Scaled Interfacial Activity of Proteins at a Hydrophobic Solid-Water Interface

A Contribution from the Hematology at Biomaterial Interfaces Research Group

By

Anandi Krishnan,† Yi-Hsiu Liu,‡ Paul Cha,‡ David Allara,‡• and Erwin A. Vogler*†‡

Departments of Bioengineering,† Chemistry,* Materials Science and Engineering‡
The Pennsylvania State University
University Park, PA 16802

* Author to whom correspondence should be addressed EAV3@PSU.EDU

Key words: Protein Adsorption, hydrophobic solid-liquid interface, blood proteins, FXII, coagulation, SAM

Running title: Scaled Interfacial Activity of Proteins
Abstract

Contact angle goniometry confirms that interfacial energetics of protein adsorption to the hydrophobic solid-water (solid-liquid, SL) surface is not fundamentally different than adsorption to the water-air (liquid-vapor, LV) interface measured by pendant-drop tensiometry. Adsorption isotherms of 9 globular blood proteins with molecular weight (MW) spanning 10-1000 kDa on methyl-terminated self-assembled monolayer surfaces demonstrate that (i) proteins are weak surfactants, reducing contact angles by no more than about 15° at maximum solution concentrations (~10 mg/mL); (ii) the corresponding dynamic range of spreading pressure $\Pi_a < 20$ mN/m; and (iii) the maximum spreading pressure Π_a^{\max} for these diverse proteins falls within a relatively narrow 5 mN/m band. As with adsorption to the LV interface, we find that concentration scaling substantially alters perception of protein interfacial activity measured by Π_a. Proteins appear more similar than dissimilar on a weight/volume basis whereas molarity scaling reveals a systematic ordering by MW, suggesting that adsorption is substantially driven by solution concentration rather than diversity in protein amphilicity. Scaling as a ratio-to-physiological-concentration demonstrates that certain proteins exhibit Π_a^{\max} at-and-well-below physiological concentration whereas others require substantially higher solution concentration to attain Π_a^{\max}. Important among this latter category of proteins is blood factor XII, assumed by the classical biochemical mechanism of plasma coagulation to be highly surface active, even in the presence of overwhelming concentrations of other blood constituents such as albumin and immunoglobulin that are shown by this work to be among the class of highly-surface-active proteins at physiologic concentration. The overarching interpretation of this work is that water plays a dominate, controlling role in the adsorption of globular blood proteins to hydrophobic surfaces and that energetics of hydration control the amount of protein adsorbed to poorly-water-wettable biomaterials.
1. Introduction

The protein adsorption problem – how (glyco)proteins selectively collect at biomaterial surfaces from complex solutions such as blood; the structure-property relationships connecting surface chemistry/energy to the extent and specificity of protein adsorption; and the manner by which surface-bound protein directs ‘biological responses’ such as blood coagulation, cell/tissue adherence, or fouling of medical devices – remains one of the quintessential unsolved mysteries of biomaterials surface science. And yet a full understanding of protein adsorption is essential to prospective, fundamentals-driven design of biomaterials. This is because protein adsorption is among the first molecular-level interactions with a biomaterial that ultimately lead to biocompatibility - or lack thereof (see, for example, refs. 1-5 and citations therein).

Our work probing each of the above aspects of the protein adsorption problem strongly implicates water as a moderating or mediating agent.6-10 We have pursued the long-standing hypothesis that surface interactions with water and reorganization of ions near the water-contacting surface precede protein adsorption,11 forming a hydration layer extending some (generally unknown) distance from the water-contacting surface with which protein molecules interact.10 This layer is variously referred to as bound water12-14 or vicinal water6,15 or as an interphase;16,17 depending on the context and application. However termed, we find that vicinal water controls protein adsorption to surfaces, resisting displacement by adsorbing protein molecules. In turn, resistance to displacement depends on the affinity of water for the surface,10,17 and so protein adsorption is found to scale with surface energy (water wettability).18-20 According to this view, water-wettable surfaces (a.k.a hydrophilic)21 with strongly-bound vicinal water adsorb little-or-no protein directly onto the surface; although this does not

1
necessarily rule out collection of protein near the surface in a manner that does not require dehydration of the surface.6,10,22-24 By contrast, proteins can adsorb directly onto poorly-water-wettable (hydrophobic) surfaces by displacing relatively weakly-bound vicinal water.18-20

Detailed examination of these basic principles operating at the water-air (liquid-vapor, LV) interface, a molecularly-smooth hydrophobic surface, strongly suggests that water does indeed orchestrate a clearly-discernable, systematic pattern in protein adsorption.25 Specifically, we find that: (i) variation in globular blood protein “amphilicity” (interaction energetics with water) with composition spanning 3 decades of molecular weight (MW) is surprisingly modest; (ii) the equilibrium partition coefficient P (ratio of interphase-to-bulk concentration) is relatively constant across this diverse group of proteins ($10^2 < P < 10^3$; with $P \sim 150$ taken as nominal value); (iii) the interphase capacity for protein is limited by the extent to which the LV surface can be dehydrated by displacement of interfacial water by adsorbing protein; and that (iv) molar concentrations required to fill the LV interphase follow a “homology in protein size” consistent with packing hydrated spheroidal molecules within this space.16 This latter effect is particularly interesting because it predicts that molar-interphase concentrations scale inversely with protein MW and, as a consequence, multiple layers of higher-MW proteins (MW > 125 kDa) are required to fully fill the LV surface. For example, one molecular layer of albumin (MW = 66.3 kDa) is predicted to fully saturate the LV surface whereas two layers of IgG (MW = 160 kDa) are required (both of which have been confirmed experimentally),26,27 and five layers of IgM (MW = 1000 kDa) form at the saturated LV surface16 (which apparently awaits experimental verification).
It turns out that fixed LV surface capacity for protein at approximately constant P imposes significant constraints on the protein adsorption problem. That is to say, because protein adsorption is more about solvent than adsorbate, a tractable quasi-thermodynamic theory describes a phenomenon that would otherwise be overwhelmingly complex for more than just a few proteins in solution. In fact, a straightforward set of “mixing rules” stipulates both concentration and weight-fraction distribution of proteins adsorbed to the LV interphase from multi-component aqueous solutions such as blood plasma or serum at equilibrium.\(^{28}\) These mixing rules rationalize the long-known but otherwise unexplained observations that (i) LV interfacial tension γ_{lv} of blood plasma and serum is nearly identical, in spite of the fact that serum is substantially depleted of coagulation proteins such as fibrinogen; and (ii) γ_{lv} of plasma and serum derived from human, bovine, ovine, and equine blood is practically identical, even though there are substantial differences in the plasma proteome among these species.\(^{29}\) Thus, in summary, we find that protein adsorption to the LV surface, including certain aspects of the Vroman effect,\(^{28}\) can be quite well understood on the basis of the behavior of water at surfaces.

This paper discloses results of an investigation of protein adsorption to a well-defined, hydrophobic solid-water (solid-liquid, SL) interface. Methyl-terminated self-assembled thiol monolayers (SAMs) on gold-coated semiconductor-grade silicon wafers exhibiting water contact angles $\theta_a \sim 110^\circ$ are used as test substrata. Time-and-concentration-dependent contact angles are used to measure adsorption energetics of (globular) proteins spanning 3 decades in MW in a manner that parallels the above-cited studies of protein adsorption to the LV surface. We find that the basic pattern observed at the LV surface is repeated at the hydrophobic SL surface,
supporting our contention that water is the significant controller of protein adsorption to biomaterial surfaces.

2. Materials and Methods

Purified Proteins and Synthetic Surfactants: Table 1 compiles pertinent details on proteins and surfactants used in this work. Protein purity was certified by the vendor to be no less than the respective values specified in Column 4 of Table 1, as ascertained by electrophoresis (SDS-PAGE or IEP). Mass, concentration, and molecular weights supplied with purified proteins were accepted without further confirmation. Issues associated with protein purity, especially contamination with surfactants, and the potential effect on measured interfacial tensions were discussed in detail in ref. 25. The single value given in Table 1 for physiological concentration of human proteins (Column 5) applied in this work was middle of the range listed by Putnam.30 Serial dilutions of protein stock solutions (usually 10 mg/mL) were performed in 96-well microtiter plates by (typically) 50:50 dilution in phosphate buffered saline solution (PBS) prepared from powder (Sigma Aldrich) in distilled-deionized (18 MΩ) water using procedures detailed in ref. 25 (interfacial tension of PBS and water was checked periodically by Wilhelmy-balance tensiometry). Between 24-30 dilutions were prepared in this manner, covering a dynamic range between 10^{-10} to 1 % (w/v), taking care to mix each dilution by repeated pipette aspiration and avoiding foaming of concentrated solutions.

Surfaces: Methyl-terminated self assembled monolayer surfaces (SAMs) were prepared according to standard methods of surface engineering. Details involved have been reported elsewhere.31-35 Briefly, silicon wafers were pre-cleaned in hot 1:4 H₂O₂ (30%)/H₂SO₄ and rinsed
with distilled-deionized H2O and absolute ethanol. Gold-coated wafers were prepared by vapor deposition of chromium and gold (99.99% purity), from resistively-heated tungsten boats, onto clean 3-in. diameter silicon wafers at about 1 x 10⁻⁸ torr base pressure, in a cryogenically pumped deposition chamber. The sample was not allowed to rise above ~40°C during the evaporation. Film thicknesses, monitored with a quartz crystal oscillator, were typically 15 nm and 200 nm for chromium and gold, respectively. Chromium was deposited prior to that of gold to enhance adhesion to the substrate. After deposition, the chamber was backfilled with research-grade nitrogen. Gold-coated samples were removed and immersed in 1mM solutions of 1-hexadecanethiol (CH₃(CH₂)₁₅SH) in ethanol, contained in glass jars, at ambient temperature, for at least 3 days. The alkanethiol (Aldrich Chemical Co., Milwaukee, WI) and ethanol (commercial reagent-grade) were used as-received, without further purification. Samples were stored in the thiol solution until use, and were rinsed with ethanol just prior to an experiment.

Tensiometry & Goniometry: Liquid-vapor interfacial tensions required by this work were measured by Pendant Drop Tensiometry (PDT) as described in refs. 16,25,28,29. Contact angle and wettability methods applied in this work have been disclosed in detail elsewhere, including verification that measured advancing angles (θₐ) were in statistical agreement with that obtained by Wilhelmy balance tensiometry.³⁶,³⁷ Receding angles (θᵣ) were shown to be not as reliable as θₐ. Consequently, only θₐ was analyzed in this work. Briefly, for the purposes of this paper, θₐ measurements were made using a commercial automated tilting-plate goniometer (TPG, First Ten Angstroms Inc., Portsmouth VA). The goniometer employed a Tecan liquid-handling robot to aspirate 12 µL of solutions contained in a 96-well microtiter plate prepared by the serial-dilution protocol mentioned above. We found that dip-coating of disposable polypropylene tips
in a commercial perfluorocarbon hydrophobizing agent (NYEBAR, NYE Lubricants Inc.; Bedford, MA) followed by water wash and air drying greatly aided dispensing of drops, especially at the highest protein concentrations (lowest γ_{lv}). This coating procedure was shown not to measurably affect interfacial tensions or contact angles. The robot was used to reproducibly transfer the tip with fluid contents into a humidified (99+ % RH) analysis chamber and dispense 10 µL drops of protein solution onto the surface of test substrata (see below) held within the focal plane of a magnifying camera. These and all other aspects of tilting-plate goniometry were performed under computer control. Proprietary algorithms supplied by the vendor were used to deduce contact angles from drop images captured at a programmed rate by a frame grabber. Typically, 600 images were captured at a rate of 1 image every 6 sec following 0.25 sec delay to permit vibrations of the expelled drop to dampen. Drop evaporation rates within the humidified chamber deduced from computed-drop volumes (based on image analysis) were observed to vary with solute concentration, generally ranging from approximately 25 nL/min for pure water to 10 nL/min for solute solutions > 0.1% w/v. The impact of this evaporation rate over the 60 min time frame of the experiment was apparently negligible, as gauged from the behavior of purified surfactants discussed in the results section and in ref. 37. Precision of θ_a was about 0.5° based on repeated measurement of the same drop. The analysis chamber was thermostated to a lower-limit of 25±1 °C by means of a computer-controlled resistive heater. Upper-temperature limit was not controlled but rather floated with laboratory temperature, which occasionally drifted as high as 29 °C during summer months. Thus, reported θ_a values were probably not more accurate than about 1° on an inter-sample basis considering the small, but measurable, variation of water interfacial tension with temperature. This range of accuracy was deemed adequate to the conclusions of this report which do not strongly depend on
more highly accurate θ_a that is difficult to achieve on a routine basis. Instead, veracity of arguments raised herein depend more on a breadth of reliable measurements made across the general family of human proteins.

Test substrata were held on a rotating, tilting-plate platform driven by stepper motors under computer control. Substrata were allowed to come to equilibrium within the sample-chamber environment for no less than 30 min before contact angle measurements were initiated. The platform was programmed to tilt at 1°/sec from horizontal to 25° after the drop was deposited on the surface by the robot. The optimal (incipient rolling) tilt angle was found to be 25° and 15° for solutions of proteins and surfactants, respectively. The first 120 sec (20 images) monitored evolution of the advancing angle. At the end of the 1 hr θ_a measurement period, the platform was programmed to return to horizontal and rotate 15° to the next analysis position along the periphery of the semiconductor wafer. This process was repeated for all dilutions of the protein under study so that results reported for each protein were obtained on a single test surface, eliminating the possibility of substratum variation within reported results. We observed that the contact angle of a pure PBS droplet slowly decreased with time from the initial value of $108°<\theta_a<106°$ at $t = 0$ to $104°<\theta_a<102°$ at $t = 1$ hr; where θ_a is the pure buffer contact angle and the range of reported results corresponds to all of the 16 methyl-terminated SAM surfaces analyzed during the course of this work. We attribute this systematically-varying wettability to slow “hydration” of SAM surfaces but have no specific proof this was the cause. This same phenomenon apparently affects measurement of protein-solution contact angles because we observed that the whole contact angle isotherm (θ_a vs. concentration) slowly shifted lower with time (see Fig. 1B). We do not believe this slight but apparently unavoidable attribute of SAMs
on silicon wafers negatively affects the veracity of conclusions drawn herein which were based on final, steady-state measurements made at ~ 1 hr analysis time.

Computation and Data Representation: Computational, statistical, and theoretical methods used in this work have been discussed in detail elsewhere.17-19 In brief, time-dependent θ_a data corresponding to protein dilutions (see above) were recovered from TPG files and correlated with concentrations, leading to a matrix of results with row values representing concentration and time (in sec) as column values. It was generally observed that θ_a isotherms were sigmoidal in shape when plotted on logarithmic-concentration axes,17,18 with well-defined low-concentration asymptotes θ^o_a and high-concentration asymptotes θ'_a (see Fig. 1 for examples). Successive non-linear least-squares fitting of a four-parameter logistic equation

$$
\left[\theta_a = \frac{\theta^o_a - \theta'_a}{1 + (\ln C_B^{\Theta/2} / \ln C_B)^M} + \theta'_a \right]$

to contact angle isotherms data for each time within the observation interval quantified θ^o_a and θ'_a parameters with a measure of statistical uncertainty. Fitting also recovered a parameter measuring concentration-at-half-maximal-change in θ_a, $\ln C_B^{\Theta/2}$ (where $\Theta / 2 = 1/2 \Theta^{\text{max}}$ and $\Theta^{\text{max}} \equiv \theta^o_a - \theta'_a$), as well as a parameter M that measured steepness of the sigmoidal curve. This multi-parameter fitting to concentration-dependent θ_a data was a purely pragmatic strategy that permitted quantification of best-fit protein and surfactant characteristics but is not a theory-based analysis.17-19 Three-dimensional (3D) representations of time-and-concentration θ_a data were created in Sigma Plot (v8) from the data matrix discussed above and overlain onto fitted-mesh data computed from least-squares fitting. Two-dimensional (2D) representations were created from the same data matrices at selected
observation times. Measured θ_a were converted to advancing adhesion tension $\tau_a = \gamma_{lv} \cos \theta_a$ for general interpretation,17 where γ_{lv} is the interfacial tension of the contact-angle fluid. Adhesion tensions $\tau_a^o = \gamma_{lv} \cos \theta_a^o$ (pure saline) and $\tau_a^' = \gamma_{lv} \cos \theta_a^'$ (at the minimum contact angle observed $\theta_a^'$) were computed with fitted parameters γ_{lv}^o and $\gamma_{lv}^'$ reported in ref. 25 for the proteins under investigation. Smoothed adhesion-tension isotherms (τ_a vs. $\ln C_a$) were computed from smoothed θ_a obtained from θ_a isotherms above, using smoothed γ_{lv} values computed from best-fit parameters reported in ref. 25. Likewise, smoothed spreading pressure isotherms (Π_a vs. $\ln C_a$) were computed from smoothed τ_a curves where $\Pi_a \equiv \left(\tau_a - \tau_a^' \right)$.

3. Results and Discussion

Results and discussion are combined into one section because it is efficient to introduce and discuss the different facets of the work in the sequence that follows and then combine separate observations in the Conclusions section. The presentation follows the basic outline used in a companion paper published in this journal describing protein adsorption to the LV surface.25 First, general characteristics of the quantitative data are described, comparing proteins to a surfactant reference compound and placing data into an overall context for interpretation. Results are then interpreted graphically by scaling concentration-dependent SL interfacial tensions in three different ways that give different insights into protein interfacial activity and provoke interpretation in terms of the behavior of water at surfaces.
General Aspects of the Data: Table 2 compiles quantitative results of this work. Contact angle parameters θ^o, θ', $\ln C_B^{\theta^{1/2}}$ and M listed in cols 2-5 of Table 2 are the mean fitted values corresponding to final 25 θ curves recorded within the 60-minute time frame of the TPG experiment. Listed error is standard deviation of this mean. Corresponding adhesion tensions τ^o and τ' (Columns 6, 7) were computed from θ^o and θ' values, respectively, with uncertainty estimates computed by propagation of error in θ and γ_i measurements (Methods and Materials). Maximum “spreading pressure” $\Pi^\text{max} \equiv \left(\tau' - \tau^o\right)$ (Column 8) was computed directly from aforementioned τ values and associated uncertainty again estimated by propagation of error. Replicate protein preparations were studied for Ub, FV HSA, FXII, IgM and α_2-macroglobulin. Different vendors were used as a means of controlling for discrepancies that might arise from sourcing (Table 1). In consideration of all sources of error ranging from solution preparation to data reduction (including purity of commercial protein preparations discussed in ref. 25), we conclude that variation associated with manipulation and dilution of protein concentrates ($\sim 10 \text{ mg/mL}$; includes transfer losses by adsorption to pipettes, vials, and wells; slight but inevitable foaming of proteins brought into solution from powder; etc.) overwhelms θ measurement error discussed in the Materials and Methods and that differences between preparations or vendors were insufficient to affect basic conclusions of this work.

Quantitative Comparison of Proteins and Surfactants: Concentration-dependent contact angles of protein and surfactant solutions (θ isotherms) on methyl-terminated SAMs fell into one of two categories, identified herein as Type 1, 2. Type 1 θ curves were clearly sigmoidal with distinct low- and high-concentration plateau (see, as examples, Figs. 1 A and B) measured
by θ_a^c and $\dot{\theta}_a$ parameters. Steady-state was apparently achieved in Type 1 adsorption at-or-before 1 hr drop age whereupon kinetic effects in θ_a were no longer resolvable at any concentration (less than about 1°). No semblance of a θ_a plateau was reached at the highest concentrations studied for Type 2 proteins (ubiquitin and α_2-macroglobulin; see Fig. 1C for an example). Only graphical estimates are provided in Table 2 for Type 2 protein parameters since firm values could not be ascertained by statistical fitting procedures described in the Methods and Materials section. No attempt was made to estimate the exponential parameter M for Type 2 proteins. It was not evident from this work whether these proteins would exhibit Type 1 behavior if yet-higher concentrations were available for study. We note, however, that kinetic effects had fully dampened for Type 2 adsorption within the interval $3500 < t < 3600$ sec of the TPG experiment. This strongly suggests that steady-state had in fact been achieved, but that higher solution concentrations were required to saturate the surface and achieve a verifiable θ_a plateau. Moreover, we note that large proteins such as IgM achieved steady state over the 60 min observation interval, confirming that mass transport and adsorption kinetics could indeed be completed within the time frame of the TPG experiment, even for much larger proteins. We thus conclude that Type 2 adsorption was concentration-rather than time-limited. Indeed, theoretical interpretation of protein adsorption to the LV interface suggests that surface-saturating concentrations for small proteins such as ubiquitin (10.7 kDa) exceed solubility limits, explaining why a verifiable θ_a plateau was not achieved for this protein. This same argument cannot be applied to results obtained for a molecule as large as α_2-macroglobulin (725 kDa), however, and the outcome for this protein stands exceptional, not only to others listed in Table 1 but also to studies of adsorption of this protein to the LV surface.
θ^o_a (column 2, Table 2) is a measure of variability in surface-to-surface preparation procedures measured with a droplet of pure PBS in contact with the surface for 1 hr. Scanning down the rows of column 2, it is apparent that θ^o_a data fell between 104° and 100°. Much of this variability can probably be attributed to differences in substratum “hydration” that gives rise to a small but clearly observable decrease in θ^o_a with time (see arrow annotation, Fig. 1B and Methods and Materials). Adsorption of either protein or surfactant to the solid surface from aqueous solution leads to measurable, concentration-dependent decrease in θ_a to lower limit values θ_a collected in column 3. In the case of proteins, this decrease in contact angle was quite modest, generally less than 15°, and showed little discernable trend among the proteins listed in Table 1. By contrast, the surfactant reference standard SDS gave rise to about 44° decrease in θ_a.

Adsorption energetics are best gauged in terms of adhesion tension $\tau_a = \gamma_v \cos \theta_a$ because τ is linearly related to free energy of adsorption ΔG_{ads} that simultaneously accounts for adsorption to the LV and SL surface.6,17-19 Columns 6 and 7 of Table 2 collect τ^o_a and τ'_a parameters (corresponding to measured θ^o_a and θ'_a) and converts these to “spreading pressure” $\Pi^\text{max}_a \equiv (\tau'_a - \tau^o_a)$ in column 8. Examination of Π^max_a values shows that albumin and α_2-macroglobulin exhibited the strongest biosurfactancy whereas C1q was weakest on this scale. However, from a broader perspective, it is apparent that proteins studied were more alike than dissimilar, as has been noted in adsorption to the LV surface.16,25,28,29 Proteins clearly exhibited modest surfactancy compared to SDS for which $\Pi^\text{max}_a = 31 \text{ mN/m}$. The free energy of protein adsorption to the hydrophobic surface $\Delta G^\alpha_{ads} = -RT \ln P$ must be commensurately modest and,
based on a partition coefficient \(P \sim 150 \) (see Introduction), \(\Delta G_{\text{ads}}^0 = -RT \ln P \sim -5RT \); consistent with estimates for lysozyme, myoglobin, and \(\alpha \)-amylase determined by hydrophobic interaction chromatography.\(^{38}\)

With the above in mind, it is of interest to estimate the extent that adsorption depletes a fluid phase in contact with a hydrophobic surface because it provides a tangible sense of protein surfactancy. Adopting 2 mg/m\(^2\) as a nominal protein concentration adsorbed to the surface of a hypothetical 10 \(\mu \)L spherical drop (2.2X10\(^{-5}\) m\(^2\) surface area) from a surface-saturating 3 mg/mL bulk-phase composition (e.g. albumin adsorbed to the LV surface as determined by neutron reflectometry),\(^{16,26}\) it is evident that only 47 ng or about 0.15 % of bulk-phase protein is removed by adsorption. Thus, it can be concluded that protein adsorbed from a contact-angle droplet to a hydrophobic surface does not significantly deplete the bulk fluid phase. That is to say, proteins are weak surfactants. Indeed, it may be reasonably concluded from this simple analysis that proteins do not adsorb avidly to hydrophobic surfaces, as is commonly acknowledged,\(^{39,40}\) if solution depletion is used as the measure of adsorption. At the same time, however, it must be borne in mind that a partition coefficient \(P \sim 150 \) means that interphase concentrations expressed in mass or moles per-unit-volume (not mass or moles per-unit-surface area) are 150X bulk-phase compositions (i.e. \(\sim 450 \) mg/mL at surface saturation).\(^{16,28}\) Certainly, from this point of view, proteins do adsorb avidly to a hydrophobic surface. These seemingly divergent perspectives of protein adsorption can be reconciled by recognizing that the (LV or SL) interphase is very thin, between 1 and 5 molecular layers for the proteins studied herein,\(^{16}\) with a commensurately low total volume that effectively magnifies surface concentrations expressed in per-unit-volume dimensions. Thus, even though protein saturates a hydrophobic
interphase at volume fractions as high as 1/3^{16}, the total mass of protein within this interphase is sparingly small in comparison to that contained in a macroscopic volume of bulk solution.

It is of special interest to the development of hemocompatible materials that FXII did not exhibit extraordinary adsorption behavior ($\Pi_a^{\text{max}} \sim 15 \text{ mN/m}$) because FXII adsorption from whole blood or plasma to procoagulant materials is thought to potentiate the intrinsic pathway of coagulation. As will be discussed subsequently, FXII surface activity is substantially mitigated by a low-physiologic concentration that does not sustain a high level of interfacial activity.

Graphical Interpretation of Results: Time-and-concentration-dependent θ_a for the anionic surfactant SDS, purified protein HSA (Fraction V, FV HSA), and α_2-macroglobulin are compared in Fig. 1 in both three-dimensional (3D, θ_a as a function of time and concentration) and two-dimensional (2D, θ_a as a function concentration at specified times) representations. Examining first 3D and 2D representations of SDS interfacial activity (Fig. 1A) which serves as a reference compound, it was observed that the θ_a curve was sigmoidal in shape, with a well-defined low-concentration asymptote θ_a^low and a high-concentration asymptote θ_a^high characteristic of Type 1 adsorption. In this latter regard, SDS and HSA exhibited similar concentration-limiting behavior (compare Fig. 1 A and B) that is typically interpreted as formation of a critical micelle concentration (CMC), at least for surfactants. This paper provides no evidence of micelles, for either proteins or surfactants, and so only acknowledges a limiting behavior at which further increase in solute concentration did not measurably change θ_a. Unlike SDS, however, adsorption/mass transfer kinetics significantly affected early-time θ_a measurements of HSA.
solutions, although steady state was achieved well before the final observation time at 3600 sec. Kinetic effects were even more pronounced for large proteins such as α_2-macroglobulin (Fig. 1C) for which Type 2 adsorption behavior was observed. Thus Fig. 1 captures the significant adsorption trends quantified in Table 2.

Scaled Interfacial Activity: Fig. 2 traces the sequential interpretation of steady-state, concentration-dependent θ_a data (Fig. 2A, observed at 1 hr drop age) in terms of τ_a (Fig. 2B) and spreading pressure Π_a (Fig. 2C) isotherms for the proteolytic enzyme thrombin (blood factor FIIa). Smooth curves through the data (see Methods and Materials) provide guides to the eye. Figs. 3 A, B and C compare Π_a curves for proteins selected from Table 1 to cover the full range of molecular weight (MW) studied in this work. Concentration is scaled in three different ways in Fig. 3 for direct comparison; by weight (Fig. 3A), molarity (Fig. 3B), and ratio-to-physiological concentration, C_p (Fig. 3C). Only smoothed curves corresponding to steady-state (equilibrium) are shown for the sake of clarity, but representative θ_a, τ_a and Π_a curves with authentic data are amply illustrated in Figs. 1 and 2. The following discusses results of each scaling method in order of appearance on Fig. 3. These different scaling methods sharpen general impressions about the energetics of protein adsorption that are particularly pertinent to the controlling role of water in protein adsorption discussed in the Introduction.

Fig. 3A compares Π_a curves with C_p expressed in parts-per-trillion (i.e. PPT, grams solute/1012 g solvent, so that the ln C_p scale has positive values at all concentrations). Weight scaling is applicable to purified proteins, protein mixtures, and surfactants alike, permitting comparison of
interfacial activity on a single concentration axis.17-19 Two features are readily apparent from Fig. 3A. First, the dynamic range of $\Pi_a \sim 20 \text{ mN/m}$ is consistent with weak surfactancy, as discussed in the previous section, and is similar to that observed for these proteins at the LV surface ($15 < \Pi_a < 30 \text{ mN/m}$). Second, $\Pi_{a \text{ max}}$ lies within a relatively narrow 5 mN/m band for this diverse set of proteins (with MW spanning nearly three orders of magnitude; see Table 1). Thus, it is evident from Fig. 3A that, on a weight basis, proteins exhibit quite similar SL interfacial activity, mirroring the general experience with these proteins at the LV surface.25

Bearing in mind the great range in MW spanned by proteins in Fig. 3, it is reasonable to conclude that commensurate variability in protein structure does not confer widely varying SL interfacial activity; at least not in comparison to the full range available to ordinary surfactants.

However convenient weight scaling may be, it is nevertheless true that free-energy and stoichiometry scale on a molar basis. Thus, for the purpose of better understanding interfacial energetics, it is useful to express bulk concentration C_B in molar units. We have chosen to express solute dilution C_B in picomoles/L (i.e. picomolarity, pM, 10^{-12} moles solute/L solution so that the $\ln C_B$ scale has positive values for all dilutions) for solutes with a known (nominal) MW. This approach is applicable to purified proteins and surfactants but not to chemically-undefined protein mixtures such as plasma and serum. Variability in interfacial activity among the diverse purified proteins reported in Fig. 3 is much more evident on a molar than weight basis (compare Fig. 3A to Fig. 3B). Of course, molar scaling does not alter observations regarding the range of Π_a mentioned above, but it does effectively expand the concentration axis by moving higher-MW proteins (such as IgM) to the left and lower-MW proteins (such as albumin and ubiquitin) to
the right. It is evident from Fig. 3B that high-MW proteins reduce Π_a at lower molarity than low-MW proteins, again repeating a general observation made at the LV surface for these proteins. The inference taken from Fig. 3B is that protein concentration required to reduce Π_a to a specified value decreases with MW in a manner loosely consistent with the addition of a generic amino-acid-building-block having an “average amphilicity” that increases MW but does not radically change protein interfacial activity. Otherwise, if MW increased by addition of amino-acid-building-blocks with highly-variable amphilicity, then Π_a would be expected to be a much stronger function of protein MW than is observed in Fig. 3B. Thus, it appears that molar variability in Π_a is achieved by aggregating greater mass of similar amphiphilic character, as opposed to accumulating greater amphilicity with increasing MW.

Weight and molar scaling are very useful experimental and conceptual constructs that may turn out to have little direct relevance to the *in vivo* biological response to materials because these scales do not account for the widely-varying natural abundance of the many different proteins comprising the mammalian proteome. Thus, for the purpose of better understanding protein interfacial activity within a physiologic context, we have found it useful to ratio C_b to nominal (mean) physiological concentration C_p and express C_b / C_p on a logarithmic scale $(\log(C_b / C_p))$. In this way, the physiologic condition can be readily identified at $\log(C_b / C_p) = 0$ with more-dilute-protein solutions lying to the left (negative $\log(C_b / C_p)$ values) and more-concentrated solutions lying to the right (positive $\log(C_b / C_p)$ values; see dashed vertical line on Fig. 3C). This approach is applicable to purified proteins for which humoral or cellular concentrations are known. Thus, Fig. 3C reveals a different kind of diversity in protein
interfacial activity than discussed above in reference to weight or molar scales. Certain proteins, notably albumin, IgG and IgM, produced the full Π_a^{max} range well below physiologic concentration (Π_a data lies substantially to the left of $\log\left(C_B/C_P\right) = 0$). By contrast, C1q and prothrombin (FII) required full physiological concentration to express Π_a^{max} whereas ubiquitin was not fully surface active at-and-well-above physiologic concentration. Again, these results closely correspond to the behavior noted at the LV surface. And just as observed at the LV surface, only a limited portion of the available Π_a^{max} range was exhibited by blood factor XII (Π_a data lie to the right of $\log\left(C_B/C_P\right) = 0$), as will be discussed separately below in reference to Fig. 4 because this has special significance in blood coagulation. Thus, it appears that $\log\left(C_B/C_P\right)$ is a pragmatic scaling of interfacial activity with relevance to biomedical materials that reveals concentration-driven diversity in interfacial activity observed among humoral and cellular proteins.

Fig. 4 summarizes results obtained for blood factor FXII. Activation of FXII by contact/adsorption to procoagulant surfaces is thought to potentiate the intrinsic pathway of blood coagulation (see refs. 42,43 and citations therein). Thus, understanding interfacial activity of FXII is important toward a full appreciation of the contact activation mechanism$^{44-46}$ and anticoagulation as well.47 Fig. 4 is prepared in basically the same format as Fig. 3C except that Π_a curves here correspond to different observation times up to 1 hr drop age and demonstrates that FXII Π_a^{max} was not achieved at physiological concentrations. Moreover, Π_a^{max} was achieved only after long equilibration times (> 1800 sec). These adsorption kinetics must be interpreted in terms of the blood-plasma-coagulation process that can be complete within 300 sec or so when
plasma is saturated with high-surface-area procoagulants.45 Results obtained with purified FXII are thus seemingly inconsistent with the traditional biochemical mechanism of contact activation of blood plasma coagulation that asserts rapid FXII adsorption onto hydrophilic procoagulant surfaces. FXII adsorption, and FXIIa desorption for that matter, must occur in the presence of overwhelming concentrations of other blood proteins, notably albumin and IgG that this work demonstrates to be much more surface active on both molar and physiological-concentration scales (Fig. 3B, C). Furthermore, we note that FXII adsorption to the SL interface is not rapid relative to other proteins such as albumin, as might be expected for a protein with putatively enhanced interfacial activity. Although mechanisms of adsorption to hydrophilic (efficient procoagulant) surfaces are not necessarily the same as those leading to adsorption to hydrophobic (inefficient procoagulant) surfaces, it is the general experience that much more protein is adsorbed to hydrophobic surfaces.39,46 On this basis, we expect that FXII would exhibit even less adsorption to hydrophilic procoagulants than we observe at the hydrophobic SL surface within a time-frame relevant to coagulation. All taken together, these studies of FXII adsorption to the hydrophobic SL and LV interfaces support our contention that FXII does not adsorb directly onto hydrophilic procoagulant surfaces in a manner that displaces water (surface dehydration) and that contact activation of FXII \rightarrow FXIIa occurs by some process other than suggested by the traditional mechanism.45-47

4. Conclusions

Concentration-dependent contact angles θ_a of buffered-protein solutions on methyl-terminated self assembled monolayer (SAM) surfaces have been measured for selected globular-blood proteins spanning 3 decades in molecular weight (MW). Observed protein θ_a was reduced by
no more than 15° at maximum protein concentrations (~10 mg/mL). Adsorption energetics were interpreted in terms of adhesion tension \(\tau_a \equiv \gamma_{lv} \cos \theta_a \) and spreading pressure \(\Pi_a \equiv (\tau_a - \tau_a^\circ) \) adsorption isotherms; where \(\gamma_{lv} \) is concentration-dependent liquid-vapor (LV) interfacial tension of the fluid phase, \(\tau_a^\circ \) is the adhesion tension corresponding to minimum contact angle \(\theta_a^\circ \), and \(\tau_a^\circ \) is the adhesion tension of pure buffer. Results closely mirrored that reported in a companion paper published in this journal describing protein adsorption to the hydrophobic water-air (liquid-vapor, LV) interface. On this basis, it is concluded that the physical chemistry of protein adsorption to the solid-liquid (SL) interface is not remarkably different than that controlling protein adsorption to the LV interface. In particular, it was found that maximum spreading pressure fell within a relatively narrow \(10 < \Pi_a^{\text{max}} < 20 \) mN/m band for all proteins studied. Results confirm that proteins are, in general, weak surfactants in comparison to synthetic detergents (represented herein by the surfactant reference compound sodium dodecyl sulfate, SDS). The free energy of adsorption to hydrophobic surfaces is thus found to be quite modest (\(\Delta G_{\text{ads}}^\circ \sim -5RT \)) and the total protein adsorbed from a contact-angle droplet a small percentage of the total available in solution. However, adsorbed concentrations in mass or moles per-unit-volume are surprisingly large (~450 mg/mL) because adsorbate collects within an thin (SL or LV) interphase, arguably no more than a few protein molecular layers thick.

Three different methods of scaling \(\Pi_a \) isotherms were explored: weight, molarity, and ratio-to-physiologic concentration. On a weight basis, proteins among the group studied appeared more similar than dissimilar, especially when viewed from the perspective of the full range available to synthetic surfactants. We interpret this observation to mean that there is insufficient
amphiphilic diversity (variation in the interaction energetics with water) among the proteins studied to support wide-ranging interfacial activity at the hydrophobic SL interface, even though protein composition varied significantly among proteins studied. Molar scaling revealed that SL interfacial activity followed a progression in MW, with the concentration required to reach a specified Π_a value decreasing with increasing MW. This progression in MW is interpreted to mean that molar variability in Π_a is achieved by aggregating greater mass of similar amphiphilic character (blocks of amino acids), as opposed to accumulating greater amphilicity with MW. The significance of this observation is that it suggests that the structural variability that confers profoundly different bioactivity does not greatly affect interaction energetics in water that drive adsorption to the LV interface. Scaling interfacial activity to physiological concentration revealed that certain proteins, such as albumin and IgG, achieved Π_a^{max} at-and-well below physiologic concentration whereas others, notably blood factor XII (Hageman factor), required concentration by almost two-fold above the nominal-physiologic concentration to express the full range of Π_a^{max} characteristic of this protein.

In summary, results reported herein support the overall conclusion that combinations and permutations of the 20 naturally-occurring amino acids comprising the primary sequence of mammalian proteins is insufficient to support widely-varying interfacial activity at hydrophobic surfaces (LV or SL), no matter how these sequences happen to fold into higher-order structure. Furthermore, we contend that protein concentration, not diversity in molecular structure, is the significant energetic driver of adsorption to hydrophobic surfaces. The overarching interpretation is that water plays a dominate, controlling role in the adsorption of globular blood
proteins to hydrophobic surfaces and that the mechanism of protein adsorption can be quite comprehensively understood from this perspective.

Acknowledgments

This work was supported, in part, by the National Institute of Health PHS 1 R01 HL 69965-01, and by Johnson &Johnson through the Focused Giving Grant Program. Authors appreciate additional support from the Materials Research Institute and Departments of Bioengineering and Materials Science and Engineering, Penn State University. Authors gratefully acknowledge the assistance of Dr. Roger Woodward in instrument design and implementation.
List of Figure Legends

Figure 1: Contact angle isotherms in 3D (θ_a as a function of analysis time (drop age) and logarithmic (natural) solution concentration C_b) and 2D (θ_a as a function of logarithmic solution concentration C_b at selected times) formats comparing sodium dodecyl sulfate (SDS, panel A), human serum albumin (FV HSA, panel B, preparation 1, Table 2), and α_2-macroglobulin (panel C, preparation 1, Table 2). In each case, solute concentration C_b is expressed in picomoles/L (pM) on a natural logarithmic scale. Symbols in 2D panels represent time slices through 3D representations (filled circle = 0.25 sec, open circle = 900 sec, filled triangles = 1800 sec, and open triangles = 3594 sec; annotations in panel A indicate maximum and half-maximum contact angle reduction). Notice that adsorption kinetics dominated α_2-macroglobulin adsorption whereas steady-state was achieved within about 1000 sec for HSA, and nearly no adsorption kinetics is detected for SDS. Note also decrease in θ_a with time, attributed to slow hydration of the SAM surface (arrow annotation, Panel B; see Results section).

Figure 2: Sequential interpretation of a steady-state (3600 sec drop age) contact angle adsorption isotherm for thrombin (FIIa) - Panel A, advancing contact angles, θ_a; panel B, advancing adhesion tension, τ_a; panel C, advancing spreading pressure Π_a. Smoothed curves through the data are guides to the eye. Annotations identify low- and high- concentration asymptotes for contact angles (θ_a^L, θ_a^H), adhesion tensions (τ_a^L, τ_a^H) respectively, and maximum spreading pressure Π_a^{max} that are used to characterize isotherms (Table 2).
Figure 3: Spreading pressure Π_a isotherms scaled three different ways for selected proteins spanning three decades in molecular weight – by natural logarithmic weight-volume (panel A), picomolarity (panel B), and logarithmic (base 10) ratio-to-physiological concentration (panel C). Smooth curves are guides to the eye. Protein interfacial activity appears more similar than dissimilar when viewed on a weight basis but diversity among proteins becomes more apparent when scaled on a molar or ratio-to-physiological concentration. Physiologic scaling (panel C) shows that FV HSA, IgG, and IgM (preparations 1, Table 1) were fully surface active at-and-below physiological concentrations whereas C1q, FII, and Ub required nearly 2X concentration to achieve maximum spreading pressure.

Figure 4: Spreading pressure Π_a isotherms of blood factor FXII (preparation 1, Table 1), scaled as a ratio-to-physiological concentration. Smooth curves at 0.25, 900, 1800, and 3594 sec drop age illustrate FXII adsorption kinetics. FXII is weakly surface active at physiologic concentrations (see Fig. 3 for comparison to other proteins such as FVHSA, IgG). Note that maximum spreading pressure was achieved only at two decades of concentration higher than physiologic concentration.
Citations

42. Mitropoulos KA. The Levels of FXIIa Generated in Human Plasma on an Electronegative Surface are Insensitive to Wide Variation in the Concentration of FXII, Prekallikrein, High Moleuclar Weight Kininogen or FXI. Thromb. Haemost. 1999;82:1033-40.

43. Mitropoulos KA. High Affinity Binding of Factor FXIIa to an Electronegative Surface Controls the Rates of Factor XII and Prekallirien Activation in vitro. Thrombosis Research 1999;94:117-129.

<table>
<thead>
<tr>
<th>NAME OF PROTEIN/SURFACTANT (acronym)</th>
<th>MOLECULAR WEIGHT (kDa)</th>
<th>AS-RECEIVED FORM (mg/mL)</th>
<th>PURITY (electrophoresis) or ACTIVITY</th>
<th>PHYSIOLOGIC CONCENTRATION mg/100mL (nominal value)</th>
<th>VENDOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBIQUITIN (Ub)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep 1</td>
<td>10.7</td>
<td>Powder</td>
<td>98%</td>
<td>10-20 (15)</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Prep 2</td>
<td></td>
<td></td>
<td>95%</td>
<td></td>
<td>EMD Biosciences</td>
</tr>
<tr>
<td>THROMBIN (FIIa)</td>
<td>35.6</td>
<td>Powder</td>
<td>1411 NIH units/mg</td>
<td>N/A</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>HUMAN SERUM ALBUMIN Fraction V (FV HSA)</td>
<td>66.3</td>
<td>Powder</td>
<td>98%</td>
<td>3500-5500 (4500)</td>
<td>MP Biomedicals</td>
</tr>
<tr>
<td>Prep 2</td>
<td></td>
<td>Powder</td>
<td>98%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTHROMBIN (FII)</td>
<td>72</td>
<td>Powder</td>
<td>7.5 units/mg protein</td>
<td>5-10 (7.5)</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>FACTOR XII (FXII)</td>
<td></td>
<td>Solution (2.1)</td>
<td>95%</td>
<td>(4)</td>
<td>Hematologic Technologies</td>
</tr>
<tr>
<td>Prep 2</td>
<td>78</td>
<td>Solution (5.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMAN IgG (IgG)</td>
<td>160</td>
<td>Powder</td>
<td>97%</td>
<td>800-1800 (1300)</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>COMPLEMENT COMPONENT C1q (C1q)</td>
<td>400</td>
<td>Solution (1.1)</td>
<td>Single band by immunoelectrophoresis</td>
<td>10-25 (17.5)</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Prep 1</td>
<td>725</td>
<td>Powder</td>
<td>98%</td>
<td>150-350 (250)</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Prep 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Prep 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MP Biomedicals</td>
</tr>
<tr>
<td>HUMAN IgM (IgM)</td>
<td>1000</td>
<td>Solution (0.8)</td>
<td>98%</td>
<td>60-250 (155)</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Prep 2</td>
<td></td>
<td>Solution (5.1)</td>
<td>Single band by immunoelectrophoresis</td>
<td></td>
<td>MP Biomedicals</td>
</tr>
<tr>
<td>SODIUM DODECYL SULFATE (SDS)</td>
<td>0.28</td>
<td>Powder</td>
<td>N/A</td>
<td>N/A</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>TWEEN 20 (TWN20)</td>
<td>1.23</td>
<td>Neat</td>
<td>N/A</td>
<td>N/A</td>
<td>Sigma Aldrich</td>
</tr>
</tbody>
</table>
TABLE 2: STEADY-STATE PROTEIN ADSORPTION PARAMETERS

<table>
<thead>
<tr>
<th>NAME OF PROTEIN/SURFACTANT (acronym)</th>
<th>Prep 1</th>
<th>Prep 2</th>
<th>Prep 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>THROMBIN (FIIa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubiquitin (Ub)</td>
<td>100.9±0.5</td>
<td>102.2±0.9</td>
<td></td>
</tr>
<tr>
<td>HUMAN SERUM ALBUMIN Fraction V (FV HSA)</td>
<td>103.3±0.8</td>
<td>104.5±0.8</td>
<td></td>
</tr>
<tr>
<td>Prothrombin (FII)</td>
<td>100.6±0.5</td>
<td>102.9±0.5</td>
<td>102.0±0.4</td>
</tr>
<tr>
<td>Factor XII</td>
<td>102.9±0.5</td>
<td>102.0±0.4</td>
<td></td>
</tr>
<tr>
<td>Human IgG (IgG)</td>
<td>103.7±0.7</td>
<td>102.6±0.4</td>
<td></td>
</tr>
<tr>
<td>COMPLEMENT COMPONENT C1q (C1q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α2-MACRoglobulin (α mac)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMAN IgM (IgM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Dodecyl Sulfate (SDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

- θ_a (degrees)
- θ'_a (degrees)
- $\ln C_B^{\theta/2}$ PPT (pM)
- M (dimensionless)
- τ'_a (mN/m)
- Π_a^{max} (mN/m)

Notes:

* Parameters are graphical estimates of fitted parameters. See Results and Discussion.
A

B

C

\[\theta_a (\text{degrees}) \]

\[\ln C_B (\text{CB in pM}) \]

\[\ln C_B^{1/2} \]

\[\ln C_B / 2 \ln \Theta \]

\[\text{hydration time} \]

\[\theta_a^\circ \]

\[\theta_a^{\text{max}} \]

\[\theta_a^{\text{max}1/2} \]

\[\text{adsorption time} \]