the base of H1 in neigh-
boring cores 23071 and 23074 as well as MD952011
from the Vøring Plateau. Here the low age of “14.9 ka”,
dating a tiny precursor meltwater spike as a distal signal
of the onset of H1 further south, is specifically regarded
as the only trustworthy number (Dreger 1999). Thus the
main meltwater spike will be as young as that in front
of the Barents Shelf, to which it is spatially connected
(Sarnthein et al. 1995).

Accordingly, it can be inferred that H1 resulted from
an overlap of at least two separate major surges, ap-
proximately 1500 years apart, an early surge from Lab-
rador and a later surge from the Barents shelf, in addi-
tion to initial surging from East Greenland. Indeed, a
number of high-resolution cores from the North Atlantic
reveal a markedly duplicate structure of the H1 IRD
maximum (Elliot et al. 1998).

The end of Heinrich 1 meltwater and IRD signals is
constrained more uniformly near 13.0–13.4 14C ka (in
harmony with Steinsund et al. 1991; Bond and Lotti
1995; Vidal et al. 1997; Vorren and Laberg 1996).
Below the top, a deep-water coral is dated at < 13.1 14C
ka equal to < 16.2 U /Th ka (MD952011 in Fig. 7;
Dreger 1999). The 14C age of 12.7 ka can be converted
to 14.8 cal. ka (Bard et al. 1993; Alley et al. 1993;
Hughen et al. 1998), and the basal age of 15 14C ka to
∼ 18.0 cal. ka (Voelker et al. 1998). Accordingly, the
Heinrich 1 cold phase formed the most extensive and
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extended D-O stadial of MIS 2–3, lasting approxi-
mately 3 ky, the equivalent to two average Dansgaard-
Oeschger cycles.

Three Fundamental Modes of Surface and
Deep-Water Circulation

Since Stommel (1961) most authors agree that the
Atlantic and global thermohaline circulation system
(Fig. 1) underwent fundamental changes from inter-
glacial to glacial times (Table 1). In contrast to pre-
vious concepts (Broecker et al. 1985; Bryan 1986; Du-
plessy et al. 1988) this basin-wide compilation of epi-
benthic δ13C data (Fig. 11a; Sarnthein et al. 1994), a
proxy of deep-water ventilation (Duplessy et al. 1981;
Broecker and Peng 1982; Zahn et al. 1986; Boyle 1992;
Mackensen et al. 1993), has revealed three main states

of deep-water circulation in the eastern Atlantic consis-
tent with records from the western and southern
Atlantic (e.g. Boyle and Keigwin 1986; Ninnemann et
al. 1999): (I) The modern /Holocene state with vigor-
ous NADW formation in both the Greenland-Iceland
and Labrador Seas is responsible for relatively strong
heat advection to the adjacent continents in high lati-
tudes, particularly to northwestern Europe. (II) A more
moderate NADW formation is characteristic of peak
glacial times, the LGM. During this time, deep con-
vection primarily took place in the Irminger and
Labrador Seas and was only modest and occasion-
ally brine-water supported in the Greenland-Iceland-
Norwegian Seas, with poor warming of the adjacent
northern continents. (III) During the Heinrich 1-type
meltwater mode, North Atlantic deep-water formation
was turned off completely except for brine-water pro-
duction. Accordingly, the amount of oceanic heat ad-
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vection to the northern continents approached zero.
Mode III probably also applies to various other Hein-
rich events and further century-long cold spells imme-
diately prior to the D-O events (Fig. 8).

In harmony with these major modes of deep- and
intermediate-water circulation, we have defined three
corresponding modes of surface-water hydrology which
cover nearly the total bandwidth of glacial-to-inter-

glacial variability in the North Atlantic (Fig. 12). In
contrast to modern and LGM modes, which are domi-
nated by the advection of subtropical warm surface
water up to Svalbard, mode III is outstanding because
of two major (Heinrich 1) meltwater plumes, a large
one west of the Barents shelf, a minor one to the north-
west of Iceland. In contrast, the peak glacial mode II
shows little meltwater all over the North Atlantic, ex-
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cept for the region to the west of Ireland. In contrast to
previous expectations (Table 1) the horizontal and ver-
tical distribution of water masses during the early half
of the Younger Dryas (YD) lasting 1300 y does not re-
semble mode III but, rather, the modern mode I (Figs.
11a and 12d). Only the meltwater episode near the end
of the Younger Dryas and the early Preboreal (Fair-
banks 1989) are in keeping with mode III (discussion
of stratigraphic details below).

For a better understanding of the physical mecha-
nisms which control the three modes and their alterna-
tion, numerical equilibrium experiments with a 3-D
ocean circulation model (Fig. 3; Table 3) were driven by
the spatial distribution of SST and SSS in the northern
North Atlantic during modern, glacial, and Heinrich 1
times (Fig. 11b; Seidov et al. 1996; Schäfer-Neth and
Stattegger 1997; Schäfer-Neth 1998). The model re-
sults clearly reproduce the three fundamental modes of
deep-water circulation reconstructed from our proxy
data (Fig. 11a) and, likewise, the consistent patterns of
associated surface-water currents.

The Glacial Mode

In contrast to the expectations based on previous sur-
face reconstructions (CLIMAP 1981; Ruddiman and
McIntyre 1981; Duplessy et al. 1991), the peak glacial
North Atlantic differed little from the modern mode
(Figs. 12a, b). SST values in the northeastern Atlantic
and (eastern) Nordic Seas were indeed much reduced,
down to approximately 3–5 °C during summer (similar
to early data of Kellogg 1980). On the other hand, they
were still high enough to preclude a perennial sea-ice
cover, even provided the error range of foraminifera-
based SST proxy data (Weinelt et al. 1996; Pflaumann
et al. in prep.). A continuous CLIMAP-style (1981)
sea-ice cover occurred only during glacial winter. In
harmony with this interpretation, the late LGM per-
centages of CaCO3 (10–14%) in sediments from the
central Nordic Seas (Fig. 13) directly resemble CaCO3

values below the modern Arctic water mass which is
largely ice-free during summer and is a major site of
deep-water convection today.

Based on summer SST and planktonic δ18O values,
glacial SSS values reached approximately 36–36.5 per
mill in large parts of the Greenland-Iceland-Norwegian
Seas as compared to 36.5–38.0 per mill in the glacial
subtropical Atlantic (Seidov et al. 1996). These values
imply a high density, sufficient to permit (seasonal)
deep-water convection in both the Irminger-Labrador
and Greenland-Iceland-Norwegian Seas (Weinelt et al.
1996), which in turn entails an ongoing inflow of

Atlantic surface water deep into the Greenland-
Iceland-Norwegian Seas.

This inflow is indeed registered in both the distribu-
tion of proxy data and modeled current patterns at sites
immediately west and northwest of Iceland and, partic-
ularly, to the southeast of Iceland (Fig. 12). LGM water
masses from the Atlantic finally reached the northern
slope of Svalbard (Hebbeln et al. 1994; Sarnthein et 
al. 1995; Hald et al. 1996; Spielhagen et al. 1997) and 
largely contributed to continuing northward heat trans-
port, to high evaporation and to a positive atmospheric
moisture balance over northwestern Europe, important
for the continued build-up of continental ice sheets
during the LGM. This holds particularly true for the ice
sheet on the Barents shelf, which advanced to the shelf
break only after 19 14C ka, a last time as late as 13.7 14C
ka, as evidenced in marine sediment cores from the 
Barents shelf (Vorren and Laberg 1996) and slope
(Dreger 1999) and in model experiments (Lambeck
1995).

In contrast to small glaciers surging into the LGM
Nordic Seas, abundant icebergs drifting from Labrador
and Greenland ended by melting in a widespread “scrap
yard” around the Rockall Bank. This is documented by
extensive IRD deposits (Robinson et al. 1995) and fre-
quent deep plough marks down to > 800 m depth
(von Bodungen et al. 1988) along the southern slope of
the Iceland-Scotland Ridge, which at that time was less
than 300 m deep and hence blocked the drift of larger
icebergs farther to the north. Iceberg melt led to an ex-
tensive lid of low-salinity surface water to the west of
Ireland (Fig. 12b; ∼ ∆ 0.4‰ δ18O ). This lid, in turn, in-
duced a clockwise gyre and a north-south flowing cold
longshore current down to western France (Sarnthein et
al. 1995), which strongly enhanced the LGM cooling of
Western Europe. Furthermore, the meltwater lid led to
a steep SSS gradient of > 1‰ along its northern bound-
ary and hindered the direct flow of Atlantic surface
water in the east, via the Faeroe Channel into the Nordic
Seas, different from the situation today. Rather, the in-
flow of Atlantic water followed the west-east running
salinity front near 63° N from the southeastern tip of
Iceland to the north side of the Faeroe Islands (Fig.12b).
Fairly warm glacial summer SST (3.5 °C) around the
southern tip of Greenland were possibly induced by the
westward flowing branch of the Irminger Current.

In Atlantic intermediate and deep-water compart-
ments, the composite evidence of epibenthic δ18O and
δ13C values makes it possible to distinguish four dif-
ferent water masses during the LGM and to trace them
back to their source regions (Figs. 11a and 14; Jung
1996; Sarnthein et al. 1994; Zahn et al. 1997):
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(1) A derivate of southern-source bottom water
(SSBW) with minimum ventilation (< 0.2‰ δ13C) is
confined to the deep eastern Atlantic continental margin
up to approximately 2800–2600 m depth along the
Rockall Plateau.

(2) Strongly ventilated (1.5–1.8 ‰ δ13C) Upper
NADW with fairly high densities (4.9–5.2‰ δ18O), a
glacial equivalent of the modern Labrador Sea Deep
Water (LSD), occurs above 1900 m depth in the Irminger
Sea and debouches down to 2200–2400 m in the north-
eastern Atlantic.

(3) A small-scale but extremely dense (5.25–5.5‰
δ18O) water layer with medium ventilation (up to 0.9‰
δ13C) is ascribed to the Lower NADW, which is sand-
wiched near 2000–2200 m depth between water masses
(1) and (2) along the slopes of the mid-Atlantic Ridge
and the southern Rockall Plateau. This dense water
mass is traced across the Faeroe Channel back to the
glacial Intermediate Water of the Nordic Seas and 
directly recorded in core PS2644 at 800 m depth north
of Iceland. Here benthic δ18O values of ∼ 5.6‰ mark
the pertinent extreme density, with benthic δ13C values
of ∼ 1.6‰ which reflect the strong ventilation of this
water mass (Völker 1999).

In contrast, the glacial planktonic δ13C values of 
N. pachyderma (sin) are low all over the northern North

Atlantic (<1.1–1.2‰; Keigwin and Boyle 1989; Sarnt-
hein et al. 1995; corrected for a vital effect of 0.85 ‰;
Labeyrie and Duplessy 1985; Simstich 1998) and do
not yet reveal any particular source region in surface
water, where highly ventilated deep- and intermediate-
water masses (2) and (3) may originate.

Finally, (4) a strongly diluted derivate of glacial 
Mediterranean Outflow Water (MOW) occurs along the
upper continental slope of Portugal near 1200 m depth.
Its ventilation is similar to that of Upper NADW, its
δ18O values, however, are ∼ 1‰ lower, near 4.0–4.2‰.
Thus, the temperature and salinity of this glacial MOW
derivate exceed that of LSD by > 5 °C and 0.5‰, given
a similar density range (Zahn et al. 1997).

Likewise, our high-resolution model experiments
identify at least three different current systems at dif-
ferent depth levels in the glacial northern North
Atlantic (Figs. 11b, 15; Seidov et al. 1996; Schäfer-
Neth 1994). In harmony with the proxy data patterns,
the relative flux rates of Upper NADW, Lower NADW
and SSBW amount to approximately 14, 0.2 and 3.7 Sv,
respectively. As compared to the modern mode, these
rates would imply a glacial increase in the formation of
LSD (Upper NADW) by ∼ 50% and a 50 % reduction
in the formation of Lower NADW. The incursion of
SSBW in total may have increased by approximately
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50%, but remained generally constant in the eastern
Atlantic.

As a result of reduced glacial turnover rates of Lower
NADW and the enhanced incursion of SSBW along the
eastern Atlantic continental margin, δ13C isolines in
Figure 11a depict a partial upwelling of SSBW directly
in front of the zonal Azore fracture zone scarps near 37° N
up to approximately 2500–2000 m depth, akin to the
SSBW upwelling found south of the Iceland-Scotland
Ridge. This topography-induced admixture of upwelled
SSBW from below is necessary to balance in- and out-
flow volumes of deep water and leads to a clear “dilu-
tion”, i.e., oxygen depletion and nutrient enrichment, of
the Lower NADW in the eastern Atlantic between 35° N
and the equator (Sarnthein et al. 1994).

The Heinrich-Type Meltwater Mode and 
Meltwater Budgets

The LGM mode ended abruptly with a major reduction
in planktonic and benthic δ18O values (Fig. 7). This

shift went along with a dramatic reduction in benthic
δ13C values (Fig.11) and marks an inversion to a totally
different state of the ocean, the Heinrich 1 meltwater
mode, implying the greatest change in thermohaline
circulation over the last 60 ky. Aware of the broad dis-
cussions about the actual meaning of foraminiferal
δ13C (Duplessy et al. 1984; Boyle 1992: until Spero et
al. 1997), we still simply interpret this δ13C reduction
as a record of extreme oxygen depletion and nutrient
enrichment in Atlantic subsurface and deep waters. 
At the same time, the deep-water age increased from
several 100 y to nearly 1500 y in the Norwegian Sea
(based on the 14C vs. U /Th age anomaly of a deep-
water coral in growth position; Dreger et al. in prep.),
an age similar to that of modern Pacific deep water
(Broecker et al. 1988).

For a better understanding of the processes which
actually governed this inversion of the ocean system,
the precise age control of deglacial sediment records
(Fig. 7) enables us to constrain the salinity, density and
carbon budgets (see below) which ultimately may have
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induced the early deglacial change in thermohaline cir-
culation and to identify the potential significance, syn-
chroneity, leads and lags of iceberg-induced processes
acting in different Atlantic regions, processes which
have already been discussed at length along with the
origin of D-O events.

Based on spatial δ18O anomalies in surface water
(Fig. 12c), meltwater lids were indeed present during
H1 in the central North Atlantic, west of 20° W, and to
the north of Iceland. The most pronounced meltwater
injection, however, is registered in the northeastern Nor-
wegian Sea (Jones and Keigwin 1988; Weinelt 1993;
Sarnthein et al. 1995; Fronval et al. 1995). Here, exten-
sive local salinity anomalies reached extremes of 2.5 to
> 6.0 per mill vs. the general meltwater-free back-
ground, depending on the different regression slopes
employed for deducing salinity from δ18O values (Er-
lenkeuser unpubl. data; Simstich 1998; Schäfer-Neth
1998; Duplessy et al. 1991; Vogelsang 1990; Craig and
Gordon 1965). Principally, these anomaly estimates are
still conservative, because they are based on the δ18O
composition of planktonic Neogloboquadrina pachy-
derma (sin). This species calcifies in polar waters at
water depths of 20–120 m, which is well below the
actual salinity minimum at the sea surface (Simstich

1998). Minor meltwater patches also occurred near the
northeastern tips of the Faeroe Islands and Jan Mayen.

Based on rough quantitative estimates and using
δ18O values of −25‰ for ice, the glacial surge from the
Barents shelf during late H1 produced a 50 to 100-m-
thick meltwater layer at a rate of > 1500–4500 cubic
km/y, equal to a gross sea-level rise of > 3 m/1000 y.
This amount was indeed surpassed by a meltwater rate
of 7000 cubic km/y or more, derived from the Lauren-
tian ice sheet, for which MacAyeal (1993b) also con-
templated a 3.5-m sea-level rise which, however, may
be twice as high after 1000 years. The meltwater lid off
northern Iceland equaled to further 1800 cubic km/y.
Nevertheless, when assessing the actual impact of ice-
berg surges, the proximity of the Barents meltwater flux
to LGM cells of deep-water convection may have been
more important for controlling variations in deep-water
formation than were larger meltwater volumes stem-
ming from Labrador.

Different from the Rahmstorf (1995) model, a recent
sensitivity study employing the 3-D model developed
by Schäfer-Neth (1998) showed that the total turnoff of
the LGM THC during H1 (and likewise H6) is forced
by (1) a general large-scale decrease in North Atlantic
SSS, a sort of preconditioning of the high-latitude
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ocean, as induced by the onset of a general disintegra-
tion of northern hemisphere ice sheets, reflected by H1
icebergs from Labrador, but (2) more specifically, by
the narrowly confined input of iceberg-derived melt-
water from the Barents shelf and Iceland into the
eastern Nordic and Irminger Seas, hitting the prime
sites of convection. Hence no convection was possible
at any one site during this time. All together, these fin-
dings support the MacAyeal (1993b) model, claiming
internal ice oscillators as the ultimate forcing of short-

term climatic change. However, the model must be sup-
plemented by the need of meltwater injection proximal
to the sites of deep-water formation. This aspect may
also be crucial for assessing the Younger Dryas problem
(see below).

Meltwater influence on deep-water formation during
Heinrich events is also recorded in major benthic δ18O
brine water signals (Jansen and Veum 1990). West of the
Mid-Atlantic Ridge it extended nearly as far as the
Azores (∼ 40° N; Vidal et al. 1997), in the east, at least,
to the flanks of the Rockall Plateau, down to approxi-
mately 2800 m water depth (Fig. 8a). Further below, the
brine-water flux was weak. Here the total Atlantic was
flooded by poorly ventilated deep and intermediate water
from the Southern Ocean, except for a weakened out-
flow from the Mediterranean Sea (Fig. 11a; Sarnthein 
et al. 1994).

As a result of the turned-off THC, summer SST
during H1 were > 1–2 °C lower than during the LGM in
the eastern Nordic Seas, but slightly warmer in the
eastern North Atlantic (Figs. 5 and 12b, c). Accordingly,
heat advection to the far north ceased at that time to the
absolute minimum of the last 60 ky. These low temper-
atures also imply a broad expansion of perennial sea ice,
possibly up to the south of Iceland. However, accurate
sea-ice boundaries are still controversial (e.g. Koç et al.
1993).

Note that the short-term temperature drop in
northern high latitudes just matches, within the limits
of dating precision, a 1.5–3.0 °C warming of the tropi-
cal western Atlantic (Guilderson et al. 1994; Curry and
Oppo 1997; Rühlemann et al. 1998; Hüls et al. 1998;
however, opposed to a minor cooling in the western 
Caribbean; Prell et al. 1976). The same anti-phase 
warming during H1 is even more striking in two Ant-
arctic ice records (Blunier et al. 1998) and the isotope
records from the sub-Antarctic Atlantic (Ninnemann et
al. 1999).

On the one hand, temperature increase in the low-
latitude and southern Atlantic during H1 appears to be
consistent with a coeval deglacial increase in atmo-
spheric CO2 (Sowers and Bender 1995) and CH4 (Blun-
ier et al. 1998), which had already begun prior to H1.
Accordingly, the possible role of early greenhouse war-
ming in the tropics may be speculated upon. On the
other hand, the reversed THC, driven more by haline
than by thermal gradients, may have been more impor-
tant, since it stopped North Atlantic “heat piracy”
(Berger and Wefer 1996) from the tropical and southern
Atlantic and thus may have contributed significantly
and in various ways to western and southern Atlantic
warming. Basically this concept receives support from
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various coupled ocean-atmosphere models which have
simulated successfully, although not with perfectly
consistent results, the north-south ocean anti-phasing
triggered by meltwater in the North Atlantic (Manabe
and Stouffer 1997; Schiller et al. 1997; Marchal et al.
1998).

The Onset of the Modern /Holocene Mode and the
Conundrum of the Younger Dryas

Based on benthic δ13C values the modern /Holocene
mode of deep-water circulation (Fig. 11a) started with
full intensity throughout the Atlantic approximately
12.8 14C ky ago (Sarnthein et al. 1994; Charles and Fair-
banks 1992: 12.83 ka). This 14C age is also recorded at
the base of the Bølling warm phase (1) in terraces on
Svalbard (12.83 ka; Mangerud et al. 1992), (2) in core
MD952012 from the Barents slope (12.79 ka; Figs. 5
and 7; Dreger 1999), and (3) the Cariaco Basin (Hughen
et al. 1998; ∼ 12.75 ka). Moreover, the date corresponds
to the abrupt beginning of the Bølling interstadial at
∼ 14.7 cal. ka in the GISP2 ice core (Alley et al. 1993).
At this time, density in the central Nordic Seas reached
a level (Fig. 11a; Sarnthein et al. 1995) sufficient for
triggering the abrupt and full resumption of thermoha-
line circulation mode I, which possibly was also brine-
water induced (Figs. 8b, 9). This reversal provided the
pathway for a sudden and immense heat and moisture
flux up to the Arctic within a time span as short as
7–14 y (Alley et al. 1993), also reflected in a SST rise
of > 3 °C at 72° N (Fig. 5; Dreger 1999) and again in
anti-phase with an abrupt cooling recorded in two Ant-
arctic ice cores (Blunier et al. 1998).

Subsequent to the early Bølling ocean inversion
prior to the Younger Dryas (YD), significant meltwater
is not encountered either in the Nordic Seas (Sarnthein
et al. 1995) or in the northwestern Atlantic (de Vernal
1996; opposed to Broecker 1992; Keigwin and Jones
1995), i.e., meltwater which may have throttled NADW
formation and induced the cooling of the YD, 10.9–
10.2 14C ka or 12.9–11.6 cal. ka (Hughen et al. 1998;
Alley et al. 1993). Bodén et al. (1997) proposed the
drainage of the Baltic Ice Lake as a likely candidate 
for a major meltwater release during this time. How-
ever, its meltwater volume is minor and, in particular,
occurs too late, only near the Younger Dryas-Preboreal
boundary.

Likewise, both benthic δ13C (Boyle and Keigwin
1987) and recent benthic Cd / Ca records (Marchitto et
al. 1998; incorrectly plotting a “YD” arrow as late as
11.8 cal. ka) of western Atlantic deep and intermediate
water show that the Younger Dryas began with a Holo-

cene level of NADW formation at 12.9 cal. ka and prior
to a minimum in intermediate water strength at 12.4
cal. ka. A dramatic shut-down in NADW production
occurred much later, culminating near 11.8–9.8 ka cal.
ka, that is, near the end of the YD and mainly during the
early Preboreal, which becomes evident when age con-
trol is closely inspected (Fairbanks 1989). These results
are in line with the age of a well-dated δ13C minimum
in three other high-sedimentation rate cores from
2300–2500 m water depth in the eastern Atlantic (ODP
Site 658, 25 cm / ka, Maslin et al. 1996; V23-81,
> 12 cm/ka, Jansen and Veum 1990, Sarnthein et al.
1994; 23415, Jung 1996, suppl. by Weinelt, 7 cm/ka).
Various other high-resolution cores from pertinent
depths in the eastern Atlantic do not reveal any δ13C
minimum along with the YD (Sarnthein et al. 1994).

Accordingly, the Atlantic THC in the earlyYounger
Dryas was little different from the modern mode
(Fig. 11; Sarnthein et al. 1994; Berger and Jansen
1995). In contrast, a marked cooling of the sea surface
in the Nordic Seas is encountered, in particular during
YD winter (Fig. 12; Sarnthein et al. 1995), which may
imply that the Nordic Seas were largely sea-ice covered
during the cold season. Accordingly, the main question
still remains unsolved: Which mechanism then induced
the significant, primarily seasonal reduction in heat
transport to the high-latitude North Atlantic (Berger
and Jansen 1995)?

In their Hamburg atmospheric general-circulation
model (GCM) experiments Renssen et al. (1996) show-
ed that this sea-ice cover during winter was crucial in
forcing the atmospheric circulation pattern of the YD. In
particular, the jet stream over the North Atlantic and cy-
clonic activity over northern Eurasia were strengthened
considerably. However, this model does not explain the
considerable expansion of sea ice itself.

Here recent findings by Spielhagen et al. (1998) may
provide a genuine breakthrough. They report a conspic-
uous meltwater discharge from the Siberian Lena river
over less than 500 years at approximately 11 14C ky B.P.,
that is, right at the onset of the YD. At the same time a
major brine-water signal occurs in the deep central
Arctic (core PS2458; 60–65 cm/ky; Spielhagen et al.
1998). This massive meltwater flux, after having passed
the Fram Strait into the Greenland-Iceland-Norwegian
Seas, possibly led to conspicuous sea-ice formation and,
accordingly, to major cooling in the Nordic Seas during
winter. On the other hand, both the entrainment of cold
brine deep water from the Arctic and salt transport from
the Central Atlantic during summer induced an “in-
ternal momentum” of the THC, which was probably
strong enough to maintain the Holocene-type circula-
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tion system over the first part of the Younger Dryas, in
total a regime reminiscent of the recent Great Salinity
Anomaly (Dickson et al. 1996; Belkin et al. 1998) when
Arctic freshwater influx only induced a regional sup-
pression of deep-water formation.

Atlantic Ocean Modes and Global Carbon
Cycle

Takahashi et al. (1997 and 1995) measured the air-sea
difference in the partial pressure of CO2 (pCO2) in the
modern North Atlantic and calculated an air-sea net
flux of CO2, totaling up to 0.2–0.5 Gt C /y north of
42° N. This estimate may be conservative in view of the
δ13C values of Late Holocene alkenones, where the air-
sea pCO2 difference was doubled (Jasper et al. 1995).
In line with these figures, Broecker and Peng (1992)
concluded that the pre-industrial NADW flux sup-
ported a net transport of approximately 0.6 Gt C /y
(only 0.3 Gt C /y according to Keeling and Peng 1995)
from the Northern to the Southern Hemisphere. By con-
trast, the cross-equatorial net transport of carbon is only
0.15 Gt C /y in the model proposed by Sarmiento et al.
(1995: Fig. 8).

Probable long-term, i.e., glacial-to-interglacial and
millennial-scale variability in interhemispheric carbon
fluxes and air-sea fluxes in general have been identified.
Past variabilities in carbon fluxes were deduced from
biological productivity changes in North Atlantic surface
water, with special attention to abrupt changes in THC
tied to the Heinrich and Dansgaard-Oeschger cycles
(Kiefer 1998; Weinelt et al. in prep.). Short-term varia-
tions in deep-water ventilation in a vertical δ13C transect
extending over 4 km across the northeastern Atlantic
water masses (Fig. 8a; Jung 1996) have also been re-
constructed. Finally, actual numbers of the carbon bud-
gets were derived from modeling the carbon cycle during
the three fundamental modes defined for Atlantic (and
global) circulation (Schulz et al. in press).

Carbon Transfer via Plankton Productivity:
The “Biological Pump”

Near the southern margin of the Heinrich iceberg track
(Fig. 10; approximately 40°–50° N; Grousset et al.
1993), foraminifera-based paleoproductivity estimates
are generally increased by a factor of two over glacial
MIS 2 and 3 as compared to stage 1 (Fig. 16; Kiefer
1998). In addition, inferior maxima bracket most Hein-
rich IRD events, which themselves are linked to a short
episode of slightly reduced production (H2, H3, H4,

H5). Along the northern margin of the Heinrich iceberg
track (Fig. 16, core 23415) a series of short-term but
prominent pigment maxima have been interpreted as a
paleoproductivity record (Harris et al. 1996). In con-
trast to the southern margin, the general productivity
level in core 23415 barely increases from interglacial
to glacial times, as shown by pigment accumulation
rates (Weinelt et al. in prep.). However, short prominent
productivity spikes each match the top of (supposedly
strictly coeval) Heinrich IRD layers 1, 2, 4 and 5,
equal to the onset of D-O interstadials 1, 2, 8 and 12.
Moreover, they coincide with D-O events 5, 6 and 13
and the Preboreal subsequent to the Younger Dryas.

In the Nordic Seas, few glacial paleoproductivity 
records have been established (for technical reasons;
Weinelt et al. this volume), except for some rough esti-
mates based on the accumulation rates of planktonic
foraminifera (Weinelt unpubl. data). They may indicate
a general drop in foraminifera production from approx-
imately 125 ·103 specimens cm−2 ky−1 today to approx-
imately 15 ·103 specimens cm−2 ky−1 during the last gla-
cial, probably induced by long-lasting seasonal sea-ice
cover. Accordingly, glacial paleoproductivity reached a
level as low as that in the modern Arctic domain, nearly
an order of magnitude less than in the modern Atlantic
domain.

In summary, plankton productivity (and carbon trans-
fer to the deep ocean) during MIS 2–3 was nearly dou-
bled in comparison with the Holocene to the south of the
Heinrich iceberg track in the subtropics (Kiefer et al. in
prep.; Kiefer 1998). North of the Heinrich track, pro-
ductivity was as low as in the Holocene during glacial
times and stage-3 stadials, i.e., along with circulation
modes II and III. At this location, however, productivity
reached large maxima just near the onset of D-O inter-
stadials. These productivity pulses may result from an
extreme upward supply of nutrients from the deep
Atlantic right at any transition from THC mode III to
THC modes II or I.

Carbon Storage and Transport in Surface and
Deep Water: The “Conveyor Pump”

The modern transport of dissolved inorganic carbon
(DIC) by the Atlantic THC is reflected in north-south
gradients of δ13C in Atlantic surface and deep waters
(Kroopnick 1985; Sarnthein et al. 1994), which in turn
are recorded in planktonic and benthic foraminifera
tests (Duplessy 1982; Duplessy et al. 1988; Shackleton
1977; Spero et al. 1997; Zahn et al. 1986). In modern
sediments close to the sites of NADW formation, high
δ13C values of 1.6–1.7‰ in N. pachyderma (corrected
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for a vital effect of 0.85 ‰; Labeyrie and Duplessy
1985; Simstich 1988) depict a DIC depleted surface
water mass which is suitable for the uptake of atmo-
spheric CO2 (Sarnthein et al.1995). The initial δ13C sig-
nature of NADW, as shown in the epibenthic record of
C. wuellerstorfi, is approximately 1.3–1.5‰ near and
directly below the convection sites in the Greenland
Sea (Sarnthein et al. 1994; Weinelt et al. this volume).
As the NADW flows southward, the ongoing reminer-
alization of low-δ13C organic carbon results in a pro-
gressive δ13C depletion of DIC in deep water down to
less than 0.4‰ in the Southern Ocean (Fig. 11a). This
δ13C gradient reflects interhemispheric enrichment in
DIC and finally implies CO2 degassing near Antarctica,
where NADW is upwelled to the sea surface.

Despite a basically similar circulation pattern during
the late LGM (Fig. 11), integrated benthic δ13C anoma-
lies (−0.2 to −1.0‰) below 2000 m water depth suggest
an excess glacial carbon storage of ∼ 44 Gt in the eastern
Atlantic 60° N–30° S (Sarnthein et al. 1994) and prob-
ably an excess of more than 130 Gt C in the entire
Atlantic basin up to the Weddell Sea (when trebling the
eastern Atlantic number, assuming a threefold water
mass for the total Atlantic). This amount compares well
with the glacial-to-interglacial rise in atmospheric car-

bon content (170 Gt C; Sundquist 1993). No discernible
portion of glacial δ13C anomalies can be ascribed to an
eventual increase in preformed nutrients (sensu Redfield
et al. 1963), since the glacial δ13C values of deep water
close to its source at 60° N were higher by 0.4‰ than
they are today (1.75‰ vs. 1.35‰; Fig. 11a).

During the totally different Heinrich meltwater mode
III the excess storage of inorganic carbon rose to 70 Gt
in the eastern Atlantic (Sarnthein et al. 1994) and pre-
sumably, when trebling, to more than 210 Gt C in the
entire Atlantic. Possibly, a fraction of the mode II- and
mode III-induced δ13C lowering (0.25 to approximately
0.5‰ in the various water masses) may result from an
increase in the carbonate-concentration effect recently
postulated by Spero et al. (1997). In this case, estimates
of excess carbon storage in the Atlantic should be re-
duced.

Global Implications of North Atlantic Climate
Variability: Modeling Carbon Fluxes During the
Glacial and the Heinrich Meltwater Mode

To better assess the global implications of these first-
order estimates and the resulting oceanic and air-sea
carbon fluxes, they were evaluated independently on the
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basis of the carbon model specified in Figure 3 and Table
3 (Schulz et al. in press) for the three fundamental modes
characteristic of the Atlantic THC. Figure 17 shows that
modeled shifts in the Atlantic carbon reservoirs generally
reach an order of magnitude close to the figures directly
deduced from benthic δ13C anomalies, particularly with
regard to the shift from the meltwater mode back to the
modern state of the ocean. The model output may thus
provide an encouraging basis for assessing past changes
in the size of oceanic carbon reservoirs.

Accordingly, the major changes in the carbon bud-
get are the following. From interglacial to LGM times
the global air-sea carbon transfer leads to a drop 
of 72–114 Gt C in the atmosphere (equivalent to 34–
54 ppmv CO2), with carbon sequestered by the deep
Atlantic below 1.8 km and the Southern Ocean. This
transfer goes along with a small DIC depletion (up to 
−12 Gt C) in Atlantic surface and intermediate waters.
The transfer of 72–114 Gt C does not include the effect
of changes in total alkalinity probably needed to explain
the observed interglacial-to-glacial shift in atmospheric
pCO2 (Sowers and Bender 1995). With the transition
from LGM to Heinrich meltwater times net oceanic
carbon uptake is rarely increased or reduced (−17 /
+23 Gt C), however, the DIC gradient between the deep
Indo-Pacific and Atlantic comes close to zero (Fig. 18)
because of a total carbon transfer of approximately
77–93 Gt C from the Indo-Pacific and Southern Ocean
to the Atlantic. The most dramatic reorganization in
carbon reservoirs in the model results from the renewed
onset of deep-water formation in the North Atlantic sub-
sequent to the H1 meltwater event, at the onset of the
Bølling. Within a few hundred years nearly 49–131 Gt

C are removed from the Atlantic back to the atmosphere
(40–85%) and to the other ocean basins (15–60%; see
Figs.17,18) (Schulz et al. in press). This scenario is con-
sistent with pCO2 data from the Byrd ice core (Sowers
and Bender 1995).

This short-term oceanic carbon release of 49–131 Gt
C (corresponding to 23–62 ppmv CO2) comes close to
modern industrial carbon release in terms of both time
and magnitude (∼ 70 ppmv CO2) and may have contrib-
uted to abrupt climate amelioration at the beginning of
the Bølling. However, the probable increase in green-
house warming is coeval with the turning on of the
Atlantic THC and “heat pump“, which acts in the same
direction. Thus, the actual effect of the atmospheric CO2

rise can rarely be distinguished in paleoclimatic records,
either in the Northern or in the Southern Hemisphere.
Here it is outbalanced by the onset of North Atlantic
“heat piracy” which appears to dominate centennial-to-
millennial-scale climate variability in the Southern
Ocean (Ninnemann et al. 1999). Future high-resolution
ice-core studies may provide the necessary comple-
mentary records for a better understanding of unusual
climatic shifts tied to the end of Heinrich event 1.

Finally, the onset of the THC and sea-air release of
49–131 Gt C after Heinrich event 1 have also affected
the atmospheric 14C balance by reducing the 14C/ 12C
ratio by ∼ 3%, reflected in a “14C plateau” of approxi-
mately 150 years in the carbon model (Schulz et al. in
prep.; similar to the estimate by Stocker and Wright
1996), in contrast to the duration based on deep-water
coral dates (Dreger et al. in prep.), which suggest that
the plateau may actually have extended over 1000–1300
years. The difference in the duration of reconstructed
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and modeled “14C plateaus” may, in part, stem from 
underestimating the antecedent atmospheric 14C in-
crease linked to the turn-off of thermohaline circulation
during Heinrich 1. This, in turn, may stem from an in-
sufficient representation of the Heinrich meltwater lid in
the model.

Returning to the initial objective of this section, this
carbon model also provides a rough estimate of glacial-
to-interglacial variations in interhemispheric carbon flux
through the Atlantic. As expected, the model control run
results in a fairly small modern net transport of 0.153 Gt
C/y to the south (Exp. D in Schulz et al. in press) similar
to the number in the model by Sarmiento et al. (1995)
with data-based estimates by Broecker and Peng (1982)
and Keeling and Peng (1995). In contrast, the model 
reveals an nearly balanced flux of 0.046 Gt C/y to the
north during the LGM and an intensified northward
transport of 0.062 Gt C/y during the Heinrich 1 melt-
water mode.

Synthesis and Highlights

Over the last 60,000 years the North Atlantic realm has
played a key role in accentuating, even in triggering
global climatic changes on Milankovitch and centen-
nial-to-millennial time scales, even on time scales of
less than a decade, as documented in ice cores from
Greenland and Antarctica. To better constrain the causal
links of these changes paleoceanographic records from
approximately 115 sediment cores in the northern North
Atlantic, 30 of them AMS 14C dated, and from approxi-
mately 100 cores from the eastern Atlantic have been
established and compiled over the last decade. This data
set has assisted us in the reconstruction and simulation
of computational models, of basic modes of Atlantic
thermohaline circulation and heat transport and, finally,
of interhemispheric and interoceanic carbon fluxes over
marine isotope stages 1–3.

In harmony with Sarnthein et al. (1994), Yu et al.
(1996) and Stocker (1998) three extreme modes are rec-
ognized in the operation of Atlantic THC, more specifi-
cally, in the formation or reduction of North Atlantic
Deep Water (NADW). Mode I corresponds to the Holo-
cene /modern conditions, with intensive formation of
NADW, coupled to strong heat and moisture fluxes to
the continents adjacent to the northern North Atlantic.
Mode II corresponds to peak glacial climatic condi-
tions, i.e., a stable regime with the fluxes of upper and
lower NADW reduced by some 50% and, accordingly,
with a clear reduction in heat flux to northern Europe.
Cooling was further enhanced by an anticyclonic eddy

west of Ireland, induced by melting icebergs, which 
resulted in a cold-water flow down to southwestern
France. In contrast to previous views, this data suggests
that the glacial Nordic Seas remained ice-free during
summer. This would have formed, on the one hand, a
major source of moisture for the build-up of ice sheets
on the adjacent continents and particularly on the Ba-
rents shelf, and on the other hand, a minor source of ex-
tremely dense deep water as compared to the then dom-
inant sources south of Greenland.

Mode III is associated with the Heinrich meltwater
events, also applying to several stadials prior to D-O
events. This mode was controlled by large amounts of
meltwater from icebergs surging from the ice sheets on
the continents near the sites of deep-water convection.
The meltwater prevented any deep and intermediate
water formation in the North Atlantic and therefore, any
heat advection to Europe, probably tied to perennial sea
ice in the Nordic Seas. Mode III induced a reversed pat-
tern of the THC, stopped “heat piracy” in the Central
and South Atlantic, and hence producing warming in
parts of Antarctica and the South Atlantic.

In contrast to previous views (e.g. Broecker 1992),
the strongly seasonal THC of the early Younger Dryas
cold spell did not resemble mode III, but rather the
Holocene mode 1. The YD was possibly initiated by an
Arctic meltwater pulse from Siberian rivers (Spielhagen
et al. 1997, 1998). These results are based on well-dated
cores with sedimentation rates of 7–60 cm/ka. A late
YD-to-Preboreal switch to mode III is in line with deep-
water records from the western Atlantic (Boyle and
Keigwin 1987; Marchitto et al. 1998), when their age
control is closely inspected.
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Fig. 18: Average difference in DIC concentration at 2000 m
depth between the Atlantic (ATL) and combined Indo-Pacific
(INDPAC) for the three basic modes of THC. Width of bars gives
range of variability in different sensitivity experiments (Schulz
et al. in press)
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Employing this new combined ocean general cir-
culation/biogeochemistry box model (Schulz et al. in
press), the three modes of THC defined above resulted
in an interglacial-to-glacial drop in atmospheric CO2 of
34–54 ppmv (72–114 Gt C), primarily sequestered in the
deep Atlantic. Mode III did not add much to this figure,
but led to a carbon transfer of approximately 78–93 Gt
C from the Indo-Pacific and Southern Ocean to the
Atlantic. During the abrupt transition from mode III to
mode I, such as at the onset of the Bølling, 2–94 Gt C
were moved from the Atlantic to the other ocean basins,
and 49–131 Gt C (23–62 ppmv) were released to the at-
mosphere, equivalent to one to two thirds of the amount
recently released by fossil fuel burning and land use
changes. In the model this spectacular carbon release led
to a “14C plateau” of > 150 years.

The origin of the robust Dansgaard-Oeschger (D-O)
1500-y cycles in the GISP2 ice core was constrained in
five new ultrahigh- resolution (20–80 y-) paleoceano-
graphic records from the northern North Atlantic, dated
by > 320 AMS 14C dates and by fine tuning to the an-
nual layer counted time scale of the GISP2 temperature
record (Grootes and Stuiver 1997), with an age uncer-
tainty of ∼ 50–100 y relative to the GISP2 age scale, in
some cases reaching one-third of a D-O cycle (500 y).
The D-O cycles and, in some cases, their multiples 
represent millennial-scale changes between the three
THC modes. In the Irminger and Icelandic Seas the
oceanographic characteristics and origin of these cycles,
which basically do not differ from those of the 7200-y
Heinrich-Bond periodicities between 8 and 60 ka, ap-
pear as follows:

In the 1460-y frequency band, the fast cooling of 
D-O stadials in the Irminger Sea went in phase with
initial meltwater injections from East Greenland (and /
or the Arctic), here suggesting an internal trigger
mechanism in accordance with binge-purge models
(MacAyeal 1993a, b; Rahmstorf 1995). Based on the
phase lags of IRD, icebergs from East Greenland and
Iceland arrived to the north of the Denmark Strait
140 y and in the Irminger Sea only 280–240 y after
peak meltwater injection.

In turn, Heinrich ice rafting from the Laurentian ice
sheet (H1, H2, H4, H5) lagged ice rafting from Iceland
and was therefore probably induced by a slight sea-
level rise proceeding from the initial surge from East
Greenland and Iceland. Near the end of MIS 2 a major
surge from the then glaciated Barents shelf lagged the
initial D-O cooling by 1500 y and led to the most pro-
minent and extended reversal in Atlantic THC over the
last 60 ky (mode III at H1; probably also at the end of
MIS 4, at H6).

Meltwater stratification of the Irminger Sea reached
its maximum only 400 y after the IRD maximum and re-
sulted from sea-ice formation in brine-water signals
down to 3–4 km water depth, signals which preceded
the classic D-O jump to maximum warmth only by
< 130 y. Nearly in phase with this warming, brine-water
controlled deep-water formation possibly formed as a
result of a further entrainment of warm water from the
subtropics, the key mechanism for triggering the abrupt
onset of the Atlantic THC mode II and, in cases of a 
favorable insolation regime, the onset of mode I within
a decade or so.

No such mechanisms have been conceived yet
which are able to explain Holocene IRD and monsoon
periodicities near 1500 y (Sirocko et al. 1996; Bond et
al. 1997; Wang et al. 1998), thus providing an impor-
tant objective for future research.
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