Human Heat Vulnerability: The Development of a Web-Based Tool for Predicting Heat Stress Among High School Athletes

Bryttani Wooten, The Pennsylvania State University, Department of Meteorology
Dr. Charles Konrad, Southeast Regional Climate Center; Carolinas Integrated Sciences and Assessments; The University of North Carolina at Chapel Hill, Department of Geography
Tamara Houston, National Centers for Environmental Information

Background

- Wet-Bulb Globe Temperature (WBGT) is a better metric of heat severity than heat index (HI), as it includes not only air temperature, humidity, but also solar radiation, and wind speed
- SERCC and CISA created a five day WBGT forecast tool that currently covers Virginia and North Carolina and will soon be expanded to rest of the continental US
- Uses inputs from the gridded National Weather Service’s NDFD model for Wet-Bulb Globe Temperature (WBGT) is a better metric of heat severity than heat index (HI)

Methodology

Data

* Measured data:
 - Observations were taken during football practice times at seven high schools across North Carolina during late summer to early fall of 2019

Model data:

- Two models were used: National Blend of Models (NBM) and National Digital Forecast Database (NDFD)
- Four runs of the input forecast data per day (00Z, 06Z, 12Z, 18Z)
- NDFD model had less forecast data than NBM model
 - NDFD: hourly (0-36), 3-hourly (39-192), 6-hourly (198-264)
 - NBM: hourly (0-36), 3-hourly (39-120), 6-hourly (123-264)

Methods

- Biases were calculated for a range of forecast hours (from 6 – hours to five – days in advance using the following formula:

 \[\text{Bias} = \text{forecast}\ \text{WBGT} - \text{measured\ WBGT} \]

Results

Summary Data Table

<table>
<thead>
<tr>
<th>High School</th>
<th>Landscape Type</th>
<th>Percentage of Observations</th>
<th>Average Wind Speed (mph)</th>
<th>Average WBGT Bias (Temp)</th>
<th>Total # of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Sheltered</td>
<td>Sheltered</td>
<td>Sheltered</td>
<td>Sheltered</td>
<td>Sheltered</td>
</tr>
<tr>
<td>Farmville Central HS</td>
<td>52 (14)</td>
<td>61 (10)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
<tr>
<td>Lumberton HS</td>
<td>56 (15)</td>
<td>61 (11)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
<tr>
<td>High Point HS</td>
<td>56 (14)</td>
<td>61 (10)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
<tr>
<td>Wheatmore HS</td>
<td>56 (14)</td>
<td>61 (10)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
<tr>
<td>Farmville HS</td>
<td>56 (15)</td>
<td>61 (12)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
<tr>
<td>Rocky Mount HS</td>
<td>56 (15)</td>
<td>61 (12)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
<tr>
<td>Wheatmore HS</td>
<td>56 (15)</td>
<td>61 (12)</td>
<td>35 (5)</td>
<td>35 (5)</td>
<td>94 (19)</td>
</tr>
</tbody>
</table>

Figure 3: High school locations across North Carolina where measurements were taken. Source: ArcGIS

Discussion and Future Research

Discussion

- The morning hours have a greater bias than evening hours
- Microclimate/landscape has major influence in WBGT forecast bias
- Lower wind speeds have much greater influence on bias than higher wind speeds
- WBGT Tool will be improved by incorporating landcover information (e.g. surface roughness) to account for differences across microclimates.

Future Research:

- Mapping and exploring vulnerability to heat acclimatization on a variety of factors such as:
 - Behavioral/environmental factors (ex. poverty)
 - Health related factors (ex. asthma)

Acknowledgements:

Special thank to the National Oceanic and Atmospheric Administration for funding this summer’s research. Another thank you to Dr. Charles Konrad and Tamara Houston for their support for the duration of this project.