## LETTERS TO THE EDITOR

## Kinetics of the carbon-carbon dioxide reaction under a continuous linear temperature increase

First order kinetics hold for the depletion of CO<sub>2</sub> during the gasification of carbon at sufficiently low CO<sub>2</sub> pressures[1]. Thus the depletion can be written as

$$dP_{CO_2}/dt = AP_{CO_2} \exp(-E/RT). \tag{1}$$

A is a function of the carbon being reacted but is normally considered to show little dependence on temperature compared to that shown by the exponential term.

If there is a linear temperature rise, dT/dt = b; substituting for dt in eqn (1) gives

$$dP_{CO_2}/dT = (A/b)P_{CO_2} \exp(-E/RT).$$
 (2)

Rearranging and taking logarithms,

$$2.3 \log (d \log P_{CO_2}/dT) = \ln (A/b) - E/RT.$$
 (3)

Therefore a graph of  $\log(d\log P_{\rm CO}/dT)$  vs 1/T should be a straight line, from the slope of which the activation energy of the reaction can be calculated.

The carbon reacted was a sample of Graphon[2] of  $0.22 \, \mathrm{g}$  weight, which had previously been subjected to a burn-off of 27% in  $O_2$  at  $600^{\circ}\mathrm{C}$ . The surface of the sample was cleaned at  $950^{\circ}\mathrm{C}$  in vacuo and the temperature was subsequently reduced to  $600^{\circ}\mathrm{C}$ . The sample was exposed to  $2.27 \, \mathrm{mtorr}$  of pure  $CO_2$  in a  $6.31 \, \mathrm{system}$  (most of which was at room temperature) connected to a mass spectrometer. The temperature was raised at either 3 or  $10^{\circ}\mathrm{C/min}$  to  $950^{\circ}\mathrm{C}$ . At frequent intervals, measurements were made of the partial pressures of  $CO_3$  in the system.

Material balances showed that no measurable stable complex was formed on the surface. Figures 1 and 2 show the depletion of  $CO_2$  in the two experiments. For both experiments, values of d  $\log P_{\rm CO2}/dT$  were calculated for various temperatures, from the slope of the curves. Since the partial pressures of the gaseous components were measured effectively at room temperature (298°K), instead of at reaction temperatures, it was necessary to standardize values of d  $\log P_{\rm CO2}/dT$  by multiplying by the factor  $T_R/298$ , where  $T_R$  is the reaction temperature in °K.



Fig. 1. Decrease in CO<sub>2</sub> pressure as a result of its reaction with Graphon during a linear 3°C/min rise in temperature between 600 and 950°C.



Fig. 2. Decrease in CO<sub>2</sub> pressure as a result of its reaction with Graphon during a linear 10°C/min rise in temperature between 600 and 950°C.



Fig. 3. Arrhenius plots for reaction of Graphon with CO<sub>2</sub> during linear rises in temperature: Ο, 3°C/min; Δ, 10°C/min.

Figure 3 shows graphs of  $\log [(1000/298) \, \mathrm{d} \log P_{\mathrm{CO}}/\mathrm{d} \log T)]$  (called  $\mathrm{Log_{10}} \, k'$ ) plotted against 1/T. It is seen that straight lines are obtained, parallel to each other and separated by an amount  $\mathrm{Log_{10}} \, 10/3$ . The value of E calculated from the gradient of the lines is 27 kcal/mole. This value is at variance with values of E in eqn (1) calculated from rates measured at a series of fixed temperatures (isothermal reactions) for the carbon-carbon dioxide reaction—that is 85–103 kcal/mole[1, 3, 4]. This major difference in E is not understood at this time.

Department of Material Sciences The Pennsylvania State University University Park, PA 16802, U.S.A. ROGER PHILLIPS F. J. VASTOLA P. L. WALKER, JR.

## REFERENCES

- 1. Biederman D. L., Ph.D. Thesis, The Pennsylvania State Uni-
- Walker P. L., Jr., Am. Scientist 50, 259 (1962).
  Walker P. L., Jr., Rusinko F., Jr. and Austin L. G., Advances in
- Catalysis, Vol. 11, pp. 133-221. Academic Press, New York
- 4. Strange J. F., Ph.D. Thesis, The Pennsylvania State University (1964).

Carbon, 1976, Vol. 14, pp. 84-86. Pergamon Press. Printed in Great Britain