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3.6 Pressure-dependent Reactions
Under certain conditions, some reaction rate expressions depend on pressure as well 
as temperature. GAS-PHASE KINETICS provides for two kinds of such reactions: 
unimolecular/recombination fall-off reactions and chemically activated bimolecular 
reactions. Generally speaking, the rate for unimolecular/recombination fall-off 
reactions increases with increasing pressure, while the rate for chemically activated 
bimolecular reactions decreases with increasing pressure. In both cases, GAS-PHASE 
KINETICS makes available various expressions that blend smoothly between high- and 
low-pressure limiting rate expressions.

3.6.1 Unimolecular/Recombination Fall-off Reactions
As an example of a unimolecular/recombination fall-off reaction, consider methyl 
recombination. In the high-pressure limit, the appropriate description of the reaction is 
CH3 + CH3 ⇔ C2H6. In the low-pressure limit, a third-body collision is required to 
provide the energy necessary for the reaction to proceed, i.e., the appropriate 
description is CH3 + CH3 + M ⇔ C2H6 + M. When such a reaction is at either limit, 
the (solely temperature-dependent) rate expressions discussed in the preceding 
paragraphs are applicable. However, when the pressure and temperature are such 
that the reaction is between the limits, the rate expressions are more complicated. To 
denote a reaction that is in this “fall-off” region, we write the reaction with the positive 
+ M enclosed in parentheses,

CH3 + CH3(+ M) ⇔ C2H6(+ M)

There are several methods of representing the rate expressions in this fall-off region. 
The simplest one is due to Lindemann.5 There are also now two other (and related) 
methods that provide a more accurate description of the fall-off region than does the 
simple Lindemann form. The GAS-PHASE KINETICS package handles all three of these 
forms as options.

We begin with the Lindemann approach. Arrhenius rate parameters are required for 
both the high- and low-pressure limiting cases, and the Lindemann form for the rate 
coefficient relates them in a pressure-dependent rate expression. In Arrhenius form, 
the parameters are given for the high-pressure limit  and the low-pressure limit  
as follows:

5. F. Lindemann, Trans. Faraday Soc.17:598 (1922).
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Equation 3-23

Equation 3-24

The rate constant at any pressure is then taken to be

Equation 3-25

where the reduced pressure  is given by

Equation 3-26

and  is the concentration of the mixture, possibly including enhanced third-body 
efficiencies.

It is also possible that the third body in the fall-off region could be a specific species rather 
than the mixture as a whole. In such a case, the reaction could be written, for example, as 
CH3 + CH3 (+N2) ⇔ C2H6 (+N2). In this case, the concentration of Nitrogen [N2] would replace 
the total concentration in the mixture  in these equations.

For this example, note that the units for  are 1/sec,  are cm3/(mole • sec), and  
are 1/sec. If the  in Equation 3-10 is unity, then this is the Lindemann form. The 
other descriptions involve more complex expressions for the function .

In the Troe form,6 F is given by

Equation 3-27

The constants in Equation 3-27 are
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6. R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87:169 (1983).
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Equation 3-28

Equation 3-29

Equation 3-30

and

Equation 3-31

The four parameters , , , and  must be specified as auxiliary input to the 
GAS-PHASE KINETICS Pre-processor, as described in Neutral Third Body and Pressure 
Dependent Parameters (Section 3.5.3.1 of the CHEMKIN Input Manual). It is often the 
case that the parameter  is not used. Thus GAS-PHASE KINETICS provides for the 
use of either three or four parameters.

The approach taken at SRI International by Stewart, et al.7 is in many ways similar to 
that taken by Troe, but the blending function  is approximated differently. Here,  is 
given by

Equation 3-32

where

Equation 3-33

c 0.4– 0.67– Fcentlog=

n 0.75 1.27– Fcentlog=

d 0.14=
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7. P. H. Stewart, C. W. Larson, and D. M. Golden, Combustion and Flame 75:25 (1989).
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In addition to the six Arrhenius parameters—three each for the low-pressure limit  
and high-pressure limit  expressions—the user must supply the parameters , , 
and  in the  expression. The parameters  and  were not discussed by Stewart, 
et al., but we have included them as additional optional parameters to increase 
flexibility. If one wishes,  and  can be considered parameters that define a weak-
collision efficiency factor, in the event that one wants to compute strong-collision rate 
parameters and correct them with such a factor.

Figure 3-1 Rate constant as a function of pressure at fixed temperature for a unimolecular fall-off reaction

Figure 3-1 illustrates the pressure dependence of rate expressions for the example 
reaction, CH3 + CH3(+ M) ⇔ C2H6(+ M), evaluated at a fixed temperature of 1000 K. 
Both the Lindemann and the Troe forms are shown, as well as the low- and high-
pressure limits. The specific constants in fits to the Troe form ( , 

, , , , 
, , , ) are taken from 

Wagner and Wardlaw.8 For the relatively simple Lindemann case ( ), the limiting 
behavior is apparent. In the low-pressure limit, , the denominator in 
Equation 3-25 approaches unity and the rate expression becomes . In the 
high-pressure limit, , the pressure-ratio factor approaches one, and the rate 
expression becomes , i.e., a constant. For both the Troe and SRI forms,  
approaches unity for both high and low pressures. Thus, all expressions recover the 
correct limiting behavior.
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The Troe and Lindemann forms 
are illustrated as are the low- 
and high-pressure limiting 
forms.

8. A. F. Wagner and D. M. Wardlaw, Journal of Physical Chemistry 92:2462 (1988).
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