glassy carbon as a catalyst support

P. L. Walker, Jr., A. Oya and O. P. Mahajan

Department of Material Sciences The Pennsylvania State University University Park, PA 16802

Noble metal catalysts supported on activated carbons are used in several industrial chemical processes. However, these carbons are invariably associated with mineral impurities which may act in some cases as dissociating centers for reactant molecules and/or may act as catalyst poisons. Further, activated carbons usually have a polymodal distribution of pores whose diameters vary from a few angstroms to several thousand angstroms. Depending upon the sizes of the reactant and product molecules involved in catalytic reactions, a part of the area contained in smaller pores and, hence, the catalyst contained in such pores may not be accessible for the reactions. There is thus interest in the production of relatively pure carbons with desired shape (configuration), porosity, pore size distribution and surface area. We believe that such carbons can be prepared by judiciously choosing and/ or modifying the experimental conditions and procedures outlined by Hucke (1) for the preparation of glassy carbons. The present study describes the results of such an attempt.

Experimental

The basic ingredients for preparing glassy carbons with controlled porosity are: a carbonyielding binder, a liquid pore former, a dispersing agent and a consolidating agent (1). The pore forming liquid helps escape of gases during pyrolysis of the binder. The function of the dispersing agent is to produce a uniform distribution of the various ingredients. The consolidating agent promotes catalytic polymerization of the binder. In the present study we have used furfuryl alcohol (FA) as the binder, diethylene glycol (DEG) as the pore former, Triton $\mathrm{X}-100$ (iso-octyl phenoxy polyethoxy ethanol) as the dispersing agent and p-toluene sulfonic acid (PTSA) as the consolidating agent. We have also used polyethylene glycol (PEG) both as a pore former and as a dispersing agent.

The following procedure was used to prepare carbons. The consolidating agent was added to the mixture of the dispersing agent and pore former at about $75-95^{\circ} \mathrm{C}$. After cooling the resultant solution to about $15^{\circ} \mathrm{C}$, the binder was added in small amounts with constant stirring; the temperature during the addition was kept between 20 and $25^{\circ} \mathrm{C}$. The mix was then allowed to polymerize at $20-25^{\circ} \mathrm{C}$ for 2.5 hr , after which it was put into molds (glass tubing, 6 mm 0. . and 25 cm long). For thermal setting, the following cycle was generally used: 24 hr in cooling water at $15-20^{\circ} \mathrm{C}, 24 \mathrm{hr}$ at room temperature $\left(20-25^{\circ} \mathrm{C}\right), 24 \mathrm{hr}$ at $45^{\circ} \mathrm{C}, 2$ days at $70^{\circ} \mathrm{C}$ (after 12 hr at $70^{\circ} \mathrm{C}$, samples were removed from the molds) and 3 days at $95^{\circ} \mathrm{C}$. The polymerized sample 'rod' was cut into pellets of about 2 cm in length. The pellets were then pyrolyzed in a N_{2} flow using the following heating cycle: $100-300^{\circ} \mathrm{C}$ at $4^{\circ} \mathrm{C} / \mathrm{hr}$, $300-325^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C} / \mathrm{hr}, 325-425^{\circ} \mathrm{C}$ at $5-6^{\circ} \mathrm{C} / \mathrm{hr}$ and $425-$
$700^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$. Soak time at $700^{\circ} \mathrm{C}$ was 2 hr . Two samples were further heated in an Ar flow to different temperatures, up to a maximum of $1500^{\circ} \mathrm{C}$, using a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. Soak time at each selected maximum heat treatment temperature (HTT) was 2 hr .

Surface areas of carbons were determined from N_{2} adsorption at $77^{\circ} \mathrm{K}$ using the BET equation and from CO_{2} adsorption at $298^{\circ} \mathrm{K}$ using the PolanyiDubinin ${ }^{2}$ equation. Pellet density was determined by mercury displacement. Pore size distribution was determined from mercury porosimetry data obtained up to a maximum pressure of $30,000 \mathrm{psi}$. For a given carbon, the cumulative volume of mercury intrusion (up to $30,000 \mathrm{psi}$) has been referred to as its pore volume in the text.

Results and Discussion

Recipes for the production of samples are given in Table 1. Surface areas, pellet densities and pore volumes of various carbons heat treated at $700^{\circ} \mathrm{C}$ are given in Table 2. The volumes of mercury intrusion into pores as a function of pressure for different samples are plotted in Figure 1. Pore diameters corresponding to maxima in pore size distribution curves are referred to as D_{m} in the text and are listed in Table 2 . For each sample, the CO_{2} area is significantly higher than the N_{2} area. ${ }^{2}$ This indicates the presence of micropores in which adsorption of N_{2} at $77^{\circ} \mathrm{K}$ is restricted due to activated diffusion. For various samples, pore volumes vary from 0.022 to $0.493 \mathrm{~cm}^{3} / \mathrm{g}$, pellet densities vary from 0.840 to $1.375 \mathrm{~g} / \mathrm{cm}^{3}$ and D_{m} values vary from <60 to 50,000A.

Samples 1 and 2 differ markedly in their properties, particularly N_{2} areas, pore volumes and D values. The two samples differ only in the propor ${ }^{\text {m }}$ tion of the dispersing agent in the starting mix used for their preparation. Thus, by varying the proportion of the dispersing agent in the starting mix it should be possible to prepare carbons with different properties.

Four additional carbon samples were prepared from the same starting mix as was used for preparing sample 3 , but the heat treatment conditions between the polymerization and carbonization steps were different in each case. It was found that with the exception of N_{2} areas, thermal history used has some effect on other properties studied.

The results obtained with samples 5 and 6 are very significant. For preparing sample 5, PEG is used both as a pore former and as a dispersing agent. If instead of PEG, a 1:1 mixture of PEG and Triton $X-100$ is used, marked changes in properties of the carbon produced (sample 6) are observed. For instance, D_{m} values for samples 5 and 6 are 50,000 and 210 A , respectively. These results

ミaggest that by varying the proportion of PEG and Friton $X-100$ in the starting mix it should be －ossible to prepare carbons having D_{m} values over三 wide range of pore diameters．

It is well known that the structure of porous zarbons can be modified by suitable heat treatment． Effect of HTT in the $700-1500^{\circ} \mathrm{C}$ range on the prop－ erties of samples 3 and 4 is shown in Table 3 ． Eore volumes and D_{m} values（not shown）are essent－ ：ally independent ${\underset{\mathrm{m}}{\mathrm{f}}}$ HTT．Pellet densities show三ome variation upon heating．Both the N_{2} and CO_{2} areas decrease sharply above $1000^{\circ} \mathrm{C}$ ．For $\mathrm{HTT} \geqslant 1400^{\circ} \mathrm{C}$ ， the N_{2} and CO_{2} areas are about the same．

In conclusion，results of the present investi－ sation strongly suggest the possibility of prepar－ ing glassy carbons with desired porosity，pore size Eistribution and surface area as catalyst supports．

References

1．Hucke，E．E．，U．S．Patent 3，859，421，Jan．7， 1975.

Figure 1．Pore Size Distributions in Carbon Pellets

TABLE 1
RECIPES FOR PRODUCTION OF SAMPLES

Sample	FA	DEG／PEG	Triton X－100	PTSA
1	$100 \mathrm{~cm}^{3}$	$57 \mathrm{~cm}^{3}$ DEG	$50 \mathrm{~cm}^{3}$	11.3 g
2	100	57 －	100	11.3
3	100	25	75	11.3
4	100	15	85	11.3
5	100	100 PEG	0	17
6	100	50	50	17

TABLE 2
PROPERTIES OF CARbONS

TABLE 3
EFFECT OF HEAT TREATMENT ON PROPERTIES OF CARBONS

