Hydrogen Chemisorption in the Mechanism of Gas-Carbon Reactions

R. T. Yang and K. L. Yang Department of Chemical Engineering State University of New York at Buffalo, N.Y. 14260

The etch decoration-transmission electron microscopy technique (EDTEM), first developed by Henning [1]; has been used to obtain important results in advancing our understanding on the kinetics and mechanisms of the gas-carbon reactions, by Hennig, Thomas, et al. [2], Feates, et al. [3] and more recently in this laboratory [3,4].

Both 0_2 and CO_2 create round pits on the basal plane² of graphite. Interpretation of the rates on these reactions have been made [3,4].

The C-H₂O reaction produced hexagonal pits, bounded by zig-zag faces. The turnover frequencies for the reaction C + H₂O \rightarrow CO + H₂ at 700,800 and 900°C are shown in²Figure 1. These were rates with no hydrogen added. With added hydrogen in the gas phase, the reaction rates were substantially lowered. The rate equation fitted by the turnover rate data was:

$$Rate = \frac{k_1 r_{H_2} 0}{1 + k_2 p_{H_2}^n + k_2 P_{H_2} 0}$$
(1)

where n=0.50 at 700° C; n=0.85 at 800° C; and n=1.0 at 900° C.

The following mechanism, Mechanism B, was proposed for the rate equation in which n=1:

$$C+H_2O_{1}^{\downarrow}C(0)+H_2$$
 (2)
 $C(0)^{i_3}CO$ (3)

whereas another mechanism, Mechanism C, was proposed for the case when n=0.5:

$$C+H_2^{0+1}C(0)+H_2$$
 (4)

$$\begin{array}{c} C_{+2}^{1} H_{2j} \\ i_{3} \\ C(0) + C0 \end{array}$$
(5) (5)

It should be pointed out that the values of i₃, calculated from data for the separate reactions with CO_2 and H_2O , were surprisingly close [3].

Using the EDTEM technique, strong evidence has been provided by several independent experiments to

show that the dissociative chemisorption of H_2 , taking place preferentially on zig-zag faces ²(as opposed to armchair faces), plays a key role in the C-H₂O reaction mechanism. Before a detailed discussion of these experiments, the results are summarized below:

- <u>The C+CO2</u> reaction with added H₂: With trace amounts of H₂ added in CO₂, the etch pits all became hexagonal bounded by zig-zag faces. The C+CO₂ reaction was strongly inhibited by H₂.
- 2. <u>Mixed reactions with CO₂ and H₂O:</u> The etch pits were all hexagonal, bounded by zig-zag faces, in both of the following reaction sequences: first, etching by CO₂ followed by H₂O; and in the reverse order.

It has long been known that, qualitatively, the inhibition of the C+H $_2$ O reaction by H $_2$ is much stronger than that of the C+CO $_2$ reaction by CO.

The work by Biederman, et al. [5] further showed that H_2 has a very strong inhibition effect on the C+CO₂ reaction. The proposed mechanism for the reaction C+CO₂+H₂ is: Reactions (2),(5),(3),(Mechanism D).

It is seen that the inhibition by CO and that by H₂ are entirely different in nature; but the inhibitions by H₂ in the reactions C+CO₂ and C+H₂O seem to be the same (compared Mechanisms C and D).

As mentioned, the reaction C+CO₂ produces round pits [3,4]. However, with the addition of H₂ in the gas phase, the pits became hexagonal, and their growth rate was substantially lowered.

The turnover frequency at 700° C, is lowered by H₂ from the H₂-free value of 0.51 s⁻¹ to 0.048 s⁻¹² This strong inhibition was apparently caused by the dissociative chemisorption

$$C + \frac{1}{2} H_2 \neq C(H)$$
 (6)

From the rate data, the adsorption constant is, at $700^{\circ}\mathrm{C}$,

$$K = \frac{j_2}{j_2} = 96 \text{ atm}^{-1/2}$$
(7)

The above results further indicated that the dissociative chemisorption was preferred on the zig-zag $\{1010\}$ face, which caused the change of the pit conformation. In other words, the K value shown in Eq. 7 was for zig-zag face, which was higher than that on the armchair face. The stronger chemisorption on the zig-zag face would result in the observed anisotropy in reactivities between the two edge planes.

The rate of the reaction
$$C+CO_2+H_2$$
 is

$$Rate = \frac{k_1^{P_{CO}}}{1 + k_2^{P_{CO}} + k_3^{P_{CO}} + K_P_{H_2}^{1/2}}$$
(8)

as can be derived from Mechanism D.

Our data on the effects of H₂ inhibition on

the $C+H_2O$ reaction yielded the following value for the inhibition constant [3]:

. ...

$$x_2 = i_2 / j_2 = 71 \text{ atm}^{-1/2}$$
 (9)

This value, according to Mechanism C, would be the dissociative chemisorption constant of H_2 on the zig-zag face. Comparison of the values in Eqs.7 and 9, obtained from two independent experiments, was indeed satisfactory.

Another conclusion may be drawn from the above results regarding the mechanism of the C+H₂O reaction with no added H₂ in the gas phase (i.e., $P_{H_2O} = 0$). The pits etched by H₂O (with $P_{H_2O} = 0$) are also hexagonal with zig-zag faces. Since this hexagonal conformation appears to be caused by chemisorbed hydrogen on the zig-zag faces, the mechanism for the C+H₂O reaction should be more reasonably written as:

Acknowledgements

This research was supported by the National Science Foundation under Grant CPE-8120569.

References

- G. R. Hennig, in <u>Chemistry and Physics of Carbon</u> (Edited by P. L. Walker, Jr.), Vol. 2, p.1, Marcel Dekker, New York (1966).
- 2. J. M. Thomas, <u>Carbon</u>, <u>8</u>, 413 (1970).
- R. T. Yang, in <u>Chemistry and Physics of Carbon</u> (Edited by P. A. Thrower), Vol. 19, Marcel Dekker, New York (1984). pp. 163-210.
- C. Wong, Ph.D. Dissertation, State University of New York at Buffalo, Buffalo, NY (1983).
- D. L. Biederman, A. J. Miles, F. J. Vastola and P. L. Walker, Jr., <u>Carbon</u> 14, 351 (1976).