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Abstract 

Sand screen-out is one of the most serious and frequent challenges that threaten the efficiency and 

safety of hydraulic fracturing. Current low prices of oil/gas drive operators to control costs by using 

lower viscosity and lesser volumes of fluid for proppant injection - thus reducing the sand-carrying 

capacity in the treatment and increasing the risk of screen-out. Current analyses predict screen-out as 

isolated incidents based on the interpretation of pressure or proppant accumulation. We propose a 

method for continuous evaluation and prediction of screen-out by combining data-driven methods 

with field measurements recovered during shale gas fracturing. The screen-out probability is updated, 

redefined and used to label the original data. Three determining elements of screen-out are proposed, 

based on which four indicators are generated for training a deep learning model (GRU – Gated 

Recurrent Units, tuned by the Grid search and Walk-forward validation). Training field records 

following screen-out are manually trimmed to force the machine learning algorithm to focus on the 

pre-screen-out data, which then improves the prediction of the continuous probability of screen-out. 

The Pearson coefficients are analyzed in the STATA software to remove obfuscating parameters from 

the model inputs. The extracted indicators are optimized, via a forward selection strategy, by their 

contributions to the prediction according to the confusion matrix and root mean squared error 

(RMSE). By optimizing the inputs, the probability of screen-out is accurately predicted in the testing 

cases, as well as the precursory predictors, recovered from the probability evolution prior to screen-

out. The effect of pump rate on screen-out probability is analyzed, defining a U-shaped correlation 

and suggesting a safest-fracturing pump rate (SFPR) under both low- and high-stress conditions. The 

probability of screen-out and the SFPR, together, allow continuous monitoring in real-time during 

fracturing operations and the provision of appropriate screen-out mitigation strategies.  
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1 Introduction 

Sand screen-out occurs where the proppant in the fracturing fluid creates a bridge across the 

evolving fluid-driven fracture, constricts the flow area (eg. the perforation hole, fractures, etc.) and 

results in a rapid rise in injection pressure during hydraulic fracturing (Sun et al. 2020; Economides 

and Nolte 1989). Screen-out is considered to be one of the most serious problems that threaten the 

safety of equipment and individuals during fracturing, reduce the stimulated production and result in 

cost overruns due to the time and material consumption related to wellbore clean-up operations and 

equipment maintenance (Cleary et al. 1993; E.V. Dontsov and Peirce 2014).  

Previous research on the fracturing of conventional reservoirs suggests that the near-wellbore 

tortuosity of fractures may play an important role in causing screen-out, in addition to fluid leak-off, 

proppant beach-formation and other factors, according to experiments and field measurements (Barree 

and Conway 2001; Aud et al. 1994; Daneshy 2007). Based on these mechanisms, screen-out may be 

potentially predicted by interpreting time histories of fracturing pressure based on log-log plots (Nolte 

and Smith 1981), calculating the configuration of the proppant distribution in fractures (Cai et al. 

2017), diagnosing the connection between wellbore and formation through the perforations based on 

acoustic measurements (Merry and Dalamarinis 2020), or inspecting the variation with time of the 

treatment pressures (Massaras and Massaras 2012), among other indicators. Data-driven approaches 

have also been introduced for prediction by integrating the inverse slope method with deep learning 

algorithms (CNN-LSTM) (Sun et al. 2020), predicting the fracturing pressure using the locally-

weighted linear regression and CNN-RNN (J. Hu et al. 2020; Ben et al. 2020), and learning pre-

screen-out patterns in the simulated pressure signals (Yu, Trainor-Guitton, and Miskimins 2020).  

For unconventional reservoirs, the screen-out mechanism may be more complex, due to larger 

volumes of injection, higher pumping rates, elevated injection pressures and multi-staged operations 

in the horizontal wellbore (Weng et al. 2011; Li et al. 2015). The resulting complex fracture networks, 

compared with the single high-conductivity bi-wing fracture typical in conventional vertical wells, are 

required to maximize the stimulated reservoir volume (Warpinski et al. 2009; Qi et al. 2012). The 

pressure fluctuations are also more severe than in conventional reservoirs. Rapid rises and drops in 

https://glossary.oilfield.slb.com/en/terms/p/proppant
https://glossary.oilfield.slb.com/en/terms/p/pressure


2 

 

pressure are commonly observed in shale gas fracturing (Roussel, Manchanda, and Sharma 2012), 

making the previous recovery of diagnostics from the pressure curve more difficult to recover. 

Besides, most of the previous efforts provide the screen-out prediction as a discrete classification 

result (i.e. screen-out or non-screen-out). The sudden appearance doesn’t reflect the inducements 

before the screen-out and also may reserve limited time for the operator to make judgments and 

adjustments.  

We, therefore, focus on the continuous diagnosis of screen-out by field data processing, attempting 

to improve the fidelity of the early warning and define the form of signals that are precursory and 

robustly diagnostic of an impending incident. Since mild screen-out could be useful in increasing the 

net pressure in the driven fracture and thereby enhance the stimulated volume of the reservoir 

(Massaras and Massaras 2012; E. Dontsov and Peirce 2015), the definition of screen-out is first 

constrained into the most critical level where fracturing operations are suspended in the open well by 

the release of pressure and cleaning of the wellbore is mandated. The determining-element 

mechanisms of screen-out are proposed and used to redefine and label the screen-out probability, 

which considers a greater number and broader variety of influence factors compared with previous 

efforts that have mainly relied on pressure interpretation or proppant accumulation (Massaras and 

Massaras 2012; Cai et al. 2017). The pump rate, one of the determining elements, is fitted for the 

safest value where the probability of screen-out approaches the minimum. STATA software is used 

for the optimization of the model inputs with a deep learning workflow trained then tested against 

rigorously selected field examples with known outcomes. The resulting continuous screen-out 

probability monitoring and the safest fracturing pump rate may then be used to improve early warning 

of screen-out and allow mitigation in real-time to promote safe and efficient fracturing operations. 

2 Methodology 

New hypotheses of screen-out are proposed to redefine the screen-out probability and extract 

indicators for the screen-out predicting. In this work, the definition of screen-out is constrained to the 

most serious condition where open-well flushing is necessary – since this is the basis on which our 
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field cases are collected. STATA software and a GRU model are applied to these datasets for 

parameter analyses and predictions of screen-out probability. 

2.1 Hypotheses of screen-out 

(i) Determining elements hypothesis: Three determining elements of screen-out for shale gas 

fracturing are proposed – namely, pump rate, fracture volume/capacity and proppant accumulation 

(Novotny 1977; Patankar et al. 2002; Dahi-Taleghani and Olson 2011; Aud et al. 1994). The 

mechanism of screen-out is presumed to result from parameter mismatch among the determining 

elements. New indicators are generated based on the element hypothesis to aid machine interpretation 

of the raw data. Screen-out probability is redefined by fixing two of the elements. 

(ii) Linear-correlation hypothesis: For shale gas fracturing, the pump rate for proppant injection is 

near-constant. We assume that the probability of screen-out has a linear relationship with the injected 

volume of proppant under constant pump rate and fixed fracture capacity. Then, the screen-out 

probability is defined as the ratio of injected proppant volume to the maximum capacity (total 

cumulative volume of injected proppant before the restricted screen-out), which is then used to label 

the original data. According to this hypothesis, the ideal screen-out probability curve (probability-vs-

fracturing time) is a smooth and continuous increasing line. However, the fracture is considered to 

continue propagating during the fracturing operation, which results in a continuous increase in 

fracture volume with time (Manchanda et al. 2020; Dahi-Taleghani and Olson 2011). Therefore, the 

actual probability may fluctuate regularly around the ideal curve, but with relatively small departures, 

due to this continuing fracture propagation. 

2.2 Data preparation 

2.2.1 Data collection 

The field data are collected based on the restricted definition of screen-out (the fracturing 

operation is suspended to release pressure and clean the wellbore). 25 stages of fracturing data are 

collected from shale gas wells in the Sichuan basin, China, including ~120,000 groups of field 

measurements. The parameters in each group consist of both the geological features (well depth, 

vertical depth, minimum horizontal stress) and treatment/fracturing records (pump rate, fluid and 

proppant type, wellhead pressure, proppant concentration, shut-in pressure and stage length). The 
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original fluid and proppant types are non-numeric parameters and are replaced by the fluid viscosity 

and proppant diameter, as representative parameters of performance, respectively.  

The data are split into the training (21 stages) and testing datasets (4 stages) for model training and 

prediction, as shown in Table 1. The testing stages are rigorously selected by well locations. The 

geological and in-situ stress conditions vary as the increasing well distance, which may increase the 

difficulty of model prediction, thus providing a more reliable evaluation of the model performance 

and application range. One of them is from the same well (Well A) that is also used for model 

training. The other three stages come from new wells different from the training wells, one of which is 

from a neighbouring well (Well B), and the other two from remote wells (Wells C and D are more 

than 200 km distant from all other wells). All wells, noted in Table 2, are drilled within the same 

formation. 

Table 1 Division of training and testing datasets 

 Training sets / stage Testing sets / stage Notes 

Training wells 21 / / 

Well A / 1 From one of the training wells 

Well B / 1 From a neighbouring well next to 

training wells 

Well C / 1 
From a well in a different location 

of the basin Well D / 1 

2.2.2 Data labelling, trimming and extracting 

Screen-out probability is calculated and used to label the original field measurements according to 

our most severe definition. We truncate the field record following screen-out to direct the machine to 

the experience pre-screen-out. Although the training results may be influenced by the missing data, it 

boosts the interpretation of the pre-screen-out data, then benefits the continuous monitoring for the 

generation of screen-out. It may also prevent the model from cheating by recognizing the overpressure 

or pump-off for screen-out, which bypasses the deeper interpretation of data. Similar data processing 

is also reported by previous research (Yu, Trainor-Guitton, and Miskimins 2020). 

Four new indicators of screen-out are proposed based on the element hypothesis to assist the 

model prediction – the downhole pressure after hole perforation (DPP), the ratio of the accumulated 



5 

 

volume of injected proppant to that of injected fluid (Vs/Vf), the wellhead pressure change in a unit 

volume of injected fluid (ΔP/ΔVf) and the ratio of minimum-horizontal stress to shut-in wellhead 

pressure (σmin/Ps). The DPP, calculated from the wellhead pressure, may reflect the pressure variation 

induced by fracture propagation and new fracture generation (E.V. Dontsov and Peirce 2014; 

Willingham, Tan, and Norman 1993). Details of pressure conversion can be found in Appendix A. 

The Vs/Vf ratio represents proppant accumulation in fractures. The ΔP/ΔVf ratio is similar to the 

pressure slope returned under a constant pump rate (Massaras and Massaras 2012). The σmin/Ps ratio 

reflects the change in in-situ stress due to the material injection (Hayashi and Haimson 1991). 

2.3 Data processing tools 

The parameter analyses are carried out in STATA 17.0 to assist the selection of model inputs. The 

data training and testing are performed using a GRU model built in the Spyder environment. The 

GRU algorithm, designed for extracting information from time sequences (Cho et al. 2014), has 

performed well in various petroleum engineering applications (Wang et al. 2019; Sun et al. 2020). 

According to previous experience (Fan et al. 2021; Sagheer and Kotb 2019), a three-layer (including 

the output layer) GRU is established with the activation function ‘ReLu’ operating in each layer (Gal 

and Ghahramani 2015). The regularization is performed to avoid overfitting by setting a dropout rate 

(of 0.2) behind the first and hidden layers. The ‘Adam’ is selected as the optimizer to compile the 

model, where a callback function is applied to return and automatically update the learning rate 

(Kingma and Ba 2014; Zeiler 2012). Other hyperparameters, including the number of neural units 

(30), epochs (30) and batch size (100) are optimized by the Grid search and Walk-forward validation 

(Bergstra and Bengio 2012; M.Y. Hu et al. 1999; Stein 2002). Details of model tuning can be found in 

Appendix B.  

The workflow of data processing is graphically illustrated in Fig. 1. The original field 

measurements and extracted indicators are analyzed by the Pearson correlation coefficients in 

STATA. The GRU model is initially trained using the selected original parameters, and the results are 

used as a reference. The indicators are appended to the inputs successively for optimization based on 

the forward selection strategy. The model performance is promoted by indicator optimization and is 

verified by the testing cases. The deep learning workflow proposed in this study has high feasibility 
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for different application scenarios if provided with the corresponding datasets for the model training. 

It is also possible to promote the performance of the workflow by feeding into new data. 

 

Fig. 1 The workflow of data processing, consisting of data collection, pre-processing and model training. 

3 Results  

Interfering parameters are removed from the model inputs according to the Pearson coefficient 

analyses. The confusion matrix and the root mean squared error (RMSE) are used as criteria for the 

model evaluation, in which the RMSE has the same unit as the prediction (Chai and Draxler 2014). 

The optimized indicators improve the prediction by halving the reference RMSE and eliminating the 

false-negative errors. Successful reports of screen-out and accurate predictions of its probability are 

achieved – and may be used in continuous monitoring of fracturing operations. 

3.1 Pearson correlation coefficient analyses 

The Pearson correlation coefficient is the covariance of the two variables divided by the product of 

their standard deviations and is used to quantify the potential interference between variables (Benesty 

et al. 2009). The inputs of the deep learning model are analyzed in STATA, and the results are 

summarized in Table 2. The higher the coefficient is, the stronger the interference that may exist 

between the two variables. Using the coefficient as a reference, we remove the variable that may 

significantly interfere with other multiple variables. The Well depth shows high coefficients with the 

Vertical depth and Stage length, as well as the Vertical depth with Minimum-horizontal-stress, 

Wellhead pressure and DPP. Therefore, the Well depth and Vertical depth are removed from the 

inputs of the model training.  

The optimization of model inputs is performed with care and with appropriate reference to 

engineering experience and preserving as much parameter/information as possible for the GRU 
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neuronal units. For instance, the large coefficient linking proppant diameter and proppant 

concentration may be due to the characteristics of the data (they are always present in pairs). These 

variables are reserved because the diameter and concentration of proppant may each contribute to 

screen-out but by different mechanisms (sealing the hydraulic fracture alternately by bridging or 

filling, respectively.). There is also a concern that removing the proppant-related features may mislead 

future works when collecting the original data. 

Table 2 The Pearson correlation coefficients between training variables 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

(1) 1              

(2) 0.64 1             

(3) 0.10 0.44 1            

(4) -0.77 -0.43 0.30 1           

(5) 0.13 -0.04 -0.15 -0.20 1          

(6) -0.08 -0.15 -0.14 0.04 -0.21 1         

(7) -0.11 -0.06 0.02 0.14 -0.24 0.51 1        

(8) -0.09 -0.06 0.02 0.11 -0.25 0.50 0.80 1       

(9) 0.47 0.70 0.47 -0.18 -0.06 0.25 0.12 0.16 1      

(10) 0.30 0.74 0.58 0.00 -0.02 -0.43 -0.19 -0.15 0.71 1     

(11) -0.17 0.03 0.12 0.23 -0.37 0.67 0.54 0.57 0.35 -0.04 1    

(12) 0.02 0.02 -0.01 -0.01 -0.01 -0.04 -0.02 -0.02 -0.02 0.01 -0.02 1   

(13) 0.43 0.83 0.47 -0.10 -0.07 -0.16 -0.04 -0.05 0.71 0.80 0.05 0.02 1  

(14) -0.03 0.07 0.02 0.01 -0.31 0.55 0.41 0.49 0.41 0.02 0.86 -0.02 0.04 1 

Notes: The original measurements: (1) Well depth; (2) Vertical depth; (3) Min-horizontal stress; (4) Stage 

length; (5) Fluid viscosity; (6) Pump rate; (7) Proppant concentration; (8) Proppant diameter; (9) Wellhead 

pressure. The extracted indicators: (10) DPP; (11) Vs/Vf; (12) ΔP/ΔVf; (13) σmin/Ps. The dependent variable: (14) 

Screen-out probability. 

3.2 Screen-out prediction based on original measurements 

The original field measurements, parameters (3) to (9) in Table 2, are used as inputs to the GRU 

model for screen-out probability prediction. The results are shown in Fig. 2, where the time histories 

of pump rate, proppant concentration and wellhead pressure are also presented. The confusion matrix 

and the RMSE are used as dual criteria for evaluating the predictions. We define that a predicted 

screen-out probability higher than 0.9 generates a report of screen-out. The workflow based on the 

original parameters fails to give the correct screen-out warning in three of four testing cases. Three 

false-negatives (FN error, in Wells A, C and D cases, as shown in Figs. 2 a, c and d), four false-

positives (FP error, in Wells B and D cases, as shown in Figs. 2 b and d) and only one correct 
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prediction are reported, as shown in Table 3. There is essentially no pattern for the predicted curves 

that produce RMSEs of 0.230 (Well A), 0.236 (Well B), 0.150 (Well C) and 0.369 (Well D), 

respectively, compared with the labelled probability. 

   

    

Fig. 2 Prediction of screen-out probability using the original measurements from (a) Well A, (b) Well B, 

(c) Well C and (d) Well D. The blue dashed circle marks the false alarm of screen-out in Wells B and D. 

The solid orange line is the labelled screen-out probability curve. The dashed line is the predicted 

probability curve. The wellhead pressure, pump rate, proppant concentration are presented to show the 

operation procedures. 

Table 3 The confusion matrix of the predictions based on original parameters 

  

Predicted events 

Screen-out 
Non-screen-

out 

Actual 

events 

Screen-out 1 (Correct) 3 (FN error) 

Non-screen-

out 
4 (FP error) / 
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3.3 Prediction promotion by optimizing indicators 

The predictions are improved by optimizing the extracted indicators compared with the results 

based on original measurements. The forward selection strategy is applied for the optimization, during 

which the indicator is appended sequentially to the model inputs. The primary indicator that promotes 

the prediction is selected, and the others decreasing model performance are abandoned.  

The first testing indicator is decided by regression analyses using the OLS (ordinary least squares) 

method (executed in STATA) to produce the best prediction with the least indicators. The results are 

summarized in Table 4. The Vs/Vf ratio increases the R-squared value more than do the other 

indicators (from 0.483 to 0.799), indicating the most significant contribution of Vs/Vf to the screen-out 

probability prediction. Therefore, the Vs/Vf is chosen as the first testing parameter for the forward 

selection. 

Table 4 Regression results between indicators and screen-out probability 

Dependent 

variable 
Screen-out probability       

Independent 

variables 

DPP  -0.001    -0.005 

Vs/Vf   21.669   21.914 

ΔP/ΔVf    0.000  0.000 

σmin/Ps     -0.473 -0.257 

Control 

variables 

Min-horizontal stress -0.013 -0.01 -0.012 -0.013 -0.013 -0.012 

Stage length 0.002 0.003 -0.005 0.002 0.003 -0.003 

Fluid viscosity -0.005 -0.005 -0.001 -0.005 -0.005 -0.002 

Pump rate 0.016 0.013 -0.008 0.016 0.009 -0.024 

Proppant concentration -0.005 -0.005 -0.012 -0.005 -0.002 -0.010 

Proppant diameter 0.709 0.707 0.283 0.709 0.641 0.233 

Wellhead pressure 0.008 0.010 0.003 0.008 0.013 0.012 

Constant  
0.328 0.328 0.328 0.328 0.328 0.328 

R-squared  0.483 0.483 0.799 0.483 0.513 0.821 

The results of the forward selection are presented in Table 5, using the confusion matrix and 

RMSE as the dual criteria. The introduction of Vs/Vf boosts the model performance by significantly 

reducing the RMSE and increasing the number of correct predictions by a single instance. The 

combination of Vs/Vf and DPP in the second round selection predicts the ultimate occurrence of 

screen-out events in three of four testing cases and halves the number of false-positives. By adding the 

ΔP/ΔVf ratio, the workflow successfully reports all of the screen-out events and produces the lowest 

RMSE in all testing rounds. Therefore, the indicators in the first three rounds are all selected. The 
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σmin/Ps in the last round is abandoned due to the increasing RMSE and false-negative error, as shown 

in Table 5. 

Table 5 Results of the indicator optimization by the forward selection 

Forward 

selection 

Indicators appended 

to model inputs 

FP 

error 

FN 

error 

Correct report 

/Total event 

Averaged 

RMSE  
Decision 

Reference / 4 3 1/4 0.246 / 

Round 1 Vs/Vf 4 2 2/4 0.176 Selected 

Round 2 Vs/Vf  + DPP 2 1 3/4 0.130 Selected 

Round 3 
Vs/Vf  + DPP + 

ΔP/ΔVf 
3 0 4/4 0.089 Selected 

Round 4 
Vs/Vf  + DPP + 

ΔP/ΔVf + σmin/Ps  
6 0 4/4 0.126 Abandoned 

The predictions in the third-round test are shown in Fig. 3. Three false-positives are observed for 

Wells C and D that are located distant from the training cases (wells), as marked by dashed circles in 

Figs. 3 (c) and (d). The false-positive error (the false alarm) is considered less serious than the false-

negative error (the missing alarm) (Pounds and Morris 2003). Besides, the false alarms are reported at 

the end of the fracturing operation, and about 15 minutes ahead of the actual screen-out, which may 

be acceptable. Therefore, the GRU-based workflow, trained by the original and extracted parameters, 

reports accurate screen-out warnings and exerts stable performance in rigorous applications. The 

continuous monitoring of screen-out probability allows the field operator to receive pre-warning and 

allow rapid response in near-real-time, which is more efficient and practical than the previous discrete 

predictions.  
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Fig. 3 Promoted predictions of screen-out probability by model inputs optimization based on (a) Well 

A, (b) Well B, (c) Well C and (d) Well D. The inputs of the model are consist of the original measurements 

and three optimized indicators (Vs/Vf  + DPP + ΔP/ΔVf). The blue dashed circle marks the false alarm of 

the screen-out in the Wells C and D cases. The solid orange line is the labelled screen-out probability 

curve. The dashed line is the predicted probability curve.  

4 Discussion 

4.1 Inducement analysis based on continuous probability  

The probability curve before the screen-out also provides clues for the inducement analysis. In Fig. 

3 (a), the long proppant injection slug between 4000s and 5000s increases the screen-out probability 

near to the value of 0.8, indicating that the continuous-proppant-injection length may be one of the 

key factors causing the screen-out in this case. In Fig. 3 (b), a vertical ascent of probability is 

observed around 3000s, when the 40/70 mesh proppant is injected right after the 100 mesh one. The 

fracture may not be well cracked with a relatively narrow width that is sensitive to larger proppant 

grain. The underdeveloped fracture may be an important inducement for Well B. The pressure 

fluctuations in Well A and B also show similar periods to the probability variations.  

For Wells C and D, the sign showing in pressure is inconspicuous because it deviates only slightly 

from the norm, as shown in Figs. 3 (c) and (d). The probability can still define distinct indications 

precursory to screen-out. A long proppant slug may be one of the main reasons causing the screen-out 

in Well C, according to the rapid climb in probability between 6000s and 8000s in Fig. 3 (c). 

Meanwhile, a different mechanism prompting screen-out is disclosed in Well D. The probability 

begins increasing after 2000s when four slugs of fine proppant (100 mesh) are injected. In the 7th, 8th, 
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11th and 12th proppant slugs, 100 and 40/70 mesh proppants are successively injected (the short 

vertical lines in the middle of those concentration curves denote the switching between proppants), 

which all cause significant fluctuations in the probability curve at ~4000s and ~6000s. Conceivably, 

fine proppant may have filled micro- and secondary fractures, which should be beneficial to the 

stimulation. However, the 30/50 mesh proppant, not commonly used due to its large size, is injected 

during the last slug. The larger diameter proppant builds pressure in the main fractures, which may be 

difficult to be relieved as a result of staunched flow through the fully-packed minor fractures - hence 

triggering a screen-out.  

According to the inducement analyses, the proppant may be injected slower to control the slug 

length for Wells A and C. Larger proppant may be switched later to allow a sufficient propagation of 

fracture for Well B. The amount of fine proppant should be controlled, especially when large diameter 

proppant is employed for Well D. However, adopting fine-grained proppant can be a double-edged 

sword. Certainly, it fills the minor fractures and boosts the growth of main fractures by increasing the 

net pressure. However, conversely, it may also reduce the pressure tolerance and increase the 

probability of screen-out, thus should be used with caution. 

4.2 Support of the screen-out hypotheses 

The predicted probability of screen-out varies in a similar period to the wellhead pressure 

variations (Fig. 3), indicating that the GRU model interprets the relationship between wellhead 

pressure and screen-out events when the data are manually trimmed. The predicted curves fluctuate 

around the labelled curves due to the finite and substantial variation in evolving fracture volume, 

which supports the linear hypothesis of screen-out probability. In addition, the Vs/Vf ratio represents 

the proppant accumulation in downhole fractures. The DPP and ΔP/ΔVf variations could result from 

the pressure response to fracture creation and propagation. The combination of these indicators 

significantly promotes predictions, which supports the determining elements hypothesis.  

Additionally, the variation of underground fracture is currently difficult to detect and is a non-

directly-adjustable parameter. Proppant accumulation may be the most significant indicative element 

considering the RMSE improvement in Table 5. Pumping rate is the single most important element 

that may be adjusted to ensure the operation safety. Emergency termination or reduction in pumping 
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rate is commonly used to control the pressure when the first signs of screen-out appear (Yew and 

Weng 2014). Therefore, it is essential to reveal the effect of pump rate on screen-out probability based 

on both training and testing datasets.  

4.3 Effect of pump rate on screen-out probability 

A U-shaped correlation between pump rate and screen-out is proposed according to the 

observation that both extremely low (aggravating the proppant settling and dune building-up) and 

extremely high (increasing the frictions and reshape the proppant dune) pump rates may result in sand 

screen-out (Harris and Pippin 2000; Willingham, Tan, and Norman 1993). This is demonstrated by 

fitting the correlation between the square-of-pump-rate with screen-out probability in STATA bases 

on both training and testing datasets. A small p-value (a smaller p-value reflects stronger evidence in 

favour of the hypothesis) and a positive coefficient are obtained, as shown in Table 6, which supports 

the U-shaped form hypothesis. 

Table 6 Summary of regressions between the squared pump rate and screen-out probability 

Dependent 

variable 
Screen-out probability   

Independent 

variables 

Pump rate  -0.042*** 

Squared pump rate  0.003*** 

Control 

variables 

Mini-horizontal-stress -0.021*** -0.014*** 

Stage length 0.004*** 0.002*** 

Fluid viscosity -0.005*** -0.003*** 

Proppant concentration 0.817*** 0.700*** 

Proppant diameter 0.003*** -0.007*** 

Wellhead pressure 0.010*** 0.010*** 

Constant  0.328*** 0.281*** 

R-squared  0.442 0.501 

Notes: *** p<0.01, ** p<0.05, * p<0.1. 

A flat U-shaped curve is observed with a minimum where the screen-out probability is lowest, as 

shown in Fig. 4. The pump rate at this minimum probability is 5.94 m3/min based on the collected 

data in this work, which is defined as the safest fracturing pump rate (SFPR). An adjustment in pump 

rate is one of the most essential and frequent measures to maintain pressure and ensure safety during 

shale gas fracturing (Yew and Weng 2014). The newly defined SFPR can be used as a reference for 
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the real-time pump rate adjustment, which may aid in rapidly reducing the pump rate to the safest 

range to prevent or mitigate screen-out.  

  

Fig. 4 U-shaped correlation between squared pump rate and screen-out probability. The vertical 

dashed line marks the pump rate at the turning point, which is 5.94 m3/min. 

The moderating effects of in-situ stress on the SFPR are studied based on both the low(er) and 

high(er) stress datasets, split by the median value (55 MPa) of the minimum-horizontal stress. These 

results are presented in Fig. 5. The SFPR moves rightward under the low-stress condition and grows 

to 8.33 m3/min at the minimum probability. This reduces to 4.25 m3/min for high(er)-stress 

conditions. In addition, the U-shaped curve is steeper for the low-stress condition, indicating that the 

probability of screen-out is more sensitive to a variation in pump rate and that the lifting of pump rate 

should be pursued with moderation. It is noteworthy that the SFPR may not be the most effective 

choice in practice since the operator may be willing to take certain risks to improve the economics of 

the stimulation job. However, it could be an important index to prompt pump rate adjustment to 

minimize loss when the first signs of the screen-out appear. 

      

Fig. 5 Moderating effects of in-situ stress on the U-shape correlation. The vertical dashed line marks 

the extreme point excursion under (a) low-stress and (b) high-stress conditions. The pump rates at the 

turning points are 8.33 and 4.25 m3/min, respectively. 
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5 Conclusions 

A new awareness of screen-out mechanisms is highlighted by proposing and testing hypotheses 

based on a deep learning (GRU algorithm) workflow and the STATA software. Shale gas fracturing 

measurements are collected with a strict definition of screen-out applied (when the operation is 

suspended for pressure-release and wellbore-cleaning) to allow the binning of data. Time histories of 

fracturing parameters are truncated after screen-out to force the GRU model to interpret the pre-

screen-out data – this is shown to improve the prediction of screen-out occurrences. A forward 

selection strategy is applied to optimize the model inputs, based on which accurate screen-out 

probability predictions are obtained. The major conclusions may be generalized as follows: 

(1) By tuning the GRU model and optimizing the inputs, an accurate screen-out probability is 

produced in the testing cases for wells at different distances from the training wells. The GRU-based 

workflow successfully reports all the screen-out events and constrains the RMSE to ~0.089. The 

resulting continuous probability curve aid the field engineer to effectively monitor the evolution of 

screen-out, make rapid pre-judgements and prescribe mitigating actions in real-time. Besides, the 

variation in probability precursory to screen-out provides valuable clues regarding triggering 

mechanisms. For example, the length of the proppant slug, the timing of the switching of proppant 

sizes and the use of fine proppant are analyzed for the testing cases based on the evolution of the 

probability curves. Explicit strategies are proposed for optimizing the proppant selection and 

injection. 

(2) Fracture volume, proppant accumulation and pump rate are proposed as three discriminating 

elements potentially contributing to screen-out, with these applied in data pre-processing in the 

workflow. This presumption is supported by producing the smallest prediction errors in the 

optimization of model inputs. Unique features of the mismatch among these elements may provide 

simple diagnostics for the mechanism of screen-out for shale gas fracturing. Fracture volume is a non-

directly-adjustable parameter that may be reflected by the pressure variations. Proppant accumulation 

may be a significant indicative parameter for screen-out. Pumping rate is shown to be the most 

important adjustable element that controls the fracturing pressure. This three-determining-element 
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mechanism extends the characteristic parameters for screen-out study compared with traditional 

methods depending on pressure interpretation or proppant accumulation.  

(3) A safest-fracturing pump rate (SFPR) is defined by fitting the U-shaped correlation between 

the screen-out probability and pump rate – this is 5.94 m3/min based on the collected data. The 

moderating effect of in-situ stress on the SFPR shows that conditions of higher-stress reduce the 

SFPR. Conditions of lower-stress increase the SFPR, but also increase the relief of the U-shaped 

relation, indicating a higher sensitivity to pump rate that requires only a moderate adjustment. The 

SFPR may be used as a reference to guide the rapid adjustment of the pump rate into the safest range 

to potentially mitigate screen-out. 
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