	Typical Samples	Information obtained by SAXS	Practical Use
Polymers	 Bulk polymers Semi-crystalline polymers Block copolymers Polymer solutions Synthetic polymers (e.g. plastic) 	 Lateral and bulk order Periodicities Molecular mass Structure and shape 	 Characterize the morphological effects of drawing, rolling, and annealing on mechanical properties of polymers Examine the ability of polymers to act as hosts for low-molar mass organic guest molecules (Nanocontainer)

	Typical Samples	Information obtained by SAXS	Practical Use
Polymers	 Bulk polymers Semi-crystalline polymers Block copolymers Polymer solutions Synthetic polymers (e.g. plastic) 	 Lateral and bulk order Periodicities Molecular mass Structure and shape 	 Characterize the morphological effects of drawing, rolling, and annealing on mechanical properties of polymers Examine the ability of polymers to act as hosts for low-molar mass organic guest molecules (Nanocontainer)
Biological Materials	 Proteins, DNA, or RNA Biological membranes Biological solid structures and tissues 	 Shape Structural arrangement State of aggregation Thickness and perfection of wrapping 	 Determine the collagen orientation and the structural organization of the collagen-mineral composite Resolve the structure of huge protein/RNA/DNA complexes in their native environment e.g. in solution

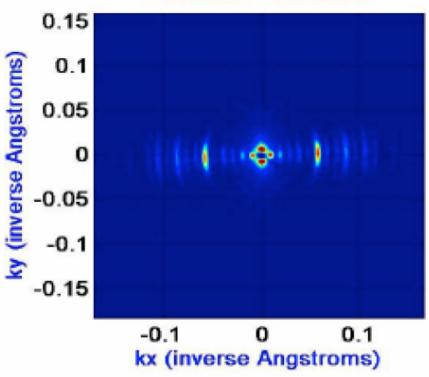
	Typical Samples	Information obtained by SAXS	Practical Use
Fibres	 Polymeric fibres Composites Natural or artificial fibres 	 3-D structure Orientation Orientation distribution Internal structure of fibres 	 Improve mechanical, optical, thermal and electrical properties Derive the structural models for the internal organization of fibre samples

	Typical Samples	Information obtained by SAXS	Practical Use
Fibres	 Polymeric fibres Composites Natural or artificial fibres 	 3-D structure Orientation Orientation distribution Internal structure of fibres 	 Improve mechanical, optical, thermal and electrical properties Derive the structural models for the internal organization of fibre samples
Metals	 Metals and alloys Precipitates in alloys Nano-crystals Nano-powders 	 Size (distribution) and shape of precipitates Composition and volume fraction Inter-particle correlations 	 Design alloys with dedicated mechanically improved properties Controlling of the quality during processing

	Typical Samples	Information obtained by SAXS	Practical Use
Fibres	 Polymeric fibres Composites Natural or artificial fibres 	 3-D structure Orientation Orientation distribution Internal structure of fibres 	 Improve mechanical, optical, thermal and electrical properties Derive the structural models for the internal organization of fibre samples
Metals	 Metals and alloys Precipitates in alloys Nano-crystals Nano-powders 	 Size (distribution) and shape of precipitates Composition and volume fraction Inter-particle correlations 	 Design alloys with dedicated mechanically improved properties Controlling of the quality during processing
Colloids	 Gels, sols Aggregation processes Templating nanomaterials 	 Size (distribution) and shape Inter-particle interactions Geletation/ aggregation state 	 Examine the sol to gel phase transition Study the behavior of micellar aggregation Observe the formation of colloids

	Typical Samples	Information obtained by SAXS	Practical Use
Liquid Crystals	 Piezoelectric materials Colloidal suspensions Displays for electronic devices 	 Size (distribution) and shape Inter-particle interactions Degree of crystallinity Phase transitions 	 Optimizing electro optical devices and liquid crystal membranes Controlling the quality for stabilized matrixes with fixed optical active molecules

Just about any kind of specimen works

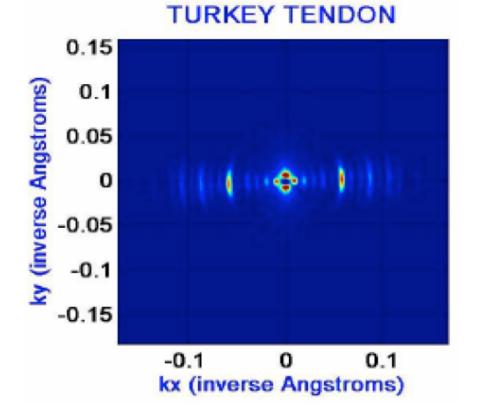

transmission - has to be x-ray transparent

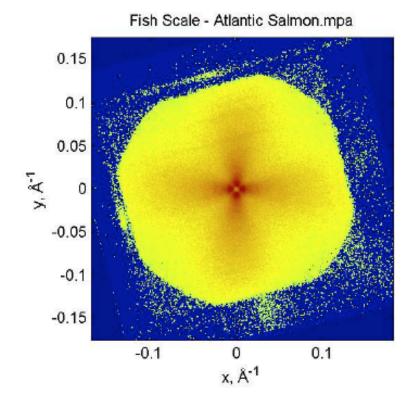
reflection - for thick specimens & those on substrates

Just about any kind of specimen works

transmission - has to be x-ray transparent

reflection - for thick specimens & those on substrates

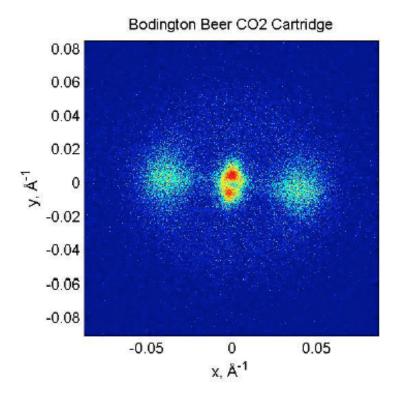



TURKEY TENDON

Just about any kind of specimen works

transmission - has to be x-ray transparent

reflection - for thick specimens & those on substrates



Just about any kind of specimen works

transmission - has to be x-ray transparent

reflection - for thick specimens & those on substrates

Examples from literature

Polymer dendrimers dilute solns in Ch₃OH to get dendrite sizes dilute enuf so dendrimers don't correlate

Alkanediols

solns in water to study clustering heavy water improves contrast (sans)

Water-based polymer latexes use anionic surfactant to suspend in water

Examples from literature

Polymer dendrimers dilute solns in Ch₃OH to get dendrite sizes dilute enuf so dendrimers don't correlate

Alkanediols solns in water to study clustering heavy water improves contrast (sans)

Water-based polymer latexes use anionic surfactant to suspend in water

Macromolecular foams wafers cut & immersed in toluene to get swelling banded matls are translated *in situ*

Microemulsions oils in water to get droplet size

Examples from literature

CVD SiGe films μ -thin films stacked to get Ge heterogeneity

Nanotubes

use surfactant in water & sonicate; place in quartz cells to study nanotube aggregation

Powders

thin-walled capillaries

Polymers

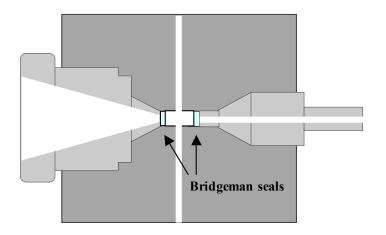
study crystallization processes in situ in hot cell

Examples from literature

Thin films on glass substrates as is, but requires grazing incidence

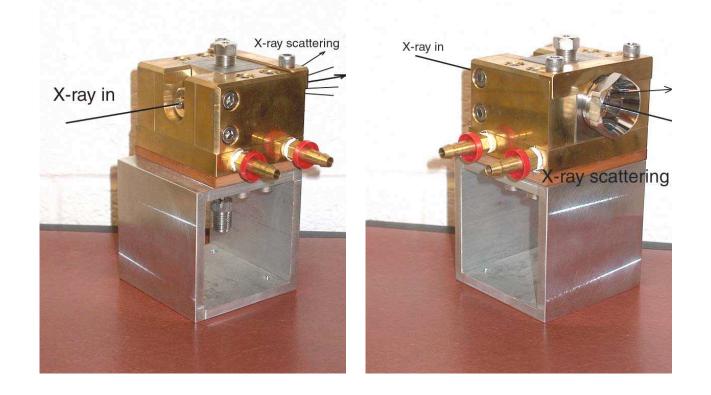
Random crystalline block copolymers rheology study *in situ* in rotating parallel disk cell to get crystal alignment and grain rotations

Splat-cooled glass *in situ* annealing study to follow pptn of PbTe nano-crystals


Examples from literature

Blown polymer films special cell for *in situ* studies

Liq. Crystals special magnetic cell for molecule rotation


lonomers cell w/ kapton windows

Hi pressure studies diamond windows

Examples from literature

Hi pressure studies diamond windows

