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' Abstract.

Theories of the electrical resistivity and magnetore—

sistance in benzene derived graphite fibers (BDF) are presented.
An ellipsoidal band model is employed and three scattering

processes due to crystallite boundaries,
tials and phonons, are takenm into account,

ionized impurity poten—
The observed linear

magnetoresistance is ascribed to the microstructure of BDF.

Introduction

Electrical resistivity and magnetoresistance
measurements on pregraphitic carbons have been
theoretically interpreted by making use of a simple
two-band (STB) model. However, in providing a more
quantitative interpretation, a more detailed model
is needed. In this article the electrical resis-
tivity and magnetoresistance of benzeme-derived
graphite fibers (BDF) are treated by introducing an
ellipsoidal model. The electrical resistivity is
calculated by considering three different scat—
tering processes —— phonon scattering, and scat-
tering processes due to crystallite boundaries and
ionized impurity potentials. The ionized impurity
scattering provides a contribution of the same
order to the relaxation rate as that due to boun-
dary scattering, and is responsible for the oscil-
latory magnetoresistance in mesophase pitch derived
fibers.l The Boltzmann equation is solved in the
presence of a magnetic field and its solutiom is
applied to BDF.

Electrical Resistivity of Graphite Fibers

The resistivity vs, temperature curve in sin-
gle crystal graphite exhibits a sublinear tempera-
ture dependence. The increase in the carrier
concentration with temperature compensates the
increasing scattering rate due to the electron—
phonon interaction. More pronounced effects are
observed in BDF which are shown in Fig, 1. In
these samples, the three-dimensional structure is
not so well established and the emergy overlap and
the Fermi energy are smaller than their corres-
ponding values for single crystal graphite.

An ellipsoidal band model which is symmetric
in electrons and holes is introduced:
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where 2A is the energy overlap. By introducing an

anisotropic factor defined by
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Figure 1. Resistivity vs. temperature four bem-
zene-derived fibers (Typ = 3500°C) with
diameter 2, 4, 17 and 34pum and for
HOPG.

If the electron and hole concentrations are

equal, the Fermi energy Ep is located at Ep = 0.

For simplicity, this assumption is employed. The

relaxation rate is given by:
Ve = Mzy + Ueyp + vy = v/L + 1/zy + CT®, (2.4)

where L denotes the average crystallite dimension,
1/11 is the ionized impurity scattering rate and
the last term represents the phonon scattering.
The power n is ~ 1.2.3 we employ the approxima-
tion:
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where Vg = 1/ty and ¢v) is an average velocity.
The electrical resistivity is obtained as follows:
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At intermediate temperatures, the p(T) vs. T curve

has a maximum value, consistent with Fig. 1. 1/tI
take the form:
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where Ny is the impurity comcentration, v(q) the
Fourier component of the scattering potential and

D(EF) denotes the total density of states. In the
Thomas-Fermi scheme, v(q) is
_ 4nze? 1 2 _ 4ne2D(Ep) (2.8)
viq) = . Ez+qs , s = " ’

where ¢ is the_dielectric constant and Z is the
effective valence of an ionized center. Inserting
m, = 0.04 my, A =0.01 eV and e = 4, we obtain

D(Ep) = 2.31 x 1032/exg om3, g, = 1.29 x 107cn"1.

In the present model 9pax = 2(k,)

=4 x 107cn 1,
and Eq.(2.7) takes the value rI’="§‘x 10 14sec,

which is comparable to Ty where Ny = 3 x 1018/cm3
has been used,

Magnetoresistance of Graphite Fibers

As shown schematically in Fig. 2, each
graphite layer in a BDF sees a different magnetic
field and a different electric field. Solutiom of
the Boltzmann Equation is assumed to be f = £, —
(v-d) 8f,/8g. Imnserting this into the Boltzmann
Equation, we find
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The current denmsity iy is composed of two terms.
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Figure 2. Cross section of 2 benzene-derived
graphite fiber where H is perpendicular
to I and I is along fiber axis.
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By averaging over 0, °xy vanishes, Then, we have

Jx = Aplp, = axx(O)/axx(H)—l . (3.4)
After averaging over 9, G .y becomes
o (H) = E a(k){(1 + w(l)w(l) < 2)
Ix xx z & A
A=n‘p
(1 + u2c}))b (3.5)
Since m_ ) m,, “z”n‘z is much smaller than

unity if the field intensity is not so strong.
Then, in the region of (ma-c)2 >> 1 we have

AP/PO « L7which is consistent with our obser—
vationms,
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