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PHYSICAL PROPERTIES OF CARBONS AND THE FORMULATION OF THE
GREEN MIX*

8. MROZOWSKI
Department of Physics, University of Buffalo, Buffalo, New York

(Manuscript received January 7, 1955)

The dependence of different physical properties of carbons and polycrystalline graphites upon
the porosity introduced in the manufacturing process is analyzed. The apparent (bulk) density,
d, of the material is a function of two variables: the density of the coke filler, do (mass of filler
per unit volume of bulk material), and the density of the binder coke, (d — do). Making a num-
ber of simplifying assumptions as to the distribution of the binder coke and as to the statistics
of the interparticle contacts, the following relations are derived: For the moduli of elasticity,
rigidity and volume expansion, E = Eudo*(d — dg); for the mechanical strength, § = Sede
(d — dg); and for the electric and heat conductivities, 1/p = (1/B)d#(d — do)t. It is shown that
the exponents must satisfy the relations ¢ = z + % and y> 2. The coeflicients Fo, Soand 1/B are
proportional to the respective values for the dense material; S¢is inversely proportional to some
fractional power of the radius of coke particles. Adaptation of the formulas to cases of dif-
ferent binder-coke types, coke particles with internal porosity, non-equiaxed particles and
mixture of particles of two sizes are discussed. It is further shown that the formulas derived
make possible an analysis of a carbon from which information can be obtained as to the formula-
tion of the original mix. The method is illustrated by using data obtained by K. Hong on the
elastic modulus and electric resistivity for a batch of extruded baked earbon rods, for which
it is found E = 4 X 10t (d — 1.26) dynes/cm? and 1/p% = 2 X 103 (d — 1.28) mho?/cm?. A con-
sideration of the limitations imposed on the relative values of do and (d — do) by the manufac-
turing process (compression of the green mix) leads to predictions as to the optimum condi-
tions for the mechanical strength, elastic moduli and conductivities.

between the microstructure and the different
physical and chemical properties of the
'g}aterial. As can be seen for instance from
this volume, studies are being pursued in
this direction. The second area covers the

I. INTRODUCTION

The ultimate aim of investigations of
carbons and graphites is the complete
understanding of the dependence of their
properties on their structure, and the

clarification of the nature of the forces and
of the mechanisms involved in their forma-
tion. When and if this goal is attained, the
manufacturers’ task of preparation of
carbons with well-defined properties for dif-
ferent uses will be greatly simplified. At
present there seem to be two main areas
where answers have to be obtained: One is
the dependence of the final microstructure
on_the starting organic material and the
heat-treatment procedures, and the relation

* Work performed in part under the auspices
of the U. S. Atomic Energy Commission.

problems of the dependence of the properties
of the final material on the formulation of
the mix, that is, on the relative amounts of

‘binder and filler, particle sizes used and

their shapes, and finally on the processing
procedures like extrusion, molding and so
forth. No fundamental work has been done
in this field, the existing information being
mostly of an empirical nature.

Most of the physical properties are
strongly dependent on the porosity of the

' matqg{ail. In the case of carbons one finds -
two distinctive types of porosity. One isof a \/,
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196 PROCEEDINGS OF THE CONFERENCES ON CARBON

very fine type, composed of small inter-
crystalline spaces mostly formed in cooling
and due to the extreme anisotropy of single
crystallites. This is the unavoidable micro-
porosity, which depends on the type of
microcrystalline structure and actually has
to be considered a part of microstructure!.
The other porosity is of a much coarser

Hoe type; in cokes it consists of bubbles formed

v

during setting, with a wide size distribution
depending on the conditions prevailing at
that time. In manufactured carbon ma-
terials, a macroporosity is due to the
method of preparation and is quite uniform
throughout the material. Most  of the
physical properties depend so strongly on

this porosity, that a more pr@glge comparlson

of the real prop_erties of, for instance, two

different,_carbons is possxble only if both
_carbons are made w1th exacﬂy the same
type_of porosity (thls is in general very
difficult, if not. impossible). Some authors
have tried to circumvent this difficulty and
reduce their data by multiplying them by
the ratio of the apparent to the real densities
(this ratio is equal to the effective cross
section of the material) or by some whole or
fractional power thereof. Among American
manufacturers, there 1s a widely-used

empirical formula which_states that the

_electrical conductivity of a carbon is pro-
Eortlonal to_ the cube of the apparent
density. In Great Brltaln a correspondmg
fourth power law was obt.auned2 “Actually,
o formula of this kind can be correct, since
the physical properties do not depend on the
amount of porosity only; equally important

factors are the shape_of the pores.and their

distribution, neither of which is considered
in such an expression. The general problem
of the influence of porosity on physical
properties is a complicated one; as has been

1 8. Mrozowski, This volume, page 31.
2G. H. Kinchin, Proc. Roy. Soc. (London)
A217, p. 9 (1953).

shown recently by Kerner?, it can be solved
in principle. However, great mathematical
difficulties are met when a specific applica-
tion is attempted.

The aim of this paper is to consider a
simplified model of a porous material which
has approximately the type of porosity met
in carbons, and which is so simple that it
can be treated by elementary mathematics.
The starting point is the observation that
carbons as manufactured are essentially
two-component systems: They are composed
of the filler coke (amount per unit volume
ds) and the binder coke (amount per unit
volume d — d,). These two quantities will
be the two main variables used throughout
the paper. In Part IT a simplified model of a
filler made of spheres is considered; it is
shown in Part III how this and other
special assumptions can be dropped and the
formulas generalized for other less spe-
clalized cases. Part IV-A contains a dis-
cussion of application of the formulas to a
study of the composition of an unknown
carbon and some corresponding experi-
mental results are reported. Finally, in
Part IV-B, the limitations of the standard
method of preparation of carbons are con-
sidered from the point of view of the
established relationships.

It has been mentioned by the author in a_
previous paper' that the interaction of the
binder_with_ the_filler” might not be limited
to just a relatlon of components in a me-
chanical rmxture but that the | binder might
penetrate the particles and as a result alter
their structure. This view was prompted by
some earlier experimental results of the
WITter, and ﬁndsgu.ﬁ)ort in more recent ones
by . Colling®. Such an interaction répresents
a typical cross-problem between the two
broad areas of research mentioned in the

3 K. H. Kerner. Reports to the U. 8. Atomic
Energy Commission NYO 6105 (Jan. 12, 1955) and
NYO 7151 (Oct. 15, 1955).

¢+ F. M. Collins, This volume, page 177.
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PHYSICAL PROPERTIES AND FORMULATION OF THE MIX

beginning of the introduction. Another
cross-problem is the influence of grinding
and particle size on the growth of the micro-
structure in the heat-treatment process®.
Such cross effects are in most cases of a
secondary importance and will not be con-
sidered in this paper. In cases, however,
where they are not of a secondary, but of a
primary importance, as for instance in the
case of the thermal expansion?, the pre-
dictions of the simplified model do not seem
to agree with observations. It is possible
that a consideration of the internal stresses
in the model might bring some clarification
of these special cases.

IT. SIMPLE
A. Elastic Constants

MODEL OF A POROUS CARBON

In order to derive the dependence of the
elastic modulus of a carbon with apparent

density d, on the amount of filler per unit

“volume do and of the binder coke per unit
volume d — dg, it will be assumed that all
particles are round and are of the same size,
and that they are uniformly coated with
binder in the mixing process. The thickness
of the binder layer ¢ can be calculated from
the relation

L+ &) — PPlds/t m'd,

where r is the radius and d, the density of
the material of the particles, dz the density
of the fluid binder and W the binder pro-
portion used in the mix (W parts by weight
of binder per 100 parts by weight of the
filler). It will be assumed that the density of
the particles and that of the binder after it
has been coked is as high as can be obtained
considering the upayvoeidable microporosity;
that is, equal to d. This density 1s con-
siderably lower than the real density d, of
the carbon crystallites’. When the binder is
coked, the thickness of the binder coke layer

= W/100 (1)

5 Such effects were observed by 8. Mrozowski
and H. T. Pinnick (unpublished). See footnote 1,
page 196.
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Fic. 1. Diagram showing the width 2a of a
binder-coke bridge connecting two particles of
filler.
decreases from ¢ to ¢, and ¢ is given by the
relation similar to (1)

((r 4 & =1/ = W /100 = (d —do)/ do (2)

- where 7 is the coke yield of the binder. The

decrease in the thickness is due to two
factors: dp — d, and n < 1. For a practical
case of 30 parts binder and a 60 % yield, one

finds from (2) ¢ ~ 0.06r, that is a quite

“thin blnder-coke ‘layer surrounding the
particle. In the followmg, higher order terms

in ¢/r will be neglected, and the correspond-

ing corrections originating from this ap-
proximation will be discussed later.
When the green mix is extruded or
molded, particles get into direct contact;
with the release of pressure, the mix expands
due to elasticity of the particles. In baking,
the particles support each other until the
binder is solidified. It seems therefore
reasonable to assume that the particles
remain always in direct contact® in_a
carbon and that they are linked by brldges
of coked binder, as shown schematically in
Fig. 1. The width of the bridge (radius @),

6 Actually it has been found experimentally
by the writer that, dué to shrinkage of the binder,
coke particles in the baked state are being com-
pressed with forces ranging up to several hundred
Ibs/inch?. These Tesults will be published at a
later date.
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taking (2) and neglecting higher orders in
€ls
= VEFF =P~ Ve~

/2% (d — do)/3do

When two particles connected by a narrow
bridge (low binder content) are subjected to
a tensile or compressive stress along the line
connecting their centers a change in length
will occur, due primarily to the strains de-
veloped in and around the bridge. The dis-
tance between the centers of the two
particles can be divided into two parts: The
length of the bridge, 2fr (where f is a fraction
of the order of 1), and the rest of the dis-
tance, 2r(1 — f). A compressive or tensile
force F will create a total change in length
(1/E)(F/xr")2r (1 — f) in the particle, and
a change in length (1/E)(F/xa”)2fr in the
bridge where E is the elastic modulus of the
material with density d. The ratio
of these two quantities is proportional to
(a/r)’(f — 1)/f, which is small as long as
a K r. For the time being, it will be assumed
that the change in length is entirely due to

_the compression of the bridges, although for
larger binder proportions the contribution of
the remaining part of the particles must be
considered (see below).

In a solid carbon each particle is con-
nected by bridges with a number of neigh-
bors. This number of contacts per particle is
a function of the type of packing. For a
close-packed arrangement, every pérticle
rests on three others, this means there are
three bridges per particle to be compressed.
For a less dense arrangement of particles,
the average number of contacts is smaller.
In a simple cubic arrangement each particle
presses head-on on one other particle. In the
general case each of the contacts is com-
“pressed by different forces. The head-on
‘contacts are the most contributing ones,
because they are compressed the most, and
because the compression occurs in the
direction of compression of the piece; lateral

3)

OF THE CONFERENCES ON CARBON

contacts are completely ineffective ones
(it is assumed here that there are no shears;
shears will be considered further below).
For a disordered arrangement of particles
one has to define an average effective number
of contacts, n, which will include an aver
aging over the decomposed stresses and
over the contributions from each bridge.
The calculation of n is a very difficult
statistical problem, the solution of which will
not be attempted here. It is clear, however,
that n is primarily a function of the density
of packing. As a rough approximation it
will be assumed that

n = f(do/d)" (4)

where p is an unknown exponent and 8 is a
constant. By considering the simple cubie
and the close-packed arrangements, one ecan
convince onself that for the densities found
in experiments, p must be greater than 1,
may be as large as 2, and 8 is correspond-
ingly of the order of 4.

When a unit cube of the carbon material is
compressed by a pair of forces P, the re-
sulting change in length is due to the sum of

_the bridge compressions. The average dis-

tance between contacts in one particle in the
direction of the compression is about equal
to 4r. Actually this distance is slightly
variable with density of packing, slightly
increasing when the density decreases. One
can, by a similar reasoning as above, write an
approximate expression

(§)r-v(d/do)* 4)

where ¥ < 1 and ¢ < 1. What is actually
being done here is that most of the pa-
rameters which are difficult or impossible to
calculate exactly for this problem are
lumped together into the formulas (4) and
(5). Dividing the length of the cube by A
one finds the number of particle layers. If
the total number of particles in the cube is
N, then there will be M = Nh particles in
one layer. The total relative change in
length of the cube is consequently

h =
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Fig. 2. Schematic diagram of the dependence
of the elastic modulus E on the filler density d
and the binder-coke content d — do. System of
lines for low binder contents is given according
to Eq. (6). Thick broken line is the limiting curve
for the highest E obtainable at different apparent
densities d.
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and noting that (4)wr’Nd = do, the ap-
parent elastic (Young’s) modulus is

4 672E
gf[iwp—gq

_(d\° [d — d :
uE <d°> <(—i D) = Eydi(d — dy)

where z = p — 2¢ is of the order of about 1,
u~ 4 and By ~ E (since 8 ~ 4, v ~ 0.8,
§ ~ 1/3.5, d ~ 2). Due to fluctuations in
the distribution of particles the actual value
of E, might be somewhat lower than
E (p ~ 3).

The apparent elastic modulus E is in-
dependent of the particle size. This is as
was to be expected, because for a porous
substance such a physica}ﬁp{g*pgr_’(lym_s:}_lggld
not depend on_the absolute dimensions of

E = dg(d — do) =

(6)

the pores, but only .on. their shape, distyi-

_bution and total volume, provided that. the
physical _property is determined for pieces
large in comparison to the size of pores.
The formula (6) gives important informa-
tion: K is directly proportional to the

199

binder-coke content. In Fig. 2, E is plotted

as a function of the apparent density d.
Since (6) was derived assuming a low binder
content, straight lines are not extended
beyond binder coke contents (d — dy) ~
0.3 to 0.4. All the curves should tend for
higher d’s toward the value E ford = d,
since for the binder filling all pores no dif-
ferentiation according to different do should
be noticeable (assuming a perfect bond
between the binder and particles; see Sec.
IIT A), Corresponding light broken curves
are drawn in Fig. 2. It is easy to see that the
elastic constant for a carbon of density d
can have any value between 0 and E-
(d/d), depending on the shape and dis-
tribution of pores. The highest value of £
will be obtained when the pores are in-
finite _cylinders parallel to the direction of
the stress. Any variation in the cross
section of these cylinders will lead to stress
concentrations, hence to an increased change
in length and thus to a decrease in the ap-
parent modulus £. For the type of porosity
assumed in this section the maximum values
of E are given by the heavy broken curve—
this is a limiting curve which probably
corresponds to about spherical pores dis-
tributed at random as far as long range
order is concerned but not as far as neighbors
are concerned (distribution similar to dis-
tribution of atoms in an amorphous sub-
stance like glass). Values below this curve
are obtained when loeal constrictions are
present.

It is quite remarkable that experiments
yield straight lines of the type (6) up to
quite high binder proportions (see Part
1V). Equation (6) holds over a wider range
of (d — do) than the original assumptions
would lead one to expect, due to a fortunate
compensation of corrections. First, the
width of the bridges increases with (d — do)
more slowly than according to (3), when
higher order terms in ¢/r are not neglected
(correction 1). On the other hand, the
interfering presence of neighbors (number
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Fra. 3. Diagram showing the type of deforma-
tions occurring in the carbon under compressive
stress which contribute to the apparent value of
the Poisson ratio.

of contacts) makes the thickness of the
binder layer increase faster than given by
(2) (correction 2). Furthermore, for higher
binder proportions the contribution of the
changes in length of the particles them-
selves (their part 2r(1 — f)) cannot be
neglected (correction 3). A more detailed
consideration of these three corrections
shows that 1 and 3 balance about correction
2 for not-too-large binder contents.

In this whole discussion shearing de-
formations were not considered. Deforma-
tions of the kind given in Fig. 3 are probably
very common; shears and compressions
occur at the same time. A consideration of
shears will lead to the same type of relation-

ship (6) because displacements will . be

ain proportional to the length of the
bridges and inversely proportional to their
cross sectional areas. The constant K,
however will not be just proportional to
E, but will involve, in addition to E, the
modulus of rigidity G (inverse E, equal to
some sum involving the inverse £ and in-
verse G). As a result Ey will be lower than
the previously estimated value.

From the point of view of a single bridge
the mechanism of deformation occurring
in a carbon under shearing stress is very
similar to that under a compressive one.
A formula of the type (6) should apply
therefore for the modulus of rigidity, with
a corresponding constant Gy. Again in

this case both constants £ and G will
be involved in G, since in each bridge
compressions and shears oceur simul-
taneously. Furthermore, shears will con-
tribute also in the case of dilations. For
a_cubic or close-packed arrangement of
spheres ‘there will be no shear stresses in
the bridges. But, when a disordered ar-
rangement of particles is subjected to a
uniform pressure from all sides, there
will be many bridges sheared. Conse-
quently again the modulus of volume
expansion K will have to conform to (6)
with a constant involving both E and
G. In order to find E and G separately at
least two independent measurements per-
formed on the same carbon piece will be
necessary (for instance F and ), provided
the relative contributions of £ and G
in each case were known from a theoretical
treatment of a corresponding statistical

_problem.

It is easy to see that the Poisson ratio
o must be composed of two parts, of which
one is independent of, and the other de-
pendent on, the amount of binder coke.
On one hand, there will be a transverse
change in length due to stresses in the
particles: ¢ = —(AL,/L,)/(AL./L.), where
the change of length AL,/L, = —(5/E)
(P/Mmr*) occurs due to the presence of
the stress throughout the central cross
section of the spheres, and AL,/L, =
2fr/E)Y(P/Mnwa’)(1/h) occurs due to the
compression and shears of bridges. Sub-
stituting both expressions one finds

= (5/2fr)(nha’/r")
= (438y/9fd" )" (d — do).
On the other hand, deformations of the
type Fig. 3 give a contribution ¢” which
is independent of the binder-coke content
because AL,/L, and AL./L, both depend
on Mnrzd® in the same way. However, ¢”
depends on do and is smaller for higher
filler-densities dy (less open structures).

o -
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Consequently the Poisson ratio is in the
first approximation

o= u-dd " d — do) + 0" (do) (7)

All three moduli E, ¢ and K tend to
zero when the binder content decreases to
zero; this is as it should be in view of the
well-known relations K = E/3(1 — 2¢)
and G = E/2(1 + o). One can see that
all three will be strictly proportional to
(d — do) as long as the variation in ¢ can
be neglected. Essentially, the part of o«
variable with d — dp is a second order
quantity, of the same type as the correc-
tions occurring at higher binder-coke con-
tents, and causing deviations from the line-
arity required by eq (6).

The formula (6) is expected to hold for
static deformations as well as for time
dependent ones, as long as the wavelength
of the wave is much longer than the di-
mensions of coke particles.

B. Mechanical Strength and Creep

When a_carbon yields under stress the
process of yielding has to oceur in “the
brldges because there the stresses s are t the
llgh,ggp_ Consequently when one wants to
“estimate the rate of creep and plastic
flow at high temperatures, for the dense

carbon material, one has to consider that

the stresses in the brldges are higher than

“the applied one in the ratio 1/Mnma’ and.
~are higher than._the.

the deformatlons
measured one by a factor 1/f. Thus in
order to compare different carbons, knowl-
edge of the binder-coke proportion is
necessary.

A break occurs exclusively through the
blnder Consequently the fracture stress S
has to be proportional to the area of the
break, that is, to Mnwa®. Substituting
the values from (3), (4) and (5) one finds

~ 28~ .
S ~ ga o {d — dy) 8)
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The particle size does not appear in this
relation, because it has been assumed that
all the bridges are under equal stress and
are equally strong. Thus the strength is
proportional to the total area being sepa-
rated irrespective of the area’s subdivision
into islands of different cross sections. For
-a_perfect regular lattice-like arrangement, .
faﬂwgartlcles the strength will be very high;
it _will be eons1derably lowered by the
presence of faults in the structure. On the
other hand, in a disordered arrangement
of particles as is obtained in extrusion or
molding, there is no need to look for localized
faults in the structure since there are faults
everywhere throughout the material. After
all, due to the disordered character of the
distribution, there are fluctuations in the
numbers of bridges per unit cross section
of the material. The average deviation in
number of contacts per unit cross-sectional
area is A(Mn) = ~/Mn, therefore the
local stresses deviate in average by AF =
P(Mn — AMn)™" — P(Mn)—1 (P/Mn)
(AMn/Mn), and since F = P/Mn, the
- relative deviation AF/F = 1/A/Mn «
(r*/d PN s proportional to the size
of the particles. The spread of the devia-
tions so obtained is much too high, be-
cause the contacts are not statistically
independent and the fluctuations in their
numbers are strongly restricted by particle
interferences. This is another statistical
problem, a very difficult one, of which no
solution will be attempted here. If one
assumes, however, that the actual spread
is proportional to some kind of function
of the same ratio (r’/dy' ™), and considers
the maximum deviation AF/F which with
almost certainty will be existing in a piece
of given dimensions, one will find that the
actual strength S-[1 — (AF/F)] is also
a function of this variable. If, in a restricted
range, it is- approximated by a factor
de %/ where s is some unknown ex-
ponent, then
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S ~ (1/r)d(d — do),
wherey = (p — ¢)(1 + 8) + s.

Since as far as it is known the strength

©) ,thﬁ same factor can be used for the other

PROCEEDINGS OF THE CONFERENCES ON CARBON

_ductivities the porosity factor is.found,

conductivity. One reservation must be

of carbons with different particle sizes

varies only Weaklx with_the size, s must
be small. If one takes s ~ %, then the ex-
pected value of y is about $(1 + §) + § =
1.8. Experiments on the strength of car-
bons, each carbon made from particles
of a different size, will yield the exponent s;
a series of experiments on elastic modulus
and tensile strength as a function of do
would lead then to the estimate of the ex-
ponents p and q.

It is well known that for carbons the
crushmg strength is much higher than the

to the fact that in crushing, local failure
of a bridge might lead to a displacement
of a particle into a new position in contact

_with its neighbors in which it might still

support some stress; consequently a local
failure does not always lead to a large
increase of the stress on the neighboring
particles and to an avalanche type failure.

Tt is therefore to be expected that the

exponent y should be slightly higher than
the one for the tensile stress case, and
the difference would be representative of
the statistical mending collaboration of
particles not present in case of tensile
stress.

Finally it should be remarked that since
particles do ot contribute to the strength

“made, namely, that this is not true in the
-~ microscopic dimensions comparable to the

even at quite high binder contents, a cor-
rection of type 3 (from ITA) is not present
in this case and consequently the relation
(9) is not expected to hold up to as high
binder-coke contents as relation (6). The
curve for strength should, after a linear
portion, start gradually curving upward.

C. Flow Properties

The flow of electric current and the flow
of heat through a solid are governed by
the same type of differential equation.
This means that if for one of the con-

size of crystallites, because the anisotropy
of the crystallites is much larger in the
case of the electric conductivity. However,
in all carbons, even in the very Well—graph-
itized ¢ _ones,
usually small in comparlson | to the s1ze of
‘binder-coke br1dges and therefore this in
general will not lead to any measurable
difference in the porosity factor. The heat
convection through the pores when gas is

present and the heat transport by radia-

tion at high temperatures are factors to
be taken into consideration when the two
conductivities are compared.

When electric current is flowing through
a body of a nonuniform cross section, the
resistance cannot be simply calculated
without solving the differential equation
for the distribution of the electric potential
throughout the material. It has been shown, ¢
however, that when there is only one very )

s

the crystalhte size is _still }

étidngv,_constrictiorl present the resistance
of the body is almost exclusively due to :

the resistance to the flow through this
constriction.” This is the so-called spreading
resistance, which for a circular constriction
of radius a is equal to p/ma where 5 is the
resistivity of the dense material. If the
binder content is low, the widths of the
bridges between the particles are small
(a < r) and the resistance of a carbon piece /
will be due to the spreading resistances. in °
the bridges. The total resistance p of a
unit cube will be equal to the resistance of
each bridge multiplied by the number of
bridges connected in series (number of
layers m is given by 1/h) divided by the
number connected in parallel (Mn = Nhn).
Consequently using (3), (4) and (5)

7 See the book by R. Holm, Electrical Contarts,
Almquist and Wiksells, Uppsala (1946).

'
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Vb B w
Nhn wa  (do/d)[(d — do) /d}}t

B (10)

T ld — dy

and where w, B and z are constants and
z = %3 + p — 2¢. For the values of co-
efficients previously taken, w ~ 0.35 and
x ~ §; probably  is somewhat smaller,
maybe about 0.3, because the bridges are
not circular. Irrespective of the exact
values of the exponents p and ¢, the model
predicts that = = } + 2 a prediction
which can be checked experimentally.
Again in (10), as in (6), the result is inde-

pendent_of the size of the parficles. This

Vis to be expected from general similarity

considerations, but it will hold only so
long as all, even the largest particles are
dense.

When 1/p 1s plotted agalnst apparent
denmty2 stralght hnes should be obtained

1/p* = (1/B)d*(d — do) ~ (11)

A system of such straight lines is very
similar to that shown in Fig. 2; the limiting
heavy broken curve, however, will have
more curvature than in the case of the
elastic modulus. A good idea of the nature
of the limiting curve can be obtained from
the envelope of the system of lines (11)
(See Flg 4). If the equation of the envelope
is 1/p° = f(d), its value for a particular d
15 given by the maximum value of (11)
for any dy, so

3 (1) _ 2ads™™ 2r+ 1,
5%(?2)‘ B (d* 2 %) =0
for d =

do(2x + 1)/2z. Since the slope of
the tangent to the envelope must be equal
to the slope of (11),

(0/3d)-f(d) = (1/B)dy™ =« d*,

and f(d) « d**. Consequently, z = 3

responds to a relationship p o lgd .
top « l/d The empirical rule p « l/d

orlglnates probably from the fact that

2 COor-

OF THE

MIX

=)

Fra. 4. System of lines corresponding to Eq.

- (11) with their envelope. The thick broken line

is the limiting curve for the highest 1/p? obtain-
able at different apparent densities d for a binder
coke identical with the filler coke.

manufacturers try to get the best products
for each density thus corresponding closely
to the envelope of the system of lines. It
seems, however, that they find more
difficulty in obtaining the optimum at
lower densities. Anyway, the considerations
given above represent a partial vindication
of the empirical rule still used by a number
of manufacturers.

At high binder-coke contents, similar
to the case of the elastic moduli, the straight
line relationship (11) extends to quite
high proportions due to a similar compensa-
tion of corrections. With increasing binder_
content and decrease of the spreading
resistance, the lesmtance of ‘the partlcles
_comes into play1 the formula R = _p/ma
loses its validity d,nd the_‘fes“lsfanc‘e of the
_p__rtlcle -bridge system decreases more slowLy
with increase of a than according to the
formula “Again as in ITA by more detailed
considerations one can convince oneself
that this correction, with the correction for
higher order terms in ¢, helps to balance
the effect of interference of neighboring
particles (correttion 2).

The permeability of a carbon to a fluid
flowing through the pores should show an

/
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Fia. 5. Diagram illustrating the two types of
fracture occurring through binder coke bridges.
The cracks in the binder layer due to shrinkage
in baking are indicated.

inverse relationship with the binder-coke

and filler contents to the one for the electric

heat
which defermine the resistance to flow have
a quite-complicated shape for the model
here discussed. Unfortunately, even for
simpler types of constrictions, there are no
formulas which would permit a derivation
of a general relationship as in the cases of
the physical properties considered above.
In spite of this drawback, the problem is
worth looking into.

III. SPECIAL CASES AND REFINEMENTS
A. The Nature of the Binder

Fig. 4 shows that when the lines (11)
are extrapolated to the density d = d the
resistivity found in the limit is higher than
the actual resistivity of the dense material.
This is probably due to the fact that for
increasing binder contents, the actual
curves in Fig. 4 do not cross with each
other but bend upwards crowding in the
region between the envelope and the limiting
broken curve. Now all the equations in

Part II were obtained assuming the binder.

forming dense coke in the bridges and
being well bonded to the particles. In
experiments, however, 1t is very seldom
that one uses a binder from which the
original filler coke was made; furthermore,
even if such a binder is used, it does not
produce in baking a dense shell around each
particle—a shell which has the same average
low resistivity and high strength as the

condll(,tlvlty The constrictions
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F1c. 6. Distribution of flow lines for the electrice
current flowing across a binder bridge (a) when
the binder coke has the same conductivity as the
particle coke, (b) when the binder coke is less
conductive than the particle coke.

particle coke. This is because in baking
the binder coke shrinks greatly and as a
result the binder layer becomes full of
minute cracks? Furthermore, the binder

1might not adhere too well to the surface

of the particles for the same reason, and
still less well when the cerystalline structure
of the binder coke differs greatly from
the structure of the filler coke (differences
in thermal expansion). Let us see what the
modification of the formulas obtained in
Part IT will have to be in order to take care
of these effects.

Fractures might oceur either across the
bridge through the binder or along the
surface of the particle (Fig. 5). In either case
the stress necessary must be proportional
to the area of the bridge. Consequently
formula (9) will hold, but with a coefficient
representing the decrease in strength of the
bridge due to cracks and due to poor
adherence to the particle, in comparison
to the dense binder-coke material. Thus
the coefficient will always be smaller than 1,
Similarly a coefficient smaller than 1 must
be used in (6), the deformation of the carbon
being larger than for dense binder material
due to an increased relative mobility of
particles (cracked bridges). In addition,

the constant E will not be exactly equal
to_the_elasticity of . the binder material
because of the contribution of the deforma-
_ tions of the particles themselves. £ will be
therefore a mixed constant. In the case of
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the electrical resistivity the _spreading
res1stance s determmed by the radius..of
the cross section of the constriction. For a
binder with a higher resistivity than that
_of the particles, the flow lines will be more
_crowded toward the center (see Fig. 6)
ag;d thga constriction will act as if it would
have a' smaller radius; thus an effective
radius can be introduced which is equal
to the actual one multiplied by a factor

smaller than 1. Equatlon (10) will again

hold W1th such a correctlon factor,  being

the remstwfoy of the filler coke “This time,
however, different lines will cross, since
for lower dy’s the curves tend with in-
creasing d to lower 1/ o limits—the situa-
tion will more closely correspond to the
one in graph Fig. 11, with the envelope
representing the limiting curve. If the
same kind of filler is used with several
different binders, a relative effectivity
coefficient can be found for each binder
coke and for each heat treatment. Clearly,
such an approach becomes inadequate for
relatively highly-conductive binder cokes,
because of the change in the character of
flow (little flow through the particles).

The surface tension might have a tendency
to widen the bridges beyond the size
calculated from (3). This effect however
would be noticeable only at very low binder
contents, and under these conditions other
effects occur which destroy the agreement
of the theoretical formulas with experiment
anyway.?

B. Porosily of Particles g ' [t o2

For each definite type of porosity there
is a corresponding limiting curve on the
graph S vs d (and the other similar graphs
E and (1/p") vs d) which encloses all the
possible values of S. When a. coke.of a
bulk density d is ground, breaks occur
mainly through the large-sized pores; as

8 See the following paper by E. J. Seldin, this
volume, page 217.

P

d d

Fig. 7. Diagram illustrating the gradual in-
crease in density and strength of coke particles
in the process of grinding, starting from a material
of density d.

a_result the apparent density of the par-
tlcles becomes higher and also the particles
with the lowest values of S are eliminated.
The partlcles become smaller and at the
same time more and more homogeneous;
they concentrate in a band (Fig. 7) which
decreases in width, all values tending toward
the limiting value S.

Particles formed by grinding have in
general no definite geometrical shape—
one might inquire if this fact does not
invalidate the formulas of Part II derived
for spherical shapes. One can easily see
that in the derivation of the thickness of
the binder-coke layer, instead of the surface

_of the spheres the actual surface of the
“particles should be introduced. Not all the
bridges between particles are round, but
again in general only the average total
cross-sectional area of the bridges is of
importance except for the case of the
conductivities, where, however, the con-
striction resistance of a noncircular bridge
can be also estimated (see next section, ().
Going through the formulas of Part II
in detail, one finds that although the
specific values of different coefficients will
be changed, the general dependence of the

‘ .
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physical properties on d and dy will not be
modified. It will be shown below that this
is true also when the internal porosity of
particles is considered.

Two kinds of porosity for particles has
to be distinguished: The accessible and the
“inaccessible pores. The accessible ones are
" connected with the surface and some of
them are really only pits in the surface
which might be considered as pores (when
deep) or as a part of the outer surface shape
(when shallow). If the {fractional space
occupied by these pores is & and by the
inaccessible ones A, then the apparent
density of the particle isd, = d(1 — § — A).
This value of d, has to be used instead of
d in the caleulation of e from (2) and in
(4) and (5). Part of the binder which
entered the accessible pores in mixing will
remain there and change into coke, thus
increasing the density d, ; the other part,
pushed out in baking by the evolved gases,
will coke outside and contribute to the
binder-coke layer e. Let the fraction of
the binder remaining in pores be «. The
amount of binder which fills the accessible
pores being Nvy,édz, where v, =
and the amount of binder coke left in the
pores being D; = aNv,dnds, the amount
covering the particles outside will be

Do =d — do - aN?),,(SndB
= (d — dy)

-1 — adndpdo/d(1 — 8 — A)(d — dy)]
= (d - do)(l — (XF()).

From (2), 3ed/rd, = Dq/dy, and proceeding
further one finds that in (9) the porosity
introduces a correction factor

S, = So(l — 8 — A1 — aFy). (15)
Fory = 2,dy = 13,7 = 0.6, dz = 1.32,
d = 205, d — dy = 0.3, the correction
amounts to

_1_[1_&#]
(1 —8— A)? 3 1—-6-—4]"

Since « varies between 0 and 1 according
to the baking conditions, the correction

3
7,
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factor in the case of 10% accessible and
5% inaccessible porosity will vary from
1.38 to 1.12.

For the elastic modulus one gets a cor-
rection factor similar to (15) but with 2
substituted for y. Since the average modulus
of the particle throughout it and also in
the neighborhood of the bridges is lower
due to porosity and depends on the density
of the particle, about E, « E-.d," (See
Part IIA, Fig. 2 and Fig. 7) a factor

[1 — 86— A+ adndg/d]"
=1 -8 A"+ aF)"

taking care of the increase of the density
of the particle, must be added.

Ep = Eo
(1= —A)""(1 - aF)1 + oF )" (16)

For n = 2, z = 1, and the other data the
same as above, the factor varies from 0.85
to 0.74.

Finally the correction factor for the
electric resistivity, assuming p, « p/d,"
turns out to be

B, =Byl — 38— aF™"
(]. - aFo)_i(l + aF,-)_m (17)

For m = 3, (See Fig. 4 and Fig. 7), z = £,
and the other data the same as above, the
factor is about 1.18, the same for « = 0
and « = 1. It is very interesting that as
far as the constant B for the electric re-
sistivity is concerned it makes very. little
difference if the binder stays in the_pores.
'ormi‘é—fgug}leg_‘ggg

When porous particles are used in the
filler with the same density of packing
(same number N of particles per unit
volume), a value of dy lower by a factor
(1 — 6 — A) is obtained. On the other
hand, in order to have the same condi-
tions in extrusion or molding, that is, the
same thickness of binder layer ¢, a con-
siderably higher. proportion of binder has
to be used, since the binder is taken by
weight, and the weight of the porous

e ST
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J partlcles is lower, and also because some
i\ binder goes into the pores. This last effect
"leads to a factor 1/(1 — Fp) in the final
(d — do); the first one to (1 — & — A),
where ¢ = 2z, y or —z. Carbons made from
porous particles under the same extrusion
conditions as from dense ones will conse-
quently have the same or slightly greater
strength (1 — aFy)/(1 — Fy), slightly
lower modulus

[(1=38—2)"QA+ aF)"(1 — aF,)/(1 — Fy)]
and higher resistivity

(A = Fo)'/(1 =8 —A)" 1
(I + aF)" (1 — aFy).

For the special case selected above the
factors are respectively: 1.24 and 1 in
strength, 0.9 and 0.78 in elastic modulus
and 1.46 and 1.47 for the electric resistivity.
.~ One can see therefore that the electric
\3 resistivity is most affected by the presence

of pores in the particles. For S and E the

blnder does much more good when it is

pushed out than when it stays 1n “the pores;

o g

or £ and P the 1naccess1ble “porosity. is

&esLlally bad, since it does not permit an
e
increase in | the binder content.

C. Anisotropy Due to Alignmenit of Particles

When particles have an elongated shape,
they will tend to be aligned with the long
axis parallel to the direction of extrusion.
Due to such an alignment, even for particles
made from a perfectly isotropic type
of material, an anisotropy in the final
material will be obtained.! In order to
estimate the maximum anisotropy due to
this effect one has to consider the model of
spherical particles discussed in Part IT and
expand it uniformly in one direction in a
ratio 75/7.. Under such a distortion all
spheres change into ellipsoids with one
axis equal to 7 and two equal to r,. A
cube of the material is changed into a
parallepiped with square unit cross section,
but a length r,/r, (See Fig. 8). In result,

N

<A N
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F1e. 8. Diagram explaining the relation be-
tween different quantities defined in the text for
a case of ellipsoidal particles with long axis
aligned parallel to one direction.

the number of particles in a unit cross sec-
tion perpendicular to the direction M, and
parallel to the direction M are given by
expressions

My = Nhy = $)v(d/do)'Nrs ;
My = Nhy, = (3)v(d/do)*Nr, .

The number of contacts per particle remains
Q}E same 'mdependent of direction, but the
shapes of the cross sections of the bridges
change from mrcles along the direction of
distortion to. elhpses in any perpendicular
direction. The distortion of the spheres does <,
not_affect, the binder, which is distributed .

iformly over the particle surface in a layer ¢
of thickness e. If A is the average cross sec-
tion of the effective bridges in the parallel
direction, and B in a perpendicular direc-
tion, the elastic moduli in two directions are
then

EH = E:MJ_nAAhH/zfrb s
E, = EM nsBh./2fr,

and the anisotropy

E“ _ T ’I’LAA>
El N 7‘_,, <7LBB - (12)
For the mechanical strength a similar
anisotropy results:
S”:M:,("/‘A <" (13
Sy M nzB nsB Tq

/i/u@':’j{r %WW;\M W <
a— S P e i
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For a disordered arrangement of particles
the numbers n, and np are about equal
and the cross sections of the bridges A4
and B are also equal (mostly the same
bridges contribute in both cases, but B
slightly larger than A and n, > ns), the
factors in parentheses therefore contribute
only slightly to the anisotropy. It has to be
remarked that the anisotropy in strength
“might be greatly reduced by any macro-
faults present 1n the carbon_material, the
“fractures starting in a carbon not always
perpendicular to the externally applied
stress.

For the electrical resistance of ellipsoidal
bridges one has to use the formula developed
by Holm,” namely B = (5/7\/ab)-f(\/b/a),
where f(z) is a function decreasing from
l1atxz = 1 to about 0.85 at z = 2, to 0.5
at x = 7, and to 0.25 at = 20. The func-
tion f is always smaller than 1, that is, for
e <bandb < a.

#f1/M nahy V745

Py =

pL = F_’fB/MﬂthJ- \/E_ (14)
2= () Gn) V =)

pL Ty Ny fB 4 7 \n

affect the (‘onductlvmes more than the me- _

chanical propertles However fa/fs > 1,
and furthermore the effective numbers of
contacts n, and np are different averages in
the two cases of E and p. The ratios found in
(12)—(14) are limiting maximum values: 1)
With increase of binder-coke content the ani-
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Fic. 9. Diagram representing the distribution
of particles in a mix containing a small percentage
of large size particles.

structure (alignment of crystallites) the

anisotropy ol elves. has.
to be added to the purely geometrical effect

considered in this section!

sotropy due to particle shape should decrease

and disappear in the limit of the dense

material; 2) Inclusion of the contribution
of the particles in the cases of both E and p
will decrease the anisotropy further below
the limiting values given by the formulas;
3) Very often mixes are used in which only
particles of certain sizes or a certain propor-
tion of particles have well-defined shapes.
Since the particle shape obtained in
grinding is usually the result of an internal

D. Mixture of Two Particle Sizes

When particles of two sizes (both density
d) are put into the mix the final structure
of the material will be composed of the
large particles surrounded by the small
ones distributed with the density dy (Fig. 9).
If the numbers of particles per unit volume
of both kinds are Ny and N,, and their
radii. B and r, and furthermore if the
weight ratio of both fillers is «, then

Nz-RY/N .7,
srd(NRR’ + N.o°)

K =

d0=

and consequently (we shall limit the con-
siderations to the range x < 1)

dy = 4xr°dN,/(1 — 4xR’Ny)

. %,> (18)

This means do is always slightly smaller

— do/(1 + ©) (1 -

than d,. If the binder coke is distributed

so that a layer of thickness ¢ is on the

small particles and ez on the large ones,
then the binder-coke density in the regions
of the groups of small particles is

d —dy =

47’ N,e,d/(1 — 27R’Ny)
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On the other hand

d — do = 4rd(N4%e, + NzR'er)
= NArr'ed(l + «\r/R)

where A = ¢z/e. . Consequently,

d’—d6=(d—do)/<1+x>\1%>

K do
(1 T 14« ii)

In Fig. 9, inside the larger particles smaller
ones have been sketched in. If these smaller
ones were substituted for the large ones
physical properties of this material with
uniform particle - size. would be given by
the equations (6), (9), and (10) with sub-
stituted values of do and (& — do) from
(18) and (19). In the case of the elastic
modulus, the substitution of the large ones
back into the mix will have a stabilizing
influence, that is, increase the modulus,
but only as long as there are not too many
large particles (x < 1). In other words,
the expression (6) has to be multiplied by
a function fz(x) such that fz (0) = 1 and
fe(e) = 1, and fe(x) > 1 for 0 < « <
= . The same situation exists in regard to the
electric resistivity—large particles replacing...
groups of small ones cut down the resistivity.
Consequently again, B in (10) has to be
multiplied by a function f,(x) for which £,(0)
= landf,() = 1and f,(1) is a minimum.
Since the factor 1 — (/1 + «)-do/d varies
very slowly with do , for a mix with two par-
ticle sizes (6) and (11) still hold, with the dif-
ference that the coefficients Eo and 1/B* will
be somewhat larger than for the case of a
single size. The increase in fz(x) between
0 and 1 with the slight decrease of the
denominator in (19) will be partly com-
pensated by a corresponding increase in
the denominator from the expression (18).
A similar consideration applies to the
resistivity case; a study of the dependence
of 1/B* on « with a parallel study of the
function f,(x) for the resistivity of powders
might be of interest here.

(19)
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F1g. 10. Schematic presentation of the depend-
ence of the elastic modulus and strength as a
function of the relative amount of « of large size
to small size particles in the mix.

When a break occurs, the fractures will.
go through the binder; that is, it will look

as if the break is through a material made

ex .
(exactly so for A 1). Therefore, (9) is
expected to hold with r being the radius
of the smaller particles. Why there will
be no increase in strength due to the presence
of the larger particles can be understood
from Fig. 10; although the stabilization
factor f.(x) is also present in this case,
the change of S with size creates the ap-
parent independence of strength from «
in the range 0 < x < 1.

IV. APPLICATIONS
A. Analysis of the Composition and Homo-
genetty

The formulas developed in the preceding
sections have a number of important
features. Most of the physical properties

Jof carbon materials depend in a_simple

way on the filler density and binder-coke

density, the details of the manufacturing
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processes leading to the given values of dp
and d — d, being immaterial. The—final

4y will depend on the initial compression

of the mix and “subsequent ghvinkage in

baklng, d_—.dy will be a function of _baking

condltlons determmmg the coke yield of

the binder, the shrinkage and possibly the
Dbushing out_ of the binder. No matter
what the details of the manufa,cturmg
processes are, the knowledge of the physical
characteristics determined for one carbon
piece permits a prediction of the physical
properties of any other carbon piece made
under a variety of conditions but using
the same filler and binder materials and
heat treating to the same final temperature.
Thus the formulas give a basis for the
evaluation of the filler cokes and binders
without the trouble of going into the
often impossible task of making carbon
pieces with identical dy and (d — dy)’s.

Furthermore, the analysis of the problem
of porosity not only shows that different
parts or regions in the carbon contribute
in various degrees to a given physical
property, but indicates which are the
regions of importance and what changes
should be made to achieve an improvement
in one without adversely affecting the
other properties of the material. Finally
the relationships established make possible
an analysis of a carbon as to the composi-
tion of its original mix and as to its homo-
geneity.

When the filler and the binder coke are
graphitized the whole piece of carbon be-
comes polycrystalline graphite. If in addi-
tion both the filler and binder coke are
made from the same original material
(pitch), the task of differentiating between
the filler and the binder coke secems a
very difficult one. Actually, however, no
matter how similar both materials are, the
geometrical relations as expressed in the
porosity formulas provide a relatively
simple method for determination of the
binder-coke content. All that is necessary
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in most cases is to determine the value
of a definite phys1cal parameter Q and the
‘density of “the~ given carbon piece, & <:6_
_impregnate the plece with binder and re-
bake it to_the temperature of the original
heat treatment, following which a re-
determination of its ‘density and of the
‘&hysreal _parameter will . yield a second
point on the diagram Q vs.d;.a stralght line
drawn through the two points will cut the
d-axjs at _the da value. The temperature of

the original heat treatment 7T, can be
easily found by heat treating. the piece to

_consecutively higher temperatures. and

checking its physical characteristics—its
physical properties will start to change
only when one exceeds, in the_heat treat-
ment, the original temperature 7). Some
precautions have to be observed however.
When there is reason to suspect that the
carbon contains some filler which at some
previous time was heat treated to a higher
temperature (for instance, the presence of
graphite flakes) the piece should be heat
treated as high as possible to insure a
uniformity of graphitization. One can
object here that the selected _impregnant
might yield coke of a different kind from
the binder used originally. in the mix and
thus invalidate the use of our formulas.
This is in general a valid ob]ectron however

there is no such danger in the case of the

electrlcal resistivity. of materrals baked. ta_ , /

@peratures in the range 1000-2000°C,
since all carbons ‘hard and soft, ones, have
approxnnately the same 5 in this range
(as found by the author by apphcatron of
formula (10) to a variety of carbon ma-
terials.)

One can avoid all the difficulties of the
_§elept10n of the proper impregnant and
subsequent heat treatment, by oxidizing
the carbon piece in a slow stream of nitrogen
containing traces of air. Singe the particles
of the filler are covered with the blnder it
is the binder coke which is oxidized ﬁrst—
thus for not-too-strong ox1dat10n levels a

3
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_change of d —_du is obtained. without. do
being affected_ A uniform oxidation through-
out_the whole piec piece is essential for the
apphcatlon of the formulas to this case.

~In e following, two examples of such

an analysis are presented in Fig. 11 and 12.
Two batches of 6” long rods were in-
vestigated: One batch of }-inch diameter
graphitized rods and another one of }-inch
diameter baked carbon rods obtained
from the National Carbon Company.
Both the electrical resistivity and the
Young’s modulus were determined at
room temperature for each of the rods,
the Young moduylus_being obtained by

measurements of deflection in bending

(the apparatus used will be described else-

where). The measurements were performed
by Mr. K. Hong. The observed scatter in
densities of the original rods from the
_same batch is given in both figures by the
length of a horizontal bar. The Jower
dens1t1es were _obtained by prolonged

_heatmg in_ the not- completely—alr Ntlght fur-

nace at temperatures below the heat-treat-
,ment temperature The higher densities
were obtained by impregnation with the
Resin C coal tar pitch binder and subsequent
heat treatment. As can be seen from the
figures very good straight lines are obtained:
The corresponding dy’s for the two batches
turn out to be 1.22 for the graphltrzed
_ones and 1. 27 for the baked ones. Taking
“the average d observed for the original
rods, d — do is found: 0.32 and 0.31. As-
suming a 65% coke yield for the binder,
the original binder proportion in the mix
is found to have been 40.5 and 38 parts per
100 parts of filler. As will be shown in Part
B the binder proportions found are con-
sistent with the conditions obtainable in
the compression of the green mix.

It is interesting to note that the points
corresponding  to the original rods follow
roughly _the_ straight lines obtained. This
means _that in the manufacture the main
souree in the scatter of densities is primarily
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Fig. 11. Dependence of the elastic modulus
and of the square of the electric conductivity on
the density for a batch of 3-inch-diameter graphi-
tized carbon rods, as obtained by direct measure-
ments. The bar indicates the distribution of den-
sities in the original batch, smaller values of d
were obtained by oxidation, and larger ones by

impregnation.
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Fia. 12. Dependence of the elastic modulus
and of the square of the electric conduectivity on
the density for a batch of i-inch-diameter NCC
baked rods. The bar indicates the distribution of
density in the otriginal batch, smaller values of d
were obtained by oxidation, and larger ones by
single and double impregnation.
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dk d
K+l

F1c. 13. Diagram illustrating the effect of dif-
ferent compressions on the final value of the
physical parameter Q. In a limited range an appar-
ent linear density dependence is obtained which
extrapolates to an incorrect filler density do =

dk/(k + 1).

a difference in binder-coke content. Probably
in extrusion the rods carry the same binder
proportion and as a result have the same d,
(poor mixing would lead to a variation in
dp) _h.myever in_baking the binder-coke
yield varies from one region to_ _another
in the baking furnace and leads to varia-
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density d a nonuniformity in compression
will lead in a limited range to an apparently
linear dependence of @ on d with an extra-
polated apparent do of d-k/(k + 1). The
presence of a nonuniformity in compression

can be therefore easily discovered if two

quantities @ with different exponents k- are
investigated; for instance, £ and l/ p—
the two lines will extrapolate to very different
dy’s with E yielding an unreasonably low.

tions in the f{inal density of the product.
When an_extruded or molded piece is

subdivided (the dimensions of parts being

still large in comparison with the size of
particles of the filler) it is foynd that the

density d is lowest in the center of the

piece. One could suspect that this is due to
the compression of the _green mix being
greater in the neighborhood of the surface
of the B{gg_e It 15 easy to estimate the
variation in the values of physical properties
due to the inhomogeneity of compression.
From equation (2) d = do(1 + 7W/100),
therefore any expression Q = Qudi(d — dy)
can be transformed into

Q = QuWd ™ /100(1 + W /100)***  (20)

The variation of @ with d for a constant
W is shown in Fig. 13 in the form of a
thick curve. For a sample with an average

&nost incompressible fluid_binder.

value. Actually such poor dlstnbutlon of

mlxes (that is, only in " molding}.~ Wet

) mlxes ‘will tend to produce more unlform

densmy throughout the piece; with slightly
higher dy on the periphery some binder
will be squeezed out_into regions of lower.
dy . Observed large differences in density

can therefore be due only to pushing out

of the binder from the center of the piece

_in_the baking process, in addition fo-the

effect_of slight variation in do. In general,

simultaneous variation of dy and d — d
will Jead to a broadening of the experimental
Q vs d line into a band. However, if it
should happen that the binder-coke content
is high in the regions of high dy and vice
versa, good straight lines extrapolating to
densities lower than the actual dy might
be obtained. The presence of such a varia-
tion in dy can be recognized by oxidation
or impregnation of the batch of samples.

B. Limitations of the Standard Method of
Manufacture

When a green mix is being compressed in
a molding or extrusion operation, an in-
creasingly tight packing of the mix is pro-
duced up to a limit which is reached when
all the spaces between the particles of the
filler and all accessible pores are filled with
the binder. When this limit is reached, no

further increase in pressure will increase

the packing of the mix, the extra pressure

being transmitted across the mix byv_ihe

Thus
an upper limit exists for the density d,
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of the filler in the green mix under com-
pression. This limit can be easily calculated.
The volume available to the binder per
unit volume is Vi = [1 — Nu,(1 — )]
but Nvy(1 — 8 — A)d = do and W/100 =
dsVs/do , therefore

- d 1 —
[d2,. = d / [i%% + —L] (21)

1—6—A4A
The subscript gc means green-compressed.

One can see_that the presence of accessible ..

porosity does not affect the limiting value;

the inaccessible porosity has an effect
similar to a decrease in the density d. For a
given pressure, the limit (21) mighmt
Do reachable, 1f_the particle sizes in_the
“Filer are not properly graded—higher pres-
sures might be required to crush some of
The particles 2 ' nacking.

When the pressure is released the green
mix expands. The expansion depends on the
temperature of the mix at the time the
pressure is released—a long well-cooled
straight-away section in the extruder will
lead to a relatively small expansion, the
elastic expansion of the compressed filler
being prevented by the stiffening of the
binder. However, in the first stages of the
baking p

rocess the bin .
pletely fluid and the filler will expand until

all the_elastic_stresses..are Jeleased. The
total expansion from the compressed state

To this final state, when the pressure is
released, is_equal to the expansion of the
mégf)aldinq coke powder, compressed
under pressure equal to the pressure _used
(if below the limiting value, above which
part of the pressure is taken up by the
binder). Tnder usual experimental condi-
fions this volume expansion varies from

3% to 7%,® being larger for more densely
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Fre. 14. Dependence of the maximum filler
density do on the binder proportion used: (1) in
the green mix under compression, (2) after com-
plete release of elastic stresses, (3) after the mix
isbaked. Curves calculated assumingd = 2.05 and
dg = 1.32.

the packing increases proportionally to
about the 0.1 power of the pressure, the
use of very well-graded particle sizes 1s
necessary in order to obtain highest do’s in
this relaxed state.

In order to find the final limiting values
of dp for baked carbons, a second correction
to (21) is necessary._After the binder solidi-
fies a strong shrinkage of the whole piece
oocurs inbakmg, the  shrinkage being
@er for the case of larger binder propor-
W. The exact rela-
tion is probably of a similar but reverse
type to the elastic expansion; that is, ap-
proximately of a square root type (the
shrinking binder producing a compressive

" stress). In Fig. 14, three do curves are

given as a function of binder content for
the most-commonly-met experimental con-

packed powders. Since the expansion is dition: The curve (1) for the green mix

very roughly proportional to the square
root of the compressive pressure, and

9 Under certain conditions powders can be pre-
pared which show up to 509, volume expansion.
Ref. 5.

under compression, Eq. (21), (2) the do
after elastic expansion, and (3), the final
curve for do of the baked material. In
calculating these curves it was assumed:
d = 2.05 (calcined coke), dg = 1.32, 8 =
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Fre. 15. Curves showing the dependence of the
maximum strength S (three curves for different
particle sizes) and of the minimum “resistivity
o obtainable for different binder contents W.
Crosses illustrate the change in resistivity and in
strength when mixes with decreasing W (increas-
ing filler density) are used, the observed increase
in strength being due to an addltlon of ﬁner par-

ticles to the mix. T

A = 0, free expansion in baking and shrink-
age changing, respectively, from 7% and
3% for W = 10 (y ~ 0.6) to about 4%
and 5% for W = 40. The final curve (3)
can be approximately expressed by

[domax]b = a/(bW + C)

or [Wmax], = (@ — edo)/bdy (22)

with ' the parameters for the special case
considered ¢ = 1.92, b = 0.0128 and ¢ = 1.

The curve (3) of Fig. 14 can be used for
cross-checking the results of the binder-
coke determination presented in Part A

(Fig. 11 and 12). For the estimated original

binder proportions (40.5 and 38), Fig.
14 gives maximum dy’s of 1.26 and 1.29,
values which are slightly higher than the
ones obtained in Part A. Evidently either
the binder proportion was higher than the
estimated one (and the binder coke yield
lower than 65 %) or the compression of the
mix was not complete, or the coke particles
used not completely free of porosity.

PROCEEDINGS OF THE CONFERENCES ON CARBON

Eliminating W from (2) and (22) one
finds that any quantity Q = Qudi(d — do)
can have the following maximum value Q,,
for a given dp :

100b

Qn = Qo -dola — cdo)  (23)
The function Q,, has a maximum at
[domax]max = ka/(k + 1)c (24)

The corresponding €., is a maximum value
which can be obtained for the physical
quantity @ under the best experimental
conditions for a carbon made according
to the standard method of manufacture
and without subsequent impregnation. The
formula shows that the optimum values for
different physical properties are obtained
at very different binder proportions. The
reason for the existence of a maximum is
the Tact_that When the Hiller density becomes
too _great, the amount of binder which can
be put into the mix X becomes insufficient to
_give en enough Wﬂth to the brl&ges (This is
“true even for 100% binder-coke yield,
because ds < d.)

Taking for a and ¢ the previous values,
one Ands that the highest electrical con-
ductivity for a baked carbon can be obtained
for dg ~ 1.5, the highest mechanical strength
fordy ~ 1.3, and the hlghest elastic modulus
for do ~ 1. 1. These dy’s correspond 10 22
36 and 56 parts of binder, respec’clvely,
accordlng to Fig. 14. The result in the
case of the elastic modulus is unrealistic,
because the straight line relationship breaks
down for such a high binder content and
even if it did not, it is experimentally
impossible to get a good bake anyway
(the binder will not stay where it is sup-
posed to stay according to the assumptions).
The optimum for strength is obtained with
lﬁher binder contents than are needed
for optlmum electric conductivity, as ex-
pected The maximum at dy = 1.3 does not
seem to agree with general experience, but
this is because when denser fillers are used
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this is achieved by mixing in smaller
particles (for instance, carbon blacks) and
the size factor not taken into consideration
in (23) changes the relationship in favor of
higher dy’s (Fig. 15). According to (23) for
electric conductivity an absolute maximum
should be found for baked carbons at densi-
ties of around 1.72 (for graphitized ones at
somewhat higher densities — ~ 1.76). It
is significant that whenever very dense
carbons are made their conductivities are
found to be definitely lower than expected
according to the empirical d’® relation; this
might be an indication that one is approach-
ing the optimum in these cases. It seems
that there is no good reason for trying to
make denser carbons just in one single
operation—impregnation of the product is
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a more effective way of increasing the
density “with a corresponding increase in
physical parameters.

In this section, only the geometrical
limitations were considered. These limita-
tions and others such as imposed by poor
transfer of pressure in molding dry mixes,
necessary wetness for extrudability of mixes,
and difficulties in baking, leave little leeway
to the manufacturer for improvements of
the products (unless a different method of
manufacture is used). Use of nonporous
coke particles, careful grading of sizes to
cut down the elastic expansion, availability
of denser binders with inereased coke yield
(see Eq. 23) and use of not-too-low binder
proportions are the main factors to be con-
sidered in this connection.



