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Introduction

The reference fuel kernel in high-temperature
gas-cooled reactors (HTGRs) is U0, and UC, finely dis-
persed in microspheres of porous carbon derived from
weak-acid ion-exchange resins (WAR). 152 These resins
are available commercially as sized and shaped micro-
spheres derived from acrylic acid-divinylbenzene.
Amberlite IRC-72 (manufactured by Rohm § Haas) and
Duolite C-464 (manufactured by Diamond Shamrock) were
used in this study.

After drying, carbonization’to 900°C completes
the HyO evolution and thermally decomposes the resin,
producing finely dispersed U0, in a porous carbon ma-
trix. Typical properties are carbon-to-uranium
ratios of fyom 4 to 6 with a density of 2.4 to 3.7
Mg/m3 and 67 to 75 wt % U.

Carbothermic reduction of the U0, (conversion)
produces UC, and UC,_xOx with the evolution of CO.
The percent oxygen removed is defined as the percent
conversion (U0, = 0%, UC, = 100%). Final weight per-
cent uranium ranges from 72 to 86% with corresponding
densities from 2.4 to 6 Mg/m3.

This work determined the effect of heating rate
during carbonization on the bulk physical and chemi-
cal properties, the variation during processing of
significant material properties, and the effect of
conversion conditions on the thermodynamic predic-
tions.

Experimental Procedure

Processing occurs in vertical graphite resis-
tance furnaces containing cylindrical graphite fluid-
ization tubes having conical bottoms. Chamber diame-
ters are nominally 2.54 to 6.35 cm (1.00 to 2.5 in.).
Temperature measurement is accomplished with sheathed
Chromel-P—Alumel bed thermocouples to 700°C and opti-
cal pyrometry for higher temperatures. Fluidizing
(argon) gases are supplied through calibrated flow-
meters.

Thermogravimetric (TGA) and differential thermal
analysis (DTA) were conducted with a Mettler record-
ing vacuum thermoanalyzer 300. To establish the ef-
fect of heating rate during carbonization on bulk
properties, Amberlite IRC-72 and Duolite C-464 were
heated at controlled rates to 500°C followed by rapid
heating to 1200°C.

Property variation during processing was investi-
gated by heating both resins at 2°C/min to 500°C and
then at 20°C/min to a selected temperature. Mercury
density and porosimetry, BET surface area, carbon-to-
uranium ratio, particle size, and bulk physical prop-
erties were determined.

Comparisons of observed and predicted conversion
levels for different gas flows, resin types, tempera-
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tures and batch sizes were made in 35 experiments
with gas flows from 0.295 to 7.37 % of argon per gram
of uranium from 1500 to 1690°C at conversion levels
from 15 to 93%. Batch sizes varied from 28 to 486 g
in furnace tubes from 35 to 108 mm in diameter.

Results

The Amberlite IRC-72 TGA analysis showed a grad-
ual weight loss to 270°C for 2°C/min, a large weight
loss from 360 to 440°C, and little subsequent weight
loss to 1000°C. Faster heating rates increased the
weight loss.

The Duolite material shows little weight loss
until 210°C where a gradual loss occurred. Faster
weight losses occur with lower heating rates to ap-
proximately 315°C, above which the weight loss accel-
erates. Above 480°C, little weight loss occurs to
1000°C. The Duolite resin requires higher tempera-
tures for equivalent decomposition than does the
Amberlite material, which is attributed to the higher
degree of polymer cross-linking resulting from the
higher uranium concentration. The predominance of
the reaction rate in the 350 to 460°C region is
apparent throughout.

The DTA results show three broad endotherms for
both resins. Comparison with the TGA results indi-
cates that the peaks correspond to the weight losses.
The relative peak sizes correspond to the relative
weight losses. The similar thermal behavior indi-
cates that similar processes may be occurring in both
resins above 270°C.

The effect of heating rate on Amberlite IRC-72
from 200 to 500°C, the predominant TGA region, on the
weight loss, volume loss, and carbon-to-uranium ratio
shows a strong linear dependence on the log of the
heating rate. As carbothermic reduction to UC; re-
quires a carbon-to-uranium ratio of 4, any technical-
ly feasible heating rate will be satisfactory. Duo-
lite C-464 shows a stronger correlation with higher
carbon-to-uranium ratios.

Comparisons of the carbon-to-uranium ratio are
significant as a higher ratio reduces the agglomera-
tion tendency during conversion. Both resins show
reduced agglomeration tendencies with slower heating
rate through the critical range. Conversion runs
under comparative conditions indicate Duolite resin
to be superior in resisting agglomeration.

The changes in weight loss, volume loss, and tap
density are shown for Apberlite in Fig. 1. Tap den-
sity is obtained from the bulk volume occupied by
the particles. The weight loss curve follows the
TGA behavior. The behavior of Duolite C-464 is simi-
lar. Particle size, carbon-to-uranium ratio, and
mercury density closely replicate the TGA and shrink-
age curves. Mercury porosimetry shows that carbon-
ized Duolite C-464 has 0.05-um pores, significantly
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Fig. 3 (Right) Conversion Behavior of. Weak-
Acid Resin-Derived Fuel.
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