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The elastic constants can be obtained by direct
mechanical measurements, resonant methods, or from
sonic velocity measurements. Generally, it is a proj-
ect requiring careful planning, sensitive equipment,
skilled testing and knowledgable evaluation to derive
the elastic constants for an anisotropic material
such as graphite. The purpose of this paper is to
describe a fairly simple procedure to easily and
accurately obtain the elastic constants of graphite
using sonic velocity measurements. This is accom-
plished by noting an additional degree of symmetry
in both molded and extruded textures.

Sonic velocity measurements directly yield the
stiffness values, Cij5 but the compliances, Sij, must
be calculated. Using different transmitting crys-
tals, both the longitudinal and the two shear wave
mode velocities can easily be measured. The general
method is to measure the velocities in the z direc-
tion, the axis of symmetry, and one of the normal
directions, x or y. This will directly yield four of
the five elastic constants used to describe elastic
deformation of a body with hexagonal symmetry with
one isotropic plane. In the past, it was considered
necessary to determine the velocities in one inter-
mediate direction to evaluate the fifth constant
(C13); however, it will be shown and demonstrated
that only the two normal directions are required.
This was found possible by observing that the shear
wave velocity associated with the C,, did not vary
with the angle of measurement.

When plane waves are propagated through a solid,
the Cristoffel velocity equations for the three
transmitted modes in an orthogonal coordinate system
are as follows:!

T — DVZ T2 Ti3
I Top — pv° Tas =0 (1)
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where p = density of the solid, v = velocity of the
wave propagation, and the T;; are the Cristoffel
stiffnesses. For a wave propagating in a direction
whose cosines are %, m, n with reference to a Carte-
sian coordinate system, the T;: take on the following
form for a crystal of hexagonal (Deh) symmetry:

Ti1 = 22¢,; + mPces + nCss
T2 = &m (C12 + Ces)

13 = nd (c13 + Css)

T3 =mn (cy13 + Cuy)

Teo =Ty

I3y = mchq + n2C33

with Css = Cuy and Cge = 1/2(C11 - Clz).

Equations (1) diagonalize when the wave propa-
gates in the z-axis direction or in the x-y plane.
For the first case, n =1, m = 2 = 0, and

2
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0 Cuy — PV, 0 =0

0 0 Cizz — pvé
with the obvious solutions

2
2
p(vE)? = c33 o(vi¥) = cu (2)

where v> is a plane wave traveling in the z direc-

tion and polarized in the z direction (Z.e., longi-
tudinally), and ng is traveling in the z direction
but polarized transversely ({.e., shear wave).

) In the second case, in which the wave velocity
is in the x-y plane, because of cylindrical symmetry,
we may take n = m = 0 and obtain

Cot —-ov; 0 0
0 c11 — oVl 0 =0
0 Cuyuy —'DV;
with the obvious solutions

2 2

D(Vz) =Ci1 3 D(V;] = cyy g
) (3)
O(Vg) = cge = 4(c11 — C12)

with the same notation as before.

Equations (2) and (3) therefore yield the stiff-
ness constants ci;, €33, Cuy, and c;, from the rele-
vant velocity measurements. It remains to determine
Ci3.

Consider a wave propagating in the direction r
not lying in the x-y plane. Then m may be taken as
zero and the secular determinant becomes

22cyy + nPcyy —'OV; 0 nf(cis + Cuy)
0 22ceg + nlcyy —-pv; 0
nf(cy3 + Cyu) 0 2%cyy + nPcyy — DV;

One solution factors out:

2

D(Viy) = 2%cg6 + NZCuy (4)

representing a shear wave. The remaining two solu-
tions are a shear wave vZ23 and a longitudinal wave
vg obtained from the quaﬁratic
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\(3011 L, —~nv3}(ﬂjcuq + njij —-pv{] of p(v;}7 to the measured values in Fig. 2. Addi-
! tional confirmation is also shown by a comparison of
= e+ cy) (5) sonically derived constants to values obtained by the
strain gage techniques in Table I.
In general these solutions will depend upon the
directional cosines ¢ and n. In the present case
{sce Fig. 1), the shear wave vi7 is found empirically

not to depend on the cosines. ~For the special cases ST ! ! ! !
<=0, VL“ becomes v/, and for the casc n = 0,
vi% becomes v, both”of which satisfy 0 .
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@ Fig. 2. Longitudinal Velocity Measurements as
a Function of the Angle of Rotation.
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Table I. A Comparison of Elastic Constants
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tion of the Angle of Rotation.
1/S1,, MPa 11.44 10.76 7.86 8.55 11.95 12.07
Therefore we may conclude on the basis of the data 1/S33, MPa 8.00 7.67 7.17 7.54 5.05 5.17
for any & and n —812/811 0.11 0.06 0.11 0.14  0.05 0.04
L2
p(vi“) = Cuy (6) —S13/S11 0.13 0.13 0.11 0.12  0.11 0.12
and the associated longitudinal wave becomes S13/833 0.09 0.09 0.13 0.14 0.08 0.07
2
Q[VP] = (¢ — €33)8% + ¢33 (7) M — by direct mechanical test
P
. . . . . 3Southern Research Institute
which depends quadratically on the directional cosine b
L. General Atomic Company
Substituting Eq. (6) into Eq. (5) and using “0ak Ridge National Laboratory
n® + 2% = 1, we obtain S — by sonic techniques, Oak Ridge National Laboratory.
1 1
Ci13 = (Cll —'Cuu)z(Caz“‘Cuu)z — Cuy Reference
Thus, the value of c,3 can be calculated from (1) R.F.S. Hearmon, p. 68 in An‘Introduction to
the values of ¢,;, €33, and cyu. And all five elas- Applied Anisotropic Elasticity, Oxford University
tic constants can be obtained from measurements only Press, London, 1961.

in the axial and one transverse direction. This is
further confirmed by comparing the calculated values
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