ANOMALOUS PHONON DRAG EFFECT IN GRAPHITE
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§1. Introduction

Detailed investigations on the thermo-
electric and thermomagnetic effects of
graphite, revealed the appearance of negative
dip of the thermopower (Sg and the Nernst-
Ettingshausen coetficient (Ayz) around 35~
40K. (1~ 5) These anomalies are related to
the phonon drag effect. (6~ 9)

Recently, we have ascertained that well-
crvstallized kish graphite exhibits a sharp
peak of Prx below 20K beside a dip around
35K, where p is related to a current density
1= gF - g ¥ 1. Under the condition of HJ 2,
and Vo, T # 0, S is given by

F -
S(H) == = yyPxx TyPyx . (1.1)
Zcr O%x%yy = OxyOyx

The dip is associated with the normal
phonon drag effect, while the peak can be
ascribed to the two-stage drag effect. ‘
(10~ 13) Observed results of Bsx(0), PBaxx(H)
and P, () in kish graphite are given in
Fig.l.

In the normal phonon drag effect the
"electron phonon" which interact with carriers
come to a stationary state mainly through
the scattering by carriers and short wave
phonons. In this case short wave phonons are
assumed to be in thermal equilibrium, and so
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Fig.l Temperiture dependence of g

in kish graphite.
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Fig.2 Momentum relaxation processes
in carrier- and phonon-systems,

they do not explicitly participate in the
kinetic equation. However, with decreasing
temperatures the short wave phonons deviate
from the thermal equilibrium because the
Umklapprocess (U-process) becomes inactive
as compared with the Normal process{N=-
process). Accordingly, the short wave phonons
can drag carriers via the electron phonons.
This two-stage drag induces the extra anomaly
of Pxx{0) in Fig.l.

By solving the coupled Boltzmann equation
of carriers and phonons, an expression of the
two-stage drag effect is given in §2.

§2. Two-stage drag effect in graphite

Main assumptions made in our calculation

are as follows:
1) The Fermi surface is approximated by
the ellipsoid model. (6~ 9)
2) Electron-phonon interaction is limited to
the cgupling with the in-plane vibration.
\6~ 9
3) As we consider a case of Ty » Ty , where

7, and 7%y correspond to relaxation times of
the short wave phonons and U and N indicate
the U- and N-processes, their distribution
functions are assumed to be

-1
l“q_z_ [exp pl% 0, - Au.q) - l] . {2.1)

u is a quantity to be determined by use
of the coupled Boltzmann equation.

To get B, it is more convenient to
calculate the heat flux ¥ subjected to an
electric field F and without temperature
gradient ¥ T. In this case we have

¥v=2XE,

Tﬁij\l{) = in(-H). (2.2)

Along the similar line to the procedure




2f Aozlov und hozlov et al (1lUu~12), we set
-n expression of w due to the two-stage drag
effect as follows:

_=thxs(n )
q 1 tp\q)

[ Vs

tp(q): relaxation time of the electron

(FN)

q'normal drag’ (2.3)

phonon velocity,

phonon q related to the scattering by
the short wave phonons (see Fig.2),

(§ N )

qQ'normal drag:
deviation in the normal phonon drag

electron phonon

| process.

According to the theory of the normal
phonon drag eftect in graphite (6,8,9),

\J.Nq)normal drug takes the form:
0
Ny
hrNq)normal drag = ~ ¥q he
q (2.4)

?q EZ “1,,‘((1)\!(‘)-"}1),
p
R;.,,,(q) = t(q)/t)-)};\q)y
t(q): total relaxation time of the
electron phonon g,
tmm(q)’ relaxation time of the electron

phonon q 1n the scattering process by

carriers,
> 4 M4 : indiciles specifying carriers,

!}P): drift velocity of #~th carrier.

lnserting (2.4) invo (2.3), we get

To
(q)

¥ = azthq«zs- _(l)(t ){[Ree(qh 2k, (q)]

x 1‘9) + 2 [Hhh(q) + Rk, (q) + th.\q)] z‘“ﬂ

x Ng(1 + 87D, B = L/kT. (2.5)

In (2.5) contribuvions of electron and
hole cancel each other.

At low temperatures 7 increases rapidly
as expla® /T) (a~1), With further decrease
of temperatures boundary scattering plays
an important role in the relaxation process
of the short wave phonons. Then, we should

replace T by

7y =T /T (2.6)

(see Fig.2)
If a condition of t >»7%, W»? is

satisfied, two-stage drag effect becomes
negligible. This explains the feature of
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Fig.l qualitatively. In the presence of

4 magnetic field Pxx decreases due to the

cyclotron motion of carriers. (see Fig.l)
Clear indication of the two-stage drag

eftect was observed in good samples of

bismuth at helium temperutures. (13)
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