Mathematical Analysis of Size-Frequency Distributions

of Particles in the Subsieve Range
By E. E. Petersen,’ P. L. Walker,' and C. C. Wright’

Synopsis

A method is proposed for the ealeulation of surfrce area and weight dis-
tributions from microscopic size-frequency messurements wherein the
necesaity of assuming a mean diameter to represent the size interval has
been obviated. This method permifs the microscopic classificetion of par-
ticles into broader intervals than currently recommended, thereby reducing
the time consumed in eounting particles, especially when the sample con-
tains a wide range of sizes,

In the method proposed, the size-frequency data are plotied in terms of
the cumulative number of particles greater than s size =, N, versus «, from
which intermedizte values of N can be interpolsted for any value of . In
the interval from = to = + dr, the number of particles may be represented
by —dN. On this basis, equations can be set up which may be integrated
between any interval limits to determine the surface area or weight of that

interval.

These equations have the form of 4. =

N
Bz® dN and
Ny

Na
Wi = f az®dN for the surface aresn and weight, respectively, of the
Ny

interval.

A statistical analysis of count data for coal samples with sizes ranging
from 1 to 100 x indicates that the reproduecibility is sufficient to warrant
caleulations on the basis of the sbove method.

-E-ECHMQUES have been
proposed by varieus investigators where-
" properties such as size-frequency

sstribution, surface area distribution,
weight distribution, and projected and
total surface areas can be directly
mensured for subsieve size particles.
Moast of these techniques have been
summarized in review papers (1, 2, 3,
4, 5).* In geners], however, these
techniques require ealibration against
some standard such as the direet classi
fication of particles into size intervals
under the microscope. While the size-
frequency date are very .convenient
For ealculation purposes, eertain as-
sumptions should be econsidered which
have been required regarding the density
of the particles, the shape factors, and
the mean diameter (8) represenfing
the size of the particles in each interval.

The density of the particles in each
gize fraction of the snmple is required
in order to determine the weight dis-
tribution. If the sample is homogene-
ous, no problem arises as the density is
either known or can be determined. In
the case of heterogeneous materials &
useful expedient is to assurne the con-
stancy of density distribution through-
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out all size ranges; however, the results
obtained are no better than the validify
of this assumption.

The volumetric shape factor is de-
fined as the ratio of the volume of a
particle to the cube of any linear dimen-
gion of that particle. Examples of the
linear dimensions commonly chosen
are length, width, thickness, and equiva-
lent Stokes diameter, but for each
dimension, there is a corresponding shape
factor defined by this relationship. As
herein used, the volumetrie shape fac-
tor « is defined as the ratio of the par-
ticle volume to the particle length
cubed. In addition there are surface
ares, shape factors which are defined
analogously as the ratio of surface area
to the square of the linear dimension.
As herein used, the surface aren shape
fnetor g is related to the square of the
length of o particle. A common expe-
dient used in the absence of speeific
data is to nssume the constancy of a
partieular shape factor throughout the
range of particle sizes investigated.
The wvalidity of this sssumption de-
pends upon the nature of the material
heing onalyzed.

The mean dismeter is usually chosen
as the arithmetie mean of the extremes
of the size interval into which the par-
ticles are classified. As the size inter-
vals are made smaller, this arithmetic
mean diameter approaches more nearly
the true mean diameter of each size
interval, However, the smaller the
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size inferval, the greater the time re-
quired to classify the particles under the
microscope. Hence, the microseopic
technique has lost favor with many
workers because of the long task of get-
ting the size-frequency distribution in
intervals small enough fo get reason-
ably scourate estimates of the mean
diameter.

It is the purpose of this paper to pre-
sent & new method of inferpretation
and esleulation of size-frequency mess-
urements from the microscope, offering
two distinet advantages over methods
currently in use, namely, (@) the
problem of selecting o mean dinmeter
to represent the interval counted has
been obviated, and (b) the size inter-
vals inte which the particles are classi-
fied under the microscope have been
greatly broadened, thus reducing the
time consumed at the microscope.

As a basis for the method proposed,
the microseopic counts are arranged in
terms of the number of particles greater
than a size x, N{z) (or simply N since
it is clear that N is a function of z),
versus the size 7. Intermediate values
of N can be interpolated from a plot
of N versus , and the number of par-
ticles in any size interval can be approxi-
mately predicted. The number of
particles in an interval from z to £ + dz
may be represented by the value of
—dN. Equations can then be set up
which, when integrated between the
limits of z; and z., will exactly represent
the surface aren and weight distribu-
tions.

DreveroemenT oF Wamsr DisTriag-
TroN EQUATIONS

Consider now the conversion of
size-frequency data into weight dis-
tribution. The weight of M particles
of o given size z is always given by the
equation: '

where:

W = weight of particles of size z,

« = shape factor,

p == density,

z = sny characteristie dimension of a
particle, and

M = number of particles of size z.

Fquation 1 is always true. However,
count data sre ususlly obtained by
classifying the particles into size in-
tervals {that is, say 5 to 10y, 10 to 20,
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ete.). ¥rom such data an approxima-
tion of the weight of particles in a given
size interval may be obtained using the
equation:
W' oo ap(Timean)® M ..o {2)
where:
w approximate weight of parti-
cles in the interval,
Zeean #= arithmetic mean of extremities
of the interval, and
M = number of particles in the size
interval,

B

It is often desirable to express the
resuits of a size distribution analysis
as the weight fraction less than size
z versus the size . This follows readily
by evaluating the weight of ench frac-
tion and expressing the sum of the frac-
tions up to o size x and the weight of all
the fractions as a ratio.

Equation 2 holds approximately if
the ap product remains constant and
if the size interval is small, It is clear
that if the true mean dismeter were
known and substituted for Zp.., Eq 2
would hold exactly for broad intervals,
However, there is no simple methed for
determining the value of the true mean
diameter because it is a function of
z3dN. The nature of this funetion will
be shown later in Eq 6.

It would be extremely desirsble {o
ealeulate the weight distribution without
using o mean dinmeter. Such a method
will now be presented. N{z), or simply
N since its functional dependence on
z is understood, is defined as the number
of particles greater than a size . Then
N;—N, is equal to the number of par-
ticles in the size range from z; to z: and
—dN represents the number of particles
heving sizes between z and z 4+ duo.
Therefore, the following equation can be
written:

AW = woaprdN......... (3)

where dW is the weight of particles
having sizes between z and = + dz.
Integrating:

N
W,:m_f wpzd AN .. .. .(4)
Ny

where W2 = weight of particles in the
interval from z; to zp corresponding to
N 1 and & 2.

Egquation 4 is the most general form

of the equation for the weight of par-’

ticles between 7, 8nd 2. A modifiention
of this general equation can be made
which has proved for many size dis-
tributions to allow more accurate
evaluation because of the nature of the
graphieal integration. When g 3 is
integrated by parts, Eg 5 results:

Na
I’Vm = f n:px" AN =
My
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— apiNz®

Nz 3 Xz
+ 3ap f Nz?dz. . (B)
Ny, 71 EH

Bquation § is a general form of the
weight distribution equation involving
only the assumption of constant ap
produet.

In theory, Eq 4 can be solved by
plotting aps® versus N and evaluating
the nres under the curve from N, to
N.. This will represent the weight of
narticles from the corresponding values
of # to z.. Unfortunately, in most
cases N varies over such a wide range
of values that a large error may be in-
troduced for small values of N when
using this method.

Equation § ean be solved by plotting
aplNz® versus z. The aren under the
curve from x; to . represents the value

of
xi
ap f Nzt dz
Tl

The interesting characteristic of the
aplNz? versus z curve is that for the
distributions with which the authors
have worked, the magnitude of the
apNx* term did not vary over threefold.
Because of the relatively small variation
in «pNz? the accuracy of the weight
caleulations for all intervals remasins
nearly constant.

The value of the frue mean dinmeter
can now be determined from Tgs 2
and 4:

Wi = apitrue mean diameter['H =

Na
—ap f z*dN
Ny

Frue mean diameter =

However, the determination of true
mean dismeter requires that the weight
of the fraction be first calculated, and
since this is the object of the ealeulation,
it is more convenient to omit the true
menn diameter concept.

N Versus © Curve:

No mention has been made in the pre-
ceding discussion of how N might vary
with . When the nature of the func-
tlon is such that an equation cannet
be conveniently determined, a graphieal
integration is perhaps the best solution.
However, if an equation of N as a fune-
tion of z can be easily obtained, an
analytical solution may be the shortest
solution. An attempt was made to
sssume a weight distribution which
many maferinls have been observed to
follow and enleulate the size-frequency
distribution. With one minor excep-
tion, these attempts lead to expressions
for which generalized solutions are not
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available. Forexample, assume a weight
distribution to follow the generalized
Rosin-Remmler equation:

r=em{/RE L (7)

where r = weight fraction greater the-
n size z, and Z and n are constants
the distribution.

If one attempts to evaluate N as a
function of 7 beginning with the gener-
slized Rosin-Rorsmler relationship it
results in an integral which has its
solution in terms of gamma funetions.*
However, in many cases the distribu-
tion of the smallest material in the com-
plement for repeated mild fracture may
be expressed by the medified form of
the Rosin-Rammler equation (5) as
follows:

where k and n are eonsfants of the
distribution.
Differentiating Eq 8:

dr = —nkzo~tdz.. ... (9)

where dr iz the differential weight frac-
tion of particles in the gize inferval
from o to z-4-de. I K is defined ag the
total weight of particles then Kdr is
the differential weight of particles ol
size = which we have previously defined
in Bq 3as dW. Therefore:

dW = Kdr
apzt dN = Knkxe—lde
AV = (@) 24 dx
ap
- Knk
n' —ap(n~3)$ +C
which ean be written in the form:
Now (= Bzp, ....... (10}
where:
. Knk
" ap(n — 3)
P

Therefore, if from the count data, log
(¥ = €) is o linear function of log =,
the weight distribution will follow the
modified form of the Rosin-Rammler
equation, This section hag deslt very
briefly with an attempt to determine the
size-frequency distribufion if weight
distribution was assumed. The authors
believe that more investigation en this
particular phase of the work may be of
great vslue. It should be noted, how-
ever, that the failure to derive & com-
pletely general theoretical size distribu-
tion does not in any way affect the use
of the proposed method, because the
graphical integration can be performed
without s lknowledge of the equation
of N as an analytic function of z.

Kr

nap

AN == zo~dg=te fndr, -
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The grophieal solution is applicable
in the general case when the distribution
equation is unknown. Using the count
dats, a graphieal solution of the last
term of Bq 5 ean be accomplished as
“llows: plot «pNz* versus = as shown

Fig. 1. The area of the small sérip
equals apNaz* dz, and the sum of these
small areas from x, t0 7 equals the iotal
ares under the eurve. Therefore, in
the proper units, this area can be used
in Bq 5 to caleulate the weight of par-
ticles in the interval from 2 to z..

DevrropMENT 0F ARBa DISTRIBUTION
BquaTionNs

By analogy to the weight distribution
equations, surfzce aren and projected
area distribution equations also ean be
developad,

The surface aren of M particles of
size z c¢an be determined from the
following equation:

A= gxr . (1

where § = ares shape factor.’
From similar reasoning to the develop-
ment of g 3:

dd = -~ gx*dN .
N
A= - f BridN......(12)
M

A convenient form of this equation can
be developed by a slight modification:

_ Ne BNz dN
M1 y
N:
- f ANz2dinN,.. . (13)
N:

Utilizing & plot of ANz® versus ln ¥
from N; to N the surface area of the
particles from = to 2. ean be caleulated.

The above equations apply to the pro-
jected area of the particles if the shape
factor, 8, is changed to the shape factor,
7.t

5 By definition: 8 = A’/z% where 4’ is the
surgucc ares per particle of size z.

' By definition: v = A47/2% where A7 is the
projected aren per particle of size =,

4 =

A =
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Fig. 1.—Auxiliary Plot Used in the Graphical Integration of Weight Distribution Equation
for Run Ne. 1.

Applicotions of Equotions to Theoretical

Distribution:

The following example illustrates
the use of the proposed method of
caleulation and compares the results
with those esleulated assuming an
arithmetic mean diameter. The as-
sumed distribution spproximates that
actually found for a sample of erushad
bituminous coal. The distribution for
the example is given in Table I and
corresponds to & distribution found
directly from microscope counts. The
nature of the distribution was assumed
so that the solution by the proposed
methed could be readily solved analyt-
ically, thus eliminating any possible
source of error introduced by a graphi-
cal technique. For the sake of the
exanmple, assume the particles ave spheri-
cel and have a specific gravity equal
to one. The particular distribution
chosen in this example conforms to
Eq 10 previously derived. The value

of p is —3 and represents the slope of
the curve on a plot of log N versus
log . The value of B is 10,000 and
can be interpreted as the number of
particles counted that are greater than
1 u. € for this ease is equsl to zero.
Therefore:

N = Bzr
N = 10,000zt
20,000
dN = — T de.. . ..., (14)

Bubstituting into Eq 4 for dV

20,000+ =

Wi = 16} (107 5

dz.....

n.. (16)

z

= (1,046) (104 (=)

where o =/6 for spherical particles,
and d = 10~ g/(u)s

The aren distribution can also be
caleculated for the size distribution

TABLE L—CALCULATION OF WEIGHT AND SURFACE AREA DISTRIBUTIONS FOR ASSUMED DISTRIBUTION.

4 B c D B P e | H I | 7
Number of Weight of Pnrticies . Aren of Particles

Size Partioles in Intervel, g in Interval, aq. em.

Interval, in Size {Zmeasn) (Tmean)? (Tmean) ? log (z2/x1) n
K Interwval, Zmean Now Zmean New
& Method Method Method Method

Ltal,,., .. 7800 1.5 2.25 3.37 0.301 1.32 » 108 3.05 % 10 5.30 ¥ 10+ ] 4.36 X 10

2o b, 2100 3.5 12.25 41.9 0.308 4.72 3,14 §.08 5.77

S5tol10..... 360 7.5 5.3 422 0.301 6.63 5.23 5.30 4.38
Wtald,.... 55.5 12.5 158,3 1 943 0.178 5.08 3.23 2.73 2.55
1540 20..... 19.5 17.5 365.3 5 350 0,124 5.48 5,33 1.88 L.80
204025, ., 9.0 22.5 508.3 11 390 G. G069 G.38 5.23 1.43 1,41
A5 50 30.. ... 4.9 27.5 756.3 0 797 0.0792 5.3 5.23 1.7 1.15
30 4035..... 2.9 32.5 1066 34 328 0.0671 5.21 .23 4.96 .97
3a to 0. ..., 1.9 37.4a 1408 52 734 (¢.0580 5.26 5.23 G.84 0.84
40 to 45, . i.d 42.5 1806 76 766 0.0402 5.03 5,23 (.86 .72
15 ta 50.. ... 0.9 +7 .5 2356 107 72 0.0414 5,05 §.23 0.64 0.60

85.68 52.30 29,14 24,83
G = (0.523 % 10~W) (BE). H = {1048 X 1079 (=4}, [ = (3.1t X 10°9) (BD) J = (3.45 X 10-3) (¥).
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given in Eq 14. From Eg 12 the ares
of a fraction is equal fo

Ny
4 = — f Bz dY
Ny

where g equals « for spherical particles,
Substituting Eq 14 into Eq 12:

A = 20,0007 M dx
T L

w 145 X lﬁ‘alog? ...... (17}
1

The caleulations for weight and ares
distributions by the method of arith-
metic mean diasmeters are based upon Eqs
2 and 14, respectively. In the latter
equations, the arithmetic mean diameter
of the inferval is substituted for z.
Since the values calculated by the new
method are exact, the deviation of any
value caleulated by the arithmetic
menn dismeters from the exaet value
is & measure of the error introduced by
the ealeulation method. Inspection of
Table I shows devintions as high as 50
per cent for the weight of intervals and
40 per cent for the area of intervals.
Morgover, the total weight caleulated
by the arithmetic mean dizmeter method
is 6% per cent high and the total surfnce
ares is 19 per cent high.

The surface area ealculations are of
especial interest becsuse many impor-
tant properties of dusts are related to
surface area. The largest contributions
to the surface ares are from the small
gize particles, as shown in Table 1.
Also, the largest caleulation errors are
introduced in the small sizes, when
using the method of mean diameters.
Therefore it is here that the new method
is of grestest utility, because in obviat-
ing the selection of 2 mean diameter, it
affords o means of caleulating accurately
the srea of particles where the major
part of the total surface aren is concen-
trated, that is, in the small size particles.

Application of Method to Microscopic
Count Data:

The relinbility of the calculations
based upon the new methad depends
upon the experimental reproducibility
of the eount data. Therefore, an in-
vestigation was conducted using coal
samples to determine the magnitude
of variations characteristic of the micro-
scopic sizing,

Count data as taken direetly from
the microscope consist of a series of
counts which represent the number of
particles classified in arbitrarily selected
size intervals. In the subsequent dis-
cussion, these data will be interpreted
in an attempt to evaluate how reliably
such data can be considered represent-
ative of the actual distribution in the
original sample. Because the actual
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distribution in the sample cannot be
determined, the approach is of necessity
based upon statistics,

There are many ways to compare
count date statistically, but it seems
sufficient here to trent the data in two
ways. First, it is of value to compare
the total number of particles counted
in one field of the microscope with
other fields of the same cell. A fur-
ther comparison of the counts should
then be made between fields of different
cells. If the dispersion of particles
within the cell is uniform and if the
dispersion from which the cells were
made up was uniform, the counts in
each field should be identical. These
counts will be referred to hereafter as
the absolute eount, and the number of
particles eounted in a given size interval
will be likewise referred to as the abso-
lute count of the size interval, A
second comparison can be made befween
runs of the percentage of the particles
counted greater than a size . This is
essentially comparing relative counts
and will subsequently be referred fo as
such. Judgment as to the reproducibil-
ity of count data then will be based
upon o statistieal comparison of both
the absolute and relative counts.

Preparation and Counting of the Cells.—
Minus 200 mesh fractions from two
similarty treated bitwminous coal sam-
ples were each divided into three sam-
ples aceording to the ASTM Method
of Sampling and Fineness Test of Pow-
dered Conl (D 197-30)7 These six
0.25-g composite samples were each
subsequently analyzed microscopicslly.

The cells used for the microscopic
analysis were each prepared by dis-
persing the 0.25-g sample in the quan-
tity of n-propyl alcohol required te
obtain & particle density suitable for
microscopic sizing. One milliliter of
this dispersion wag then pipetted into
each of fve individual Sedwick-Rafter
cells, allowed to settle overnight, and
counts read the following day,

The particles in five fields of each cell
were classified into intervals of 1 to 2,
2to s 5to 10, 1060 20, - ---, 90 to
100 p where the particle dimension
measured was the length, In addition,
50 fields per cell were counted elassify-
ing only those particles greater than
20p because the number of particles
in this range was small so that additional
counts were necessary fo inerease the
aceurney. By scanning the field of the
mieroscope, the observer can count the
particles lying within a given size in-
tervael with the aid of a small hand
counter.

All counts were made using a mine
safety applinnce ‘“Dust-View”’ micro-
projector equipped with a Spencer

01{; 1948 Book of ASTM S8tandards, Part 5, p.
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microscope. The lens system used was
a 10X apochromatic objective and
1% and 30X compensating oculars.
With the higher mapnification it is pos-
sible to resolve particles smaller than
1 u; however, no attempt was made tn
count particles smaller than 1 p.
Presentation of Ilesulls~—Dats pre-
sented in this section are the results of
six microscopie ansalyses—three from
each of the original fwo samples. Since
these analyses are independent, & com-
parison of the magnitudes of the ab-
solute counts is a measure of the ex-
perimental reproducibility of the analyt-
ieal technique. Hewever, the counts
for a given size interval vary from field
to field so that some statistiesl averape
values should be ecompared. Buch a

-comparison was made wherein the

arithmetic mesn ecount was used and
the standard deviation was utilized
to determine the confidence limits of
the count data (8).

The results obtained by eapplying
this treatment to microscopic counts
are presented in Table II. Analyses
la, b, ¢ and 2a, b, ¢ are from the orig-
inal samples .l and 2, respectively.
It should be noted that the data con-
sidered here are those less than 20
There are two reasons for this: first,
the counts fnll off rupidly beyond 20 u
sizes; and, second, most of the surface
area of the samples is contributed hy
particles less than 20 p as was shown in
Table I. The significance of the r-
sults presented is that M, the ari.
metic mean count of the intervai,
should represent the actual count of
the interval to within Lo, where z¢
is the confidence limit of the data. In-

TABLE IL--MEAN COUNTS, STANDARD
DEVIATIONS, S\.ND CONFIDENCE LIVIIEI;?

FOR COAL BSBAMPLES ANALYZED
MICROSCOPE
Intervel { 1ta2 p | 2todp {5 to 10 wil0to20a
la
M(i)..] 34.5 18.5 1 0.6
e (2).. 7.2 .1 2.0 0.8
o (&), 2.8 1.4 0 0.3
ib
Moo 24.4 16,56 S.4 0.4
...... 3.7 3.8 2.3 0.7
2., ... 1.3 1.3 0.8 0.3
la
.} S 24.3 16.8 8.3 1.0
[ k.3 3.6 2.5 1.0
s, 1.5 1.3 0.9 0.3
la
Moo 24.6 19.1 G.1 0.7
Fonn 3.6 5.8 2.4 c.7
2. ... 1.3 .0 0.8 0.3
2h_
M. 23,1 15.3 5.9 0.7
T 3.0 .3 2.1 0.9
... 1.0 1.5 0.7 0.3
2
M. 2.8 15.5 6.3 0.6
[ 2.1 3.8 2.5 1.1
LT S 0. 1.3 4.9 0.4
Menn A
avga,...| 23.8 16.6 5.9 0.7

£} Dmltzmg (a),
(1} Mean count. (2) Stapdard devistion.
(3 Con{‘dence timit (9 times out of 10).
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spection of Table II will show that

with few exceptions the M’'s for the
same intervel compare within the con-
fidence limit =zs. The same data
show that the ratio of z«/M increases
“-th particle size. This illustrates
aab o representative count is more
easily obtained when the number of
particles in the feld is large.

The complete sample anclyses for
the size runs are presented in Tabie III
and are plotted in Fig 2. These data
represent the relative counts based on
10,000 particles eounted greater than
1 » {or 100 times the percentage of
particles greater than size z).
inerense the accuracy of the counts for
the larger sizes, 250 additional fields
were read in which sll particles greater
than 20 u were classified. The devia-
tions in the larger sizes of the samples
are more pronounced, again due to the
diffieulty in desling with a small number
of particles per field. However, larger
errors can be tolerated here because
the surfnce area contributions to the
total are small for particles in this
renge.

The ultimate purpose of the counts
was to caleulate the surface aren dis-
tribution of the particles and to deter-
mine to what extent the uncertainties
in the microscopic counts would be pres-
ent in the ealeulated total surface area.
An estimation ean be made using the
vajues of the surface contributions of

ich interval to the tota] surface aren
sound in the example illustrated in Toable
I. If the confidence limit of each in-
terval is multiplied by the interval sur-
face aren and summed up, the total
error can be calculated. On this basis
the maximum probable error would be
less than 12 per cent if the errors are
additive. However, the deviations in
Table II are random; therefore, the
actual error would most likely be less
than 12 per cént,

Sovmany awp ConcLUsIONS

The magnitude of errors involved in
the method of mean diameters was
shown by means of & hypothetical

To -

¥, Micrans

468%9

20

4G B0 80100

IREERRE

a
s}
o

100

T Tt

Legend
4 ~ta
o - 1b
e-le
4+ -20
»~2b
§ ~2C

Rumber of Parlicles Greater thon X

=)

1T

T

| ety

}

LR LL 1 YAl

Pox gl

[ N Y]]

Pt B M ATL

ha )
RN ETE]

fonbududud oL fo

2

4 6 810 20 408080100

%, Microns

Fig. 2.~ Plot of Number of Particles Greater Than Size x Versus Size x,

example. The weight and ares dis-
tribution esleulations for the particular
example chosen are known to be exact
when the new method is used. There-
fore, deviations [rom the exact values
served as & measure of the errors pos-
sible by the method of mean diameters,

The weight and surface area disbri-
butions can be ealeulated from the
distribution equations presented when a
few values of ¥ are accurately known
as o function of 2. Therefore, in using
the proposed method the mieroscopic
counts can be elassified into broad
intervals. Because the particles may
be sized in broader intervals, the time
required in microscopie sizing is greatly
redueed. The ealeulations using the
new method usually require more time
than with the method of mean diame-
ters, buj this is more than offsef by the
reduced counting tims, '

It has been shown that it is desirable
t0 utilize the new methed of caleulation

TABLE III.—-RELATIVE MICROSCOPIC COUNTS.
Number of Particles Counted Grester Than z a (Based on Total of 10,000 Particles),

Porticle Dismeter, z.

when the surface area of the sample is
important, because the largest contri-
butions to the total surface area are
from the small size particles which can-
not be accurately estimated by the
method of mean diameters.

A stafistical analysis has heen made of
count dats for six analyses, the confi-
dence limifs established for intervals
from 1 t0 20 g, and the standard devia-
tiong evaluated for particles from I to
100 g.

On the basis of the atatistical analysis,
it is concluded that the maximum prob-
able error in the calculation of total
surface aren would be less than 12 per
cent. Therefore, the count data are
reprodueible to & degree of aceuracy
sufficient to warrant the use of the new
method of caleulation.
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