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Abstract— A new theory of the principal thermal expansion coefficients of a graphite
crystal is derived using the latice dynamics obtained by Komasu. The theory is com-
pared with new data on the low temperatare thermal expansion cocflicienis of very highly
oriented pyrolytic graphite and high temperature Xeray data. Values of some of the
lattice anharmonic coeflicients are estimated.

1. INTRODUCTION

Accurate measurements of the principal
thermal expansion coeflicients of the graphite
lattice obtained by X-ray and direct methods
are available over a wide range of tempera-
tures{l—4]. The principal expansion co-
eflicients have also been derived from data on
polycrystalline  graphite{5-7] and very
perfect pyrolytic graphite[8, 9].

The graphite crystal has symmetry D% and
therefore two independent expansion coefhi-
cients, which may be measured parallel 1o the
hexagonal axis (or ¢-axis) and in any direction
perpendicular to it; these coefhicients are
denoted by . and &, respectively. The coefli-
cient «, is positive at all temperatures, but e,
is more complicated. At temperatures below
400°C, a, is negative, but it is positive at
temperatures greater than 400°C. In general
the magnitude of e, is much less than that of
al," .

The experimental data have been analysed
in the past using a theory due to Riley[10}.
The theory assuwmes two lattice vibrational
modes polarised respectively parallel and
perpendicular to the basal planes and known
as in-plane vibrations and out-of-plane vibra-
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tions respectively. Each of these modes is
assumed to be described by a Debye model
[11] with a characteristic temperature. The
out-of-plane waves possess a Debye tempera-
ture of 760°K and the in-plane vibrations a
Debye temperature of 2200°K, the values
being derived from specific heat data on the
saime assumptions.

Recent work has shown that the specific
heat[12], thermal conductivity[13] and ther-
mal vibration amplitudes of carbon atoms{14]
can be undersiood in terms of the lattice
dynamics due to Komatsu[12]. It s appro-
priate to examine the theory of the principal
thermal expansion coefficients of a graphite
crystal using the same lattice dynamics.
Caleulated values of elastic coefticients and
anharmonicities using interatomic potentials
can be compared with experimental values
and are useful tests of the validity of such
potentials.

2. THEORY
Consider a unit cube of the graphite crystal
with one face paralle] to the basal planes. The
free energy of the arystal in a dilated state,
i.e. no shear strains, induced thermally, is:
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where Uy is the energy/unit volume at absolute
zero in the unstrained state.

Ch, Cray, Cran Cyy and €y ave the usual
ebistic constants.

21 are the elements of the strain tensor in a
Cartesian co-ordinate system with the Z axis
coincident with the hexagonal or c-axis of the
crystal,

1z, s the vibration frequency of the p'th
vibrational mode.

kis Bolizmann’s constant.

T'is the absolute temperature in °K,

The summation over frequencies and modes
is 1o be tuken over the firsi Brillouin zone[13).

The termal expansion of a hexagonal
crystal produces strains e.. and ¢, = ¢,,. The
principal thermal expansion coeflicients are,

therefore
o = ( EJ{.'::)
¢ ar

o, = ((}f’.:'.r . (E}(’HJJ
“ aT aT

At equilibrium, the {ree energy F in equa-
von (1) is a minimum with respect to all
variables. Differentiating (1) in wrn with
respect to ez and e, and equating each to
rero, leads to
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Solving the equation (3) for e, and e,
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(remembering e, = ¢,,) and differentating
with respect to 1 gives

de.. = gy, = (Cn+Cp)
a7 ¢ (::x.'; ((:u + (—“l:{) - 2(;"121;
5 i) e miiT]-
o AV {exp [ JhT] — 113
_ 2y
Cog(Cyy +Cha) — 205,
2 ].({ip_‘i):exp [l kT - {yader (1)
“ONRT) {exp [hwuhT]— 1}
@_:_.: I Clan
dT O+ C) — 205,
f(ﬁ)zcxp [hy’,[k']‘} ) [Y}J].er
Z: NkT) {exp Dkt — 112
_ Cig
Co (Cpy+ ) =205,
> /-(m"’)g“" D] - (radee
NET/ {exp [ JhT]—1}2 ;

N/
in hexagonat crystals the elastic constants Gy,
are refated to the elastic compliances S, by

o = LfX, S0+ 50 = Cof X,
So = (00X
where X == O (O -+ Cp) — 203,

Substitution of these relations into (1) and (5)
gives finally:-

o, = Syuk (%)2%) (hvulkT) - {yp)z:
¢ st ,Z,, »r {exp (hwpfkT) — 1}2

+ 28k Z (m’")~ exp wyfkT) - yplor

SANKT] {exp U, JiT) — 1}
and ©
o, = {5 +8) -k z (%y
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{exp UwfhT)~132" 77 KT

mp

{exp UwlkTy — 132 (7)
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Some simplilication of these expressions is
possible using the elastic compliances of a
graphite crystad measured by Soule ef al15].
given in Table L

Clearly (6) can be replaced by

ﬁ)ﬂ ex) (hl’,,ﬁ;’y]‘) : ['}’p}:; (8)

% = Sk ;ﬂ (J:T {exp (o fkT) —1}

In order o make further progress we must
considder the lattice vibration spectrum of
graphite. The unit cell of the graphite lattice
contains four atoms. There are, therefore,
twelve vibrational modes o be considered,
three acoustic modes and nine optical modes.
The most detatled calculations of the spec-
trum are due o Yoshimor and Kitano[16]
who used the Born-Von Karman method, bus
for most purposes the semi-continuum model
due to Komatsu[i2] is adequate. The optical
modes can for most purposes be neglected,
since they require high te nperiature for their
excitation. The three acoustic modes
Komatst's[12] mode] comprise one polarised
parallel to the hexagonal axis (out-ol-plane
mode) and two polarised parailel 10 the basal
planes (in-plane transverse and in-plane
longitudinal modes). The (requencies of the
three acoustic modes in this model are given
by:

In-plane longitudinal made 1y
In-plane transverse mode I
Qut-of-plane mode 1y

where o, o are the wave number com-
ponents parallel and perpendicular 1o the
basle planes respectively.

d = (8-3535 ) is the inter-layer spacing
o= (Cofp)'™ s the longitudinal elastic
wave velacity
Foe= (3(C, = Cadp)'™ is the transverse

elastic wave velocity
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Expressions (10) show that in each mode
the {y,li depend upon the relative magni-
tcde of o, and o.. the wave number com-
ponems. In order o proceed fRurther we
require the coeflicients of the effects of strain
on eclastic moduli. Some  simplicauon s

TSee note wdded in proof
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achieved by the previous observation [ 1] that
only the first terms in each of the first brackets
in equation (10) are important above 200°K, it
is not however certain that the sume holds in
the second brackeis. The only reported
measurement of variations in elastic moduli
with strain is due to Blakeslee and Proctor
(quoted by Reynolds[s5]}. These authors give
T dCy_
Cyy oy
or {8Cu/de..) = — 145 X 16" dynes/em?®
obtained from measurements on pyrolytic
graphite of high perfection. However some
values may also be obtained theoretically. 1t
has been shown by Girifalco and Lad[17],
Agranovich and Semenov[18} and Crowell
[19], that Lennard-Jones potentials between
atoms in separate layers give good results for
the cohesive energy and compressibility of a
graphite crystal. Recently Drickamer ef al.[10)]
hive shown that the Girifalco-Lad potential
catt account for the non-linearity of strain ez
under high compressive strain (~ 15 per cent),
very well; it may therefore be adequate 10
cateulate Cyy, Cu, (0C/des) and (80 de..).
Kelly and Dufl[21] have calculated Cyy and

— -9 X WY em¥/dyne
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DCpfde.. using Girifalco and Lad’s data, and
also Cyy, Cyy and 30,/ de.., using the Agrano-
vich and Semenov method {(considering only
interactions between adjacent layers). In the
same paper an estimate is made of’ (A0 lde.:).

Table 2 summarises the results of calcuda-
tions and experiment.

[t is clear that the potential gradient con-
cerning strain e.. is apparently reasonable but
that the shear constant Cyy and change of Cyy
with .. ure less satisTactory. Similar difficulties
are noted by Komuatsu[l2] and Dolling and
Brockhouse[23].

We now turn 1o the comparison of theory
and experiment.

3. COMPARISON OF THEORY AND
EXPERIMENT
it is appropriate to consider the principal
thermal expansion coeflicients a. and «,
respectively, separately:-

8.1 Hexagonal axis thermal expansion coefficient

.

Experimental data for o, as a function of
temperature on very perfect graphite extend

Table 1. Elastic compliances and moduli of a graphite crystal

Elastic Elastic
constant cm¥/dyne moduius dynefcm?
Sy 3-U8 =008 X [0 Ch 062 X (!
Ste 3o 16 .06 2 1O~ = B9 x
Sy, —0-83 2008 x 1071 Cia 15 = 05 % [
Sus 974 10X Cun 65 01 X 1oV
S 0-95 % 10— [ 4 > 1

Table 2. Calculated properties of graphite crystals using Lennard-jones
interatomic potentials

A-A
Stacking
Method of fault Cuz
calculation  energy (dynes/em?)

Parameter values
C.;,;
(dynesfem®)

(ACysfdiess)
(dynesfem®)

Girtlalco-

Lad 265 x 101
Agranovich-
Semenoyv 55 3-86 ¢ 10

Expt. 88[22] 865 10V

—6-04 X 10

0-23 x 10
4 XM

=727 K
— 145 % 1
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from 95°K to 2900°K, obtained by direct
measurement  and  Neray  methods[1-9].
First, as an approximation, assume the y's are
independent ol wave number and, therefore,
of temperatire as in the usual Gruneisen
theory, Then equation (8) can be written.

o = S!lpl—(“{rl} I'Y! l.‘:: + (::(Yj ['Y‘.!]::

+ Ca(T) [val:=1 {(ry
where C T, Co(TY and Cy{T) are the acous-
tic mode specific heat contributions.

In anearlier theory, Riley[10] arther made
the plausible assumption that the hexagonal
axis coeflicient is solely determined by the
out-of-plane vibrations, whence (11) is

e = Syzp [”}’:l]:.:(":x(T)- (12)
The values of [Yals: can then be calculated
from the a. data and the Cy{7) values due to
Komasu{12} and Komatsu and Nagamiya
[24]. 'The results are shown in Table 3, below
anckin Fig. 1

The apparent value of {yale- s approxi-
mately constant above 525°K, but rises sharply
below 300°K. The value of 0-7 at high
temperatures is unusually low. This be-
haviour can be understood qualitatively in
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Fstimated values of [yil.e from
equation (12)

Table 3.

Thermal exp.

Temp. Sp heat Co(T)* coeflicient

(°K) (cal/ g/ °C) (e "K0) [ valz:
15 (00726 TAX Y 440
100 (256 171 24
150 (3428 X2 20
S0 (+0586 254 167
250 (0736 2658 40
0 (-G48 2740 123
75 (3-0U8 3544} (48
H2d 156 2544 073
778 (}-150 279 469
F.23 160 28-5 {68
F.973 (}-165 947 {-64
1778 0-171 4244 {69
2973 (-172 342 (706
Q773 0-173% 369 (+80
equations (K. Previous work[12, 4] has

shown that for a number of thermal prop-
erties the graphite may be regarded as two
dimensional above 200°K. The first term in
the first bracket in equation (1) is the only
significant one; i the first term in the second
bracket also dominates at high temperatures
then

terms ol equation (12), and the third of [yalz: = 871 [88] des:] (1%
5 g T T Y
4- E
L3 ]
=
L
18 ]
hY
,
Y
t N 1
e Y YU o} e A ks s . . e e Y S e Sl g
(o] L i ] L
0 500 1000 1500 2000
TEMPERATURE °K

Fig. 1. Anharmonic coefficient for out-of-plane vibrations in first approximation.
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at high temperatures, 8 is essentially a prop-
erty of the planar covalent bonds, i.e. a bond
bending constant and it is not surprising thi
this is insensitive to ¢... Al temperatures
below 200°K, €4y and €, become much more
importent and are much more sensitive to ¢..,
teadinig to high [y, ].; values,

This view is too simple however. 1n Fig. 2,
the ratio of the out-of-plane w in-plane wave
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roughly equal importance at high tempera-
1ures and

i _(a(:,,) _ i
20, \de. 20C, =)

LT _(:123) _ 1 (_{{!_‘5_) v
X( P 5 \oon) — 02

Figure ¥ shows that at low temperatures the

RATIO Cz(THC(TI+CalT)

CALCULATIONS OF K AND YK

I

10 100

1000

TEMPERATURE "K

Fig. 9.

Ratio of out-of-pline specific heat to in-plane specific heat

contributions as a function of temperature,

specific heat components is shown as a {unc-
tion of temperature; above [500°K the con-
tributions are approximately equal from ail
three modes. If the in-plane modes can be
regarded as two dimensional at high tempera-
tures then

(o
[y1):e = T *;;;"f"'") and [va]..

1 o \ .
S —Cra) ("3?""""” )

In each case the parameters are changes in
the in-plane bonds and thus might be ex-
pected to be of similur magniiude, I this
Surnise s correct

all these modes are of

out-of-pline mode s much the most impor-
unt and equation {8) should be a good
approximation, summing over out-of-plane
modes alone® ' this is correct, then in

#AN theoretical calculations refer o the case of
constant strain, whereas the data refer to the case
of constant siress, as does Col. 2 in Table 2. Bailey
and Yates [8] have shown that

CiCey = 1 +—{a‘.“(:;,;,
Cp
and evaluated the correcion {(Cp—Cey). The
correction is less than 1 per cent and is neglected
in this work., The continued use of theoretical
specific heat values, implies that no corrections for
the clectronic heat capacity is necessary.
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cy (A0 0e.,

sin® wdo . cr,,ﬂ]

o, = — ,,S;Jf(/‘])f f(il"lfl]

where o, is the equivalent radius ol the Bril-
louin zone[i3]. At higher temperatures the
right hand side of equation (14) should be
compared with the quantity e (T) —0-25y-
[CATY+C,(T)] that is a, corrected for the
in-plane contribution (approximately).
Equation () has been evaluated numeri-
cally for seven cases, for which the para-
meters are given in Table f below. The results
are shown in Figs, 3~5 inclusive. The order of
magnitude of (d8/de;;) is estimated from

1/8(a8/de.2) ~ 0.2 and that of (8C./dr.;)
from

r')(f.;.;) (C.H) (3(4 45 ;) 1t

by = Y X
(31’:: Cia dezn B

X dynes/cm?

(the same interplanar bonds determine Cyy
and Gy,

In Fig. 3 cases 1, 3 and 2A are compared to
obtain an estimate of the effect of changes in
{aC/de.), holding the other parameters
constant. Comparison of 1 and 3 shows thata
factor of three variation produces 10 per cent
change in «.. Case 2A shows that a very small
change in (2C/de::) can compensate for a
large change in {3Cy/ide.. ). We conclude that
(3C4f9e.2} is not a very important factor in
determining o, Figure 4 confirms the sensi-

tivity of . at low temperatures to the value of

(0Cys/de..) suggested by case 2A, by compar-
ing cases 1A and 3. Figure 5 shows that the
curve is relatively insensitive to (98/de.;), over
a factor of 4 (cases 1, 2, 3A). Case 4 uses the
only experimental value of (9Cy/de::) and
yields expansion coeflicients much too large.
The value of (9Cy,/de..} = —7-27 X 10" dyne/

CAR Val. 8 No. 2 H

{exp [“(47"5‘01, + msm- wea, -+ T )”':I - ;}

| 9343
Xexp [ h ( 46t + ‘EL— sin® wdo -+ m',,"a) :id(r: L do.

(14)

cm?® is supp rted by the theoretical calcula-
tion of Girifalco and Lad[14] as analysed by
Kelly and Dull[21], and the high pressure
measurements of Drickamer ef al. {201 It also
gives a reasonable estimate for the expansion
coeflicient. We therefore assume it to be
roughly correct. Figure 5 shows the best fit of
theory and experiment at low temperature
using the data of Bailey and Yates[8]. The fit
is very good indeed showing that the con-
tinuum maodel can account for the low tem-
perature ¢, with values.

(0B} = — 14 X 1073 em™/sec
(dCyyfde.) = —Gx 10 dynes/cm®
(B0 0e.2) = — 10" dynesfcm?®

although the accuracy on the first and last is
not high.

Figure 6 compares this calculation up to
3000°C with the experimental data, in the
form of a “probable best curve”, normalised
on to that of Bailey and Yates{8]. The
theoretical curve falls below the experimental
one from about 800°K upwards; all of the
theoretical calculations for the out-of-plane
coniribution to «, have this characteristic
flattening at high temperatures. There are
three possible reasons for the discrepancy:-

The dillerence is due to the m-plane

contribution to «,., that is the correction 1o

equation (14) at high temperature. This is

examined in greater detail below.

9. The difference is due to the excitation of’

optical modes (particularly out-of-plane) at

high temperatures. This is not likely to be
large enough 1o account for allof the differ-
ence, since the optical modes contribution
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to vibration amplitudes is small[14]. This
is examined below.
3. The diflerence is due to deviations of
the real vibration spectrum(25] from the
continuum model{12]. The true spectrum
[16] has additional peaks in the density ol
states curve which would increase the ex-
pansion coeflicient at high temperature,
and there is a change in elastic constants
with temperature.
Clearly items two and three do have some
effect, but it is probable that item one is
important and on the assumption that it

P. L. WALKER, Jr.

3.1.2 [n-plane transverse

The same expression holds with
placed by Frand G,y by #(C; — Ca).

The correction 1o the out-of-plane contri-
butionis only significant at high temperatures,
where much previous experiencefld] of
calculation in the Komatsu model has shown
that a two dimensional approximation is valid,
Setting 7 = 0, (3C,,fde..) = 0in (15) leads to

Suakormlf T 118
s3] [

re-

Aa{'l‘ =

dominutes "Ijab]e 5 can be c?)nstrucigd and —8.8% |0~ h([') 10T (16)
compared with the simple estimates of [y,]..
‘T'able 5. Approximate estimate of [,].. {from Fig. 6
Difference
(a, — out-of-plane [¥1ar2les
Temp. ¥, contribution) - A
(°K) (*C™H AccH Pl C{T)+Cu(TH
528 990 x 10-9
23 313 11078 —{)-{(Hb
1774 35 f 0-045
2775 30 ! 0-04
already made. The values in the last column where 0, = (Vo /h) and J,(0,/T) is the
ave slightly smaller than the —0-16 obtained Debye integral ol order n. Similarly the

from the fit of the out-of-plane mode at low
lemperatures 1o yield &7 (48{de..), but they
do suggest 1) to be significant as already
surmised. More exact expressions for the
in-plane modes contribution to «. are given
below.

301 In-plane longitudinal

e (2D
A= — ll{ ] f f
—{ 112}
Tt - in o -
(Tr:[";)ﬂ“(r}(‘“/d(’::) M?ﬁ{a( ol 9e52)

transverse modes contribute

Tk

pdi* (ﬁm) Julth /I")[ .]_

((:.,m(:m)] 30X 10- (’) o 0aIT).

Ayt = —

(17

Numerical values from these formulie are

. T W
} exp [fr./f.'T . {V,.,'zo',ﬁ - oy sin® 'rrda':} }

112 2
{ex p []f//fT(V;.”cru'*' + :*?_:;r sin® TT’(!B‘:) ] — ;}

(i5)

da . dor.
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shown in Table 6 below, using, The latter values being rough estimates as
0, = 9350°K, (9C, fdes:) = derived from —
—0-16 % 10" dynes/cm? (g . )‘{_)
Stz

{)g' == 15(}0,3}(., (:}':lj((:“ - Cm)/af.’:: =
=005 % 10% dynesfem?®, 1t is clear that as required the correction is

40 T T
-]
@ 4
a
s q
30+ L] 5] -
O
v a
=]
» <
T
&
9 °
z
=] a
2 s o
Z zof & A
o °
> a®
i
2 2°
p &
x )
w [
. a
b o
!
1of o 4

el

C. EFFECT OF {08/0ey;)
& CASE I -14x1073

8 o CASE 2, -42x107%

o CASE 3A. -rOx (073

i

o] Helo) 200 300
TEMPERATURE °K

Fig. 5. Comparison of theoretical values of «,. Low tempera-
ture. Parametric variation.

Table 6. Estimated contributions to o {rom in-plane

vibrations
Temp. Total correction to ap
(T*K) Al °CT Aok °C™! G
0 0 0 &
300 64X T 42X 00 108 x )-8

1600 1:36 1-52 2-88

1500 1-d4 142 316

2000 147 1-80 397

2500 18 1-83 531

3000 50 -85 3-35
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Fig. 6. Fit of theory and experiment for a, at low temperature,

sl at 300°K, and about half the wtal at say
2500°K.

The out-of-plane optical mode is likely to
be much the most important of the opiical
modes, by analogy with the acoustic modes, in
evitbuation of «. Yoshimori and Kitino[16]
have shown that this optical mode is essenti-
ally two dimensional in character, with a
constant density of states between [requen-
cies 5-1 oy and 10-2p, (where vy = 346 X 10'%/
sech, The magnitude of the conuribution to @,
may be evaluated from equation {14}, inte-
grating now {rom o, values appropriate w
these frequency limits. Since the mode is near
two dimensionul we cun also set pi=7=1{L
The existing caleulntions have also shown
that (aCy/de..) 15 the dominant anharmonic
coellicient in the out-of-plane mode, so we
neglect {(48/de..) and (€ fde.;} by compart-
son. On perfonmmnmg the imtegrations, we find.

San(dCyafde M
dipdi8T

{ exp (/T —exp (6,/T) } (18)
L —exp (/T (T —exp (8,/T))

(![."m ( '1‘) —

where
Qrhdor,?

'.) o
i ] and (h = [&]

I3

oy and oy are the values of o, corresponding
1051 vyand 10-2 p, for the out-of-plane mode
estimated {rom the two-dimensional wave
number-frequency relation,

vt = d7*8a,t

This leads to #, = 1860°K, 0, = 930°K. Using
Sy = 27-5 X 10% em¥/dyne and [0Cpfde.] =
—6X % dynes/em? resulis In the values
tubulated below,

Table 7. Out-of-plane

optical mode contribu-
3ons 10 a,

Temp.
Ky eS¢
300 (3-8 % 10

00 24
2600 2.4
3000 2-9
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Again, these are of approximately the cor-
rect magnitude 1o account for the difference
between theory and experiment at high
temperatures.

3.2 Basal plane thermal expansion coefficient o,
It is possible to rewrite equation (7) in the
form

v\t
oy = (S1ufSpdae = (Sy -+ Sk 2 (%—-")

P
exp (fll'),,//{T} ’ [Yn].m'

4 (1)
fexp (U fhT) —1]*

The left hand side of equation (19) may be
determined [rom the experimental data,
combined with the known elastic constants.
Each side of the equation represents the true
thermal expansion ol a layer, whereas the
observed expansion coeflicient of course
contains a Poissons ratio eflect of e-axis
expansion. The left hand side of equation (1)
is tabulated in Table 8. In the same way as
hefore, we can write approximately.

Q — (S1af S e

(S|1+Stg)[) = (11{! )['Yl].r'.r_*_('z( i ){’Y'.'],r.r

+ (1';[ ( ’]‘) {Y:l] £

= {(T) ['}’].r.r Sy (20
where C{T) is the total specific heat and the
Evp e are assumed constant and identical
for each mode at high temperatures (which
should, as before, be approximately true),
Tahle 8 shows [v,]., values obtained in this
way, denoted by the column 4:

The results are surprising in twao respects:-

(#) The low value of [y,]. at high tem-

perature compared to other solids.

(b) The apparent negative values at low

temperanres.

The specific heat component associated
with Cy{T) is much the largest at low tempera-
tures, and thus the negative values may be
agsociated with the out-of-plane mode. An
alternative explanation is that the ratio

{8:34/84) 1s larger than the measured con-
stanits indicate. Indeed a value of §,4/85,., =
=066 {compared 10 —0-012 as measured)
would completely remove the anomalous
values of [y,]. and leave a pure expansion
as expected. Column B in Table 8 is com-
puted in this way, giving [v,].. values rang-
ing from zero to 04890 from low to high
temperature respectively. At high tempera-
wures the modes make roughly equal contri-
butions, and the model is almost two
dimensional once more. The [y,].r is then
about unity compared to a value of 4+1 com-
puted froma Morse potential for —(9C, fde,..).

T is diflicult 10 choose between the two
possibilities, a negative contribution to the
anharmonicities or an incorrect value for S,,.
We return to this point in the discussion. 1F
the second alternative 15 correct, then the
analysis of e, also requires a correction of up
to 15 per cent.

4. DISCUSSION

The main objectives of this study, the
derivation of a general model of the thermal
expansion of a graphite crystal and the
application of the semi-continuum model
have been achieved. It has been shown that
the hexagonal axis expansion coellicient can
be fitted in detail using reasonable anhar-
monic coeflicients with the anticipated mag-
nitudes.  Corrections  for the in-plane
contribution and out-ol-plane optical mode
Lo e, are evaluated,

The expansion coeflicient parallel 1o the
layers can only be anmalysed by the theory
since no independent estimate ol the approxi-
matte anharmonicities has been made. The
examination suggests either that one of the
vibrational modes at least has [y,] o values of
the opposite sign to usual or that the presently
accepted value of Spy s seriously in error. The
occurrence of unusual y-values has been
asstgned o transverse vibrations in other
studies[8, but it is not possible 10 make a
firm decision.
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Table 8 True basal plane expansion and anharmonic
coeflicient [y,].r
Total
Temp. Basalexpansion  specific heat voler
(°RK) [ety = {85/ Sudere]  CLT) eal/g/”C A B
45 — 0416 108 0-0087 000
100 —0-493 0033 G400
150 — 101 0-064 4020
200 —§-13 0094 0-0%9
250 —0-495 0137 0-050
300 118 0-174 —(-387  (-2]
273 e 1420 0-250 (030 0-45
523 EIRGY 0-302 {0038 0-55
773 +0-73 0-387 24 0-73
1023 1k 0-429 454 0-80
1273 +1-36 0-460 +4-38  0-83
1773 +1-153 0-513% 438 0-82
2273 +1-61 0513 + {40 0-87
2773 + 163 0-513 +0-41 0-90
40 . ,
PROBABLE BEST CURVE P
-
X,/
-
//
4
30 9,// ?\Tuzom )
//
g
9
?l
20k ’ -
I
g
© BAILEY AND YATES (8}
G STEWARD ET AL {27}
10 1 1
[ 1000 2000 3000

TEMPERATURE °K

Fig. 7. Fit of theory and experiment - high temperature,
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Three recent pieces of work are relevantio
these considerations:-

{(n) The observations of a marked decrease
in «, [ollowing neutron irradiation,
accompanied by a change in sign of
aq[21].

(b) The observations of changes in @, with
perfection in pyrolytic graphite, recently
macde by Pellegrini et al.[27]. In this
case o, is generally less, the less perfect
the graphite, Le. the larger the d-
spacing. o, is not measurably aflected.

{(c) The observation of wide variations in
o, between different carbonaceous
materials reported by Kellet ef al.[28].
The variations found here are complex
for a,, generally showing smaller o,
above 450°C with decreasing perfection.
There is evidence in this work that in
hemicellulose carbons with  p =1,
either a high e {32 225 X H75°C) can
ke observed at low temperatures or a
rather low e (28 X I79°C) indepen-
dent of temperature. A satisfactory
theory would account for all these
ohservations.

In the case of irradiation at temperatures
where the d-spacing is increased more than
about 3 per cent]26} the Sy may be markedly
increased as may also the Sy [Lis probable
that (8Cyw/oe..) and (9€,,/de..) are reduced.
(a8/de..) may be changed in the same direc-
tion but it is alreacly rather small. No detailed
measurements of a, as a function of tempera-
jure in this condition exist, to which the
theory may be fited, but it is probable that
calculations  could be made assuming
{88/de..) 1o be zero, Su; and Sy increased by

up to about three limes and fitting a value of

(8C.fde..). This is an area [or future study.
The change in o, was most simply explained

on the theory of Riley[10] as the reduction of

the Poisson ratio contraction due to the c-axis
expansion so that only the positive true
thermal expansion of the layer was visible.

The present analysis and the latest value of

S5 does not support this, since they suggest a

true negative component of the basal coefli-
cient. Again lurther studies are necessary.

Pellegrini e al. found a decrease in a.
which is presumably explicable, as above, but
could not measure a change in «,, so that no
conclusions can be drawn. No values of «,
are obtained {rom the studies of Kellet ef al.
(181,

It is to be hoped that the values of an-
harmonic coeflicients obtained, together with
further calculations on interatomic forces,
particularly in the layer planes will stimulate
studies of problems such as thermal expansion
and phonon-phonon interaction.
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28.

Note added in proof

The anharmonic coeflicient for sirains in the
basal plane ¢, is here delined as /v, (8v/8e,,).
the strain e, being measured along any straiglt
line in the basal plane. I is possible 1o use the
areal strioin €' = 2o, (since e, = ¢y,) as is done
by Rumji Rao and Svinivasan. (Phys. Stal. Selidi
29, 865 (1968)), in place of ¢, since the laver
planes arve isotropic. In isotropic crystals y = 1/p.
Suf8(AF V), where AVIVy = 3e,,., and care must
be taken in comparing y-values from different
sources if these are used to discuss the nature of
the bonding. The change of properties of the
layer is equally well defined by e, or €', so tha
no problem of analysis arises.



