THE APPLICATION OF CHEMICAL RATE THEORY TO FAST NEUTRON IRRADIATION DAMAGE IN GRAPHITE
II. The effect of thermal annealing and thermal equilibrium defect concentrations
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1. Introduction

A simple chemical rate theory of fast neutro?
irradiation damage in graphite has been presented
and shown to give reasonable accord with experiment:
It was noted in the presentation of the theory that it
possessed a number of deficiencies including
(1) The neglect of the effect of vacancy mobility
parallel to the hexagonal axis.
(2) The neglect of thermal annealing of non-saturable
sinks and point defects by the equilibrium defect
concenctration.

The purpose of this paper is to consider the
modifications necessary in the theory to accommodate
these processes.

2. Theory
The simple chemical rate theory of irradiation
damage in graphite assumes that it is sufficiently
accurate to distribute the sources and sinks for the
point defects homogeneously throughout the solid.
The particular sinks for point defects (other than
the mutual annihilation of interstitial atoms and
vacancies) which are assumed to be present in the
solid at constant concentration are:
(a) For interstitial atoms, the interstitial loop
with density Ny cm~ -3
(b) For vacancies, the vacancy line, density Ny cm”,
and the crystal boundaries defining the crystal-
lite size L, parallel to the basal plane.

The uniform interstitial and vacancy concentra-
tions denoted by'xl and C are obtained as solutions
of the equations:-
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(valid for temperatures where thermal defect concen-~
trations are not significant). Where G; is the atomic
displacement rate in atoms/atom/sec, in a neutron
flux @ (measured in Equivalent DIDO nickel units), R
is the repulsive barrier to interstitial - vacancy
recombinations, Z is the number of neighbours from a
vacancy from which recombination occurs, and x’ is
the number of sites adjacent to the end of a vacancy
ling Di ang Dy are the diffusion coefficients for
interstitials and vacancies respectively, parallel to
the basal planes. K% and are the terms defined in
(I) related to the mean free paths for interstitials
and vacancies respectively, given in terms of the
defects by
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shere r is the interstitial loop radius, d the inter-
layer spacing, a the basal jump distance and Z;, Z
are small numbers allowing for the effects of stress
Tields.(1
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The motion of vacancies parallel to the hexago-
nal axis enables them to annihilate interstitial
atoms in the loops. This process has been analysed
by Reynolds and Thrower{2) and Baker and Kelly.¥
The rate of change of the radius of a single loop r
in a crystal with uniform vacancy concentration Cy
due to movement parallel to the hexagonal axis 1s
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where X is the fraction of edge sites on the loop
which can absorb vacancies, y is the co-ordination
number of an edge atom (6 or 7), @ is the area/atom

in the loop, v, is the atomic vibration frequency
parallel to the hexagonal axis, By, is the formation
energy of a vacancy, Epc is the activation energy for
vacancy movement parallel to the c-axis, k is
Boltzmann's constant and T is the absolute temperature.

The parameter F, is defined by
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where E is the energy of the dislocation loop. The
term exp (- E. /kT) is small up to a temperature
2500°K while for loops of reasonable size exp (- F 74
kT) is less than unity, when (3) may be approx1mated

by
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Inclusion of the interstitial loops as sinks for
vacancies in the second of Eqn (2) modifies it to
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without modifying the equation for K..
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The growth rate of a graphite crystal parallel
to the c-axis, X‘ (ax /dy) in the usual notation{1) is
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then the solutlon of Egqn (1) is, as before:
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Substitution of Eqn (10)iin (7) and re-arranging
leads to, finally:
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In irradiations at very high temperatures, it is
possible in principle for the interstitial loops to
emit interstitial atoms and the collapsed vacancy
lines to emit vacancies. There may also be equili-
brium concentrations of interstitial atoms x. and
vacancies Co. In this case Eqn (1) is replaced by:
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where L is the average length of the N vacancy lines,
(dr/dt); is the rate of change of loop radius dose to
1nterst1tial emmission.

The pair of Eqns (12) can be solved, but the
complexities of the solution obscure the behaviour and
many of the numerical parameters are not known. Con-
sider the most likely case, that x, << x;, (dr/dt); =
0, and eventually C, >> C,, then Eqn (12) can be
written:
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The crystal growth rate parallel to the hexagonal axis
is
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where the last term is due to the annealing of the
interstitial loops by the equilibrium vacancy
concentration.

Substituting for Ki and.xi in the first term gives
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where Dyq and voi are respectively the pre-exponential
factors of interstitial diffusion and the interstitial
jump frequency parallel to the player planes:

Now C,=A, exp (- Efv/kT) (18)
where Ay is the pre-exponential factor,(q) and to a
good approximation
dar
= xy/hv exp (- Emc/kT).Av exp (- Efv/kT) (19)

On substitution into (17} this gives finally:
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The effect of the vacancy concentration in the first
term becomes important when
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and then the first term diminishes rapidly.

3. Discussion

The second term in Eqn (11) was evaluated for
parameters appropriate to reactor graphite, Ep. = 5.5
eV and EBpmg = 3.6 eV. Over the range 1200-17007K it
was negligible. Basically for crystallite sizes Lg
~ 3000 & all vacancies are disappearing at crystal
boundaries before a significant concentration can jump
parallel to the hexagonal axis. This could be
reversed for very large Ly values.

Eqn (20) is very transparent, the second term is
found to be very small, while the first term shows the
damage to be temperature independent until the term in
the square brackets reduces below unity. Evaluating
the bracketed term indicates that this does not occur
until ~ 4000°C for the case Cy << Coe

It would be interesting to observe the results of
irradiation of pyrographites at very high temperatures.
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