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Abstract: The relative permeability of coal to gas and water exerts a profound influence on fluid
transport in coal seams in both primary and enhanced coalbed methane (ECBM) recovery processes
where multiphase flow occurs. Unsteady-state core-flooding tests interpreted by the Johnson-Boss-
ler-Naumann (JBN) method are commonly used to obtain the relative permeability of coal. How-
ever, the JBN method fails to capture multiple gas—-water—coal interaction mechanisms, which inev-
itably results in inaccurate estimations of relative permeability. This paper proposes an improved
assisted history matching framework using the Bayesian adaptive direct search (BADS) algorithm
to interpret the relative permeability of coal from unsteady-state flooding test data. The validation
results show that the BADS algorithm is significantly faster than previous algorithms in terms of
convergence speed. The proposed method can accurately reproduce the true relative permeability
curves without a presumption of the endpoint saturations given a small end-effect number of <0.56.
As a comparison, the routine JBN method produces abnormal interpretation results (with the esti-
mated connate water saturation ~33% higher than and the endpoint water/gas relative permeability
only =0.02 of the true value) under comparable conditions. The proposed framework is a promising
computationally effective alternative to the JBN method to accurately derive relative permeability
relations for gas—water—coal systems with multiple fluid—rock interaction mechanisms.

Keywords: coalbed methane; relative permeability; unsteady-state flooding tests; assisted history
matching; JBN method; Bayesian adaptive direct search

1. Introduction

The recovery of coalbed methane (CBM) from underground coal seams has multiple
benefits. These include the reduction of greenhouse gases released into the atmosphere
and the enhancement of underground coal mining safety and in augmenting the supply
of natural gas [1]. Most coal seams are initially saturated with water at in situ conditions
[2]. Hence, two-phase gas/water flow is frequently encountered in the primary recovery
of coalbed methane (CBM) by either routine dewatering or enhanced coalbed methane
(ECBM) strategies such as the injection of N2 and/or COx. It is well recognized that the
relative permeability of coal exerts a profound effect on multiphase fluid transport behav-
ior [3,4] and controls gas/water production rates [5,6], the cost of produced water disposal
[7], and N2/CO:z injectivity [8,9].
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Experimental methods to obtain the relative permeability curves of coal typically in-
clude the unsteady-state [10] core flooding, steady-state [11] core flooding, and microflu-
idic flow [12] tests. The steady-state method is reputed to produce more accurate and re-
liable results than the unsteady-state method [13]; however, the former is rarely used for
estimating gas/water relative permeability of coal due to its cumbersome nature and ex-
perimental difficulties [14]. So far, only Gash [11] and Reznik et al. [13] reported the use
of steady-state tests to obtain the gas and water relative permeability of coal. The micro-
fluidic method is capable of visualizing the fluid flow through coal cleats, which however
requires an expensive experimental apparatus and complicated operational procedures
[15]. As a comparison, the unsteady-state gas-displacing-water flooding test is much eas-
ier and more rapid, which is widely used for determining relative permeability of coals
[16].

Although the unsteady-state flooding test demonstrates a remarkable superiority
over other methods in terms of experimental efficiency and cost-effectiveness, the inter-
pretation of relative permeability from the unsteady displacement data (i.e., pressures and
fluid productions) is much more complex [17,18]. To date, various interpretation methods
have been proposed to derive relative permeability from unsteady-state experiments,
which can be classified into analytical and history matching methods [19]. The analytical
methods use relatively simple and straightforward computational schemes and are easy
to implement, which therefore are currently most routinely used. Among the analytical
methods, the Johnson-Bossler—-Neumann (JBN) method [20] is most commonly used in
the CBM research community. However, the JBN method was initially developed for wa-
ter/oil flows in sandstones, and its accuracy remains questionable when applied in a gas—
water—coal system that involves more complex mechanisms. The JBN model was initially
developed under three fundamental assumptions that (i) capillary end-effects are negligi-
ble, (ii) the density of each phase remains constant (i.e., neither phase is compressible),
and (iii) piston-like displacement occurs throughout the core sample. The first assumption
can be satisfied in reality by using high-speed displacement rates to diminish the relative
effect of capillary pressure. However, the latter two assumptions are difficult to accom-
modate for a gas/water system because (i) gas is extremely compressible with strongly
varying density in the displacement process, especially for cases where the pressure gra-
dient along the core sample is high, and (ii) gas and water have a distinctive contrast in
viscosities, which may result in viscous fingering during the displacement process that
fails the assumption of a piston-like displacement [21-23]. Moreover, when an adsorbing
gas species (such as methane, nitrogen, and CO: that are of interest to CBM recovery pro-
cesses) is injected into a coal sample, the adsorption of the gas typically results in changes
in the coal permeability, which inevitably affects the gas/water production curves that are
used to calculate relative permeability. These factors cannot be captured by the JBN
method.

Compared with the JBN method, the assisted history matching method, based on
numerical simulations, is capable of tracking gas compressibility, gas adsorption, and coal
permeability evolution provided that these mechanisms are incorporated in the numerical
simulator. The assisted history matching method in essence solves a mathematical opti-
mization problem with an objective function of minimizing the errors between the simu-
lated and experimental production curves by tuning the relative permeability curves with
an optimization algorithm(s). The assisted history matching method has been successfully
used to derive water/oil relative permeability curves from core-flooding tests [24-26].
Shaw et al. [27] used manual history matching to simultaneously derive relative permea-
bility and capillary pressure for gas-water—coal systems. However, to the best knowledge
of the authors, no publication has ever reported the application of assisted history match-
ing in deriving the relative permeability (RP) from core-flooding tests for a gas/liquid sys-
tem.

To date, various algorithms have been applied to assist in history matching, includ-
ing (i) gradient-based methods, e.g., the Levenberg-Marquardt (LM) [25] and the quasi-
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Newton [28] methods; (ii) ensemble-based methods, e.g., the ensemble Kalman filter
(EnKF) [24] and ensemble smoother with multiple data assimilations (ES-MDA) [29]
methods; and (iii) swarm intelligence algorithms [30]. It should be noted that, for these
methods, the saturation endpoints for both phases should be assumed to be known prior
to conducting history matching, which, if not assumed correctly, may produce unreliable
results [31]. For a real gas-displacing-water test, the saturation endpoint for water can be
readily determined based on the sample weights before and after gas flooding. However,
determination of the saturation endpoint for gas can be extremely difficult without expen-
sive online X-ray computed tomography (X-ray CT) [32] or nuclear magnetic resonance
(NMR) imaging [33]. This may significantly hinder the application of assisted history
matching in a gas/liquid system. It should also be noted that gradient-based methods are
prone to being trapped in local minima if not properly initialized [34]. Moreover, for the
ensemble and swarm intelligence methods, a large number of numerical simulation runs
are needed in order to achieve a satisfactory result. This makes the estimation of relative
permeability a low-efficiency and computationally expensive process.

In summary of previous studies, the JBN method is most frequently used for inter-
preting relative permeability from unsteady-state displacement experiments, which how-
ever is highly questionable with application to the gas/water/coal system due to its inher-
ent theoretical deficiencies. As a comparison, the assisted history matching method is
more reliable provided that complex fluid—rock interaction mechanisms are properly ac-
counted for. However, most of the existing assisted history matching methods require a
prior assumption or determination of the endpoint saturations, which is difficult to
achieve for systems involving compressible phase(s). In addition, existing algorithms are
associated with the issue of high computational overhead and in being time-consuming.
Addressing these issues will improve the utility of assisted history matching methods in
estimating gas/water relative permeability curves in coals—enabling them to be used with
both high accuracy and efficiency. This study presents an improved method using a hy-
brid Bayesian optimization (BO) and mesh adaptive direct search (MADS) algorithm to
automatically history-match production profiles to determine relative permeabilities of
coals from unsteady-state core-flooding experiments. The improved accuracy of the pro-
posed method is demonstrated on synthetic numerical core-flooding experiments. In ad-
dition, the superiority of the method is highlighted by comparison with the routine appli-
cation of the JBN method.

2. Methods
2.1. Hybridizing BO with MADS

The MADS algorithm is a local optimizer that has been hybridized with global opti-
mization algorithms to solve varying optimization problems related to the petroleum en-
gineering (PE) community [35-37]. Although the application of BO within the PE commu-
nity is only sparingly reported, it has been actively studied in other areas involving ex-
pensive cost functions such as in machine learning [38].

2.1.1. Basics of BO

The BO is an efficient framework for solving black box optimization problems that
involve objective functions that are computationally expensive to evaluate. A BO typically
consists of two consecutive steps (Figure 1). First, a prior over function is built to represent
the belief about the objective function. When observations of the objective function are
obtained, the posterior distribution over functions can be updated by combining the prior
distribution with the observations, which forms a surrogate model on the objective func-
tion. Because of its flexibility and tractability, Gaussian process (GP) priors are frequently
utilized to represent the assumptive prior distribution on functions [39]. Second, an ac-
quisition function is applied to construct a utility function from the model posterior,
which is then maximized to select the next query point at which to evaluate the function.
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After new function evaluations are conducted, the updated observations are combined
with the previous posterior estimation to construct a new posterior distribution over func-
tions. This iterative search process is repeated until an optimal value is obtained.

Starting
points

Fit the GP with observed data

!

Maximize the acugqisition
function to generate the next
L query point

|

Update the observed data set

Stopping
criteria
satisfied

Figure 1. Illustration of the Bayesian optimization (BO) algorithm.

The covariance and acquisition functions are two key elements that may significantly
influence the performance of the Gaussian process. Stationary covariance functions in-
clude the automatic relevance determination (ARD), squared exponential (SE), rational
quadratic (RQ), Matérn 3/2, and Matérn 5/2 kernels. The acquisition functions that are
commonly used include the lower confidence bound (LCB), upper confidence bound
(UCB), and expected improvement (EI). In this study, we adopt the recommendation of
[40] for the stationary covariance and acquisition functions, which are set to be the ARD
RQ and the LCB, respectively.

2.1.2. Basics of MADS

The MADS algorithm is a directional direct search method proposed by [41]. At each
iteration, the MADS updates the candidate solutions in two sequential steps, namely the
search stage and poll stage (Figure 2). In the search stage, MADS can use strategies such as
heuristics and surrogate models (e.g., GPs in the BO process) to generate a finite number
of trial points on the mesh for following functional evaluations [42]. The use of a surrogate
in this step is generally less costly and can save considerable computational expenditure
[43]. The poll stage is performed if the search stage fails to improve the objective function
value. It has been theoretically proven that the poll stage ensures the convergence of
MADS to local optima for non-smooth functions [44]. If either the search or poll succeeds
in finding a mesh point with an improved objective value, the incumbent is updated and
the mesh size remains the same or is multiplied by a factor 7 > 1. If neither search nor poll
are successful, the incumbent does not move and the mesh size is divided by 7. The algo-
rithm proceeds until a stopping criterion is met (e.g., when a budget of evaluations has
been exhausted).
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Figure 2. Illustration of the mesh adaptive direct search (MADS) algorithm.

2.1.3. Hybridization

The philosophy behind the Bayesian adaptive direct search (BADS) is to utilize the
surrogate models (GPs) constructed in the BO process to assist in generating candidate
solutions in the search and poll stages of the MADS. Mathematical details on the BADS are
given in [40], and the workflow is illustrated in Figure 3, which is briefly introduced as
follows for completeness of this paper.

For a D.-dimension minimization problem x* = argmin,gp, f(x), the BADS
method begins function evaluations with an initial variable vector x, and a number of D
additional points chosen via a space-filling quasi-random Sobol sequence [45] that are
forced to be on the mesh grid (Figure 3). The initial mesh size (A7**") and poll size (A7°")
are set to 271 and 1.0 according to [40], respectively. The GP surrogate model is updated
every 2D» to 5D» function evaluations and whenever the accuracy of the current GP is
unreliable by refitting the hyperparameters of GP using the gradient-based fmincon opti-
mizer implemented in the Optimization Toolbox of MATLAB.
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Figure 3. Workflow of the Bayesian adaptive direct search (BADS) algorithm.

Poll
stage

At the kth iteration, the candidate solutions in the search stage Xgoqrcn are generated
by performing a local optimization of the acquisition function in the neighborhood of the
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incumbent x;, using the two-step evolutionary strategy adapted from the covariance ma-
trix adaptation evolutionary strategies (CMA-ES) -based MADS (which is also termed as
LTMADS) algorithm [41] and are then scaled to the GP kernel length scales to construct
the final polling directions Dx. In this way, the solution candidates x,,; in the polling
stage can be updated according to x,,; = {x) + Af'v:v € D;}. The polling sets are evalu-
ated according to their ranking given by the acquisition function. If the poll succeeds in
sufficiently improving the objective function within three consecutive steps, the incum-
bent is updated and BADS switches to a new iteration with mesh and poll sizes multiplied
by 7 =2; otherwise, the incumbent remains unchanged and BADS switches to a new iter-
ation with the mesh and poll sizes divided by 7 = 2. These steps are repeated until a preset
maximum number of iterations is met, the algorithm stalls, or the poll size becomes ex-
tremely small.

2.2. Representation of Relative Permeability and Capillary Pressure

Power-law models are frequently used to represent relative permeability in history
matches due to the small number of tunable parameters. Although Shawn et al. [27] sug-
gest that the simple modified Brooks—Corey-type model [46] is adequate in representing
gas and water relative permeability curves of coals, we adopt Chen et al.’s model [2] in
this study, which is more versatile than the Brooks—Corey model. Chen et al.’s relative
permeability model is developed specifically for coals and incorporates both the match-
stick geometry of cleats and its effect on the computation of the capillary pressure. The
applicability and accuracy of this model has been confirmed against a large number of
relative permeability curves for a variety of coals [47,48]. The general form of Chen et al.’s
model is written as follows:

b = ki Sy M)

krg = kig(1 = S,up)"(1 = Spb?) )
SW - ch

Swp = ——"— 3

P 1—=Sy:— Sgr )

where k7, and k;,; are endpoint relative permeabilities for the water and gas phase, re-
spectively; S, and S, are connate water and irreducible gas saturations, respectively;
and 1 and A are positive fitting exponents that represent the tortuosity and cleat size dis-
tribution of the cleat system.

For the unsteady-state flooding test, the displacement rate (or pressure gradient ap-
plied between core ends) should be properly set such that the reservoir conditions are
appropriately replicated while the capillary end-effect can be neglected [49]. However, it
is usually difficult to define the proper values without knowledge of the capillary pressure
characteristics in real laboratory tests. To the best knowledge of the authors, experimental
data on capillary pressure for gas-liquid—coal systems at high pore pressures and under
confined conditions are still lacking due to the difficulty in making such measurements
[27]. As such, it is of practical significance to estimate relative permeability and capillary
pressure simultaneously from an individual unsteady-state displacement test to eliminate
the difficulty of capillary pressure measurement. To represent the capillary pressure curve,
which may be simultaneously interpreted with that for relative permeability, the Liu et al.
model [50] (developed specifically for coal) was used to represent the capillary pressure
curve, which is written as follows:

1
Dec = pc,max[1 - bSv];D] B )

where pemax is the maximum pressure on the capillary pressure curve and b, y, and § are
the fitting parameters.
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2.3. Implementation of the Assisted History Matching Framework

The workflow for the assisted history matching is shown in Figure 4 and is described
as follows:

Step 1: Randomly initialize the control parameters (k', k', Swe, Sgr, 1, A, b, B, 7, and
Ppemax) shown in Equations (1)—(4) within their respective constraint boundaries that are
given in [47,50].

Step 2: Calculate the relative permeability and capillary pressure curves according to
Equations (1)—(4).

Step 3: Update the data file for numerical simulation.

Step 4: Call the reservoir simulator to conduct numerical simulation for each solution
candidate.

In this study, we set the inlet and outlet pressures as constraints and attempt to sim-
ultaneously match the cumulative productions of gas and water at outlet. Thus, the objec-
tive function to be minimized is written as follows:

Ng g g )2 N 2
— 2i;gl(qcal,i - qobs,i) 21’:1(61&11 - q(%s,i) (5)

+
N, N,

f

where g is cumulative production; N is the number of points on the cumulative production
curve; the subscripts “g” and “w” represent gas and water phase, respectively; and the
subscript “cal” and “obs” represent calculated and observed values, respectively.

Step 6: Update the optimal solution, and generate new solutions using the BADS al-
gorithm. In this study, the MATLAB implementation of BADS developed by [40] is used,
which is available at https://github.com/lacerbi/bads#reference.

Step 7: Check if the maximum number of function evaluations is met. If not, repeat
steps 2 through 6; otherwise, terminate history matching, and output the relative perme-

ability and capillary pressure.

‘ Initialization of the control parameters |

v

‘ Compute relative permeability and capillary pressure |<—

!

‘ Update the data file for numerical simulation |

!

‘ Call the numerical simulator to conduct simulations |

v

‘ Read simulationresult and compute objective function |

!

‘ Update the control parameters using BADS |

Stopping
criteria

Yes

Figure 4. Illustration of the assisted history matching framework.

3. Validation of the Framework

Compared to real laboratory tests, a most distinguishing advantage of using synthetic
numerical core flooding tests is that the true properties of the core samples are definitively
known and can therefore be used to test the accuracy of an interpretation technique
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[51,52]. Relative to this, numerical methane-displacing-water core flooding tests are con-
structed, conducted, and used to validate the proposed interpretation framework.

Cylindrical core samples are typically used for laboratory flooding tests (Figure 5a).
This geometry can be approximated by a rectangular cuboid in numerical simulations
provided that their cross-sectional areas are identical [53,54] with no loss in fidelity (Fig-
ure 5b). The tubing network of the experimental equipment exerts a finite influence on
gas storage and flow behavior and, therefore, should also be accounted for in the grid
model [53,55]. In this study, a rectangular grid model with 50 grid blocks along the x-, y-,
and z-directions was constructed for simulating unsteady gas-displacing-water tests with
capacitance in the tubing represented by single grid blocks both upstream and down-
stream. The central 50 grid blocks represented the coal core, whereas 1 grid block on either
side represented the upper- and downstream tubing voids. Each grid block had a respec-
tive dimension of 0.2, 5.321, and 5.321 cm in the x- (axial), y-, and z- (lateral) directions so
that a coal core sample with a respective diameter and length of 5 cm and 10 cm was
represented.

Winjector
Gas Gas+Water
Inlet Outlet
f f :UE; Coal

Void tube Coal core V01d tube core ;;:
tube
(a) (b)

Figure 5. Illustration of the (a) real core flooding and (b) synthetic numerical core flooding tests.

The coal core was initially saturated with water, with the basic properties summa-
rized in Table 1. The grid blocks on either end of the grid were penetrated with an injection
and production well, respectively, to simulate the injection/production process of the flu-
ids. For the two grid blocks at either end, the reservoir properties were set as follows: (i)
Langmuir volume and volumetric strain were zero, and compressibility was extremely
small since no gas sorption or volumetric variation occurred in the tubing system; (ii) po-
rosity was assumed to be 0.02% to account for the tubing voids; and (iii) permeability was
set to be 100D so that the bottomhole pressures (BHPs) approximated the grid block pres-
sures on either end.

For real unsteady-state flooding tests, relative permeability and capillary pressure
are inevitably associated with measurement uncertainties and thus may deviate from the
ideal modeled curves. In other words, real relative permeability and/or capillary curves
can only be represented with analytical models if noise is added. In this regard, the refer-
ence relative permeability and capillary pressure curves are generated by adding noise to
the data points generated with the Chen et al. [2] and Liu et al. [50] models, respectively,
in order to mimic the real cases (Figure 6). Previous studies conclude that the pressure
drop (or fluid injection rate) applied on the core sample exerts a nonnegligible effect on
the relative permeability due to the presence of capillary end-effect [56,57]. To examine
the robustness and accuracy of the proposed framework, different simulation scenarios
with varying pressure drops were investigated. The BHP of the injector was set to 4.0 MPa,
which generally approximates the methane desorption pressure of the coal seams in the
Qinshui basin. The BHPs of the producer were varied at 3.7, 3.75, 3.8, 3.85, 3.9, and 3.95
MPa to represent pressure drops of 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 MPa, respectively. The
corresponding simulated cumulative gas and water production rates are shown in Figure
7. It should be noted that, for real core flooding tests, applying a large pressure drop may
result in viscous fingering due to the relatively large viscosity ratio between gas and liquid
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phases [58] and, therefore, may affect the relative permeability. However, for the numer-
ical core flooding tests, viscous figuring was not accounted for and the possible differences
in the interpreted relative permeability may be attributed solely to the effects of capillary
pressure, gas compressibility and adsorption, and the dynamic permeability behavior of
coal, which will be discussed in the following section.

Table 1. Coal properties used in the synthetic numerical model.

Property Value
Cleat porosity, % 3.00
Permeability, mD * 0.1
Rock compressibility, KPa™ 2.5x10°
Sorption strain, fraction 0.009
Pe, KPa 2700
Poison ratio, fraction 0.35
Young’s Modulus, KPa 3.0 x 1086
Initial pressure, KPa 101.1
Initial water saturation, % 100
Langmuir volume, m3/t 24.0
Langmuir pressure, KPa 2300
Desorption time, d 0.5
Temperature, K 308.15
Bulk density, g/cm? 14

* The permeability value is assumed to be with reference to the averaged inlet and outlet pres-
sures.

1.0 - - 120
—A—Krw

0.8 A —S—Krg i 1003
g ®\ Capillary pressure <
3 - 80 g
S 06 A 3
E L 60 ©
2 o
e 0.4 A >
£ - 40 8
k] S a
& 02 A | 29 ©

0.0 A T T T S+ 0

0.5 0.6 0.7 0.8 0.9 1

Water saturation

Figure 6. Reference relative permeability and capillary pressure for the synthetic core flooding
test.
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Figure 7. Simulated cumulative gas (a) and water (b) production volumes with varying pressure drops.

4. Results and Discussion
4.1. Convergence Trend of the BADS Algorithm

BADS is a stochastic optimization algorithm; therefore, variations may exist with re-
spect to different independent simulation runs. To diminish the uncertainties in interpre-
tation caused by the stochastic nature of BADS, multiple independent runs were con-
ducted for each of the pressure gradient cases. Figure 8 illustrates the convergence trend
of the objective function values for different pressure gradient scenarios. As can be seen,
for each scenario, the objective function decreases dramatically during the initial stage
(with a number of =100 to =150 function evaluations) and then converges gradually to
local optima up to =300 numerical simulation runs. This suggests an alternation in mode
from global exploration to local exploitation [5]. It should be noted that the number of
function evaluations required for the BADS algorithm to achieve relatively stable conver-
gence is noticeably small compared with previous algorithms relative to the specific prob-
lem of relative permeability estimation. For example, Zhang et al. [51], Zhou et al. [25],
and Fayazi et al. [59] demonstrated that the EnKF, LM, and genetic algorithm (GA) require
respectively #1000, =950, and =500 simulation runs to achieve stable convergence. This
highlights the efficiency of the BADS algorithm in assisted history matching.

Also shown in Figure 8, for each pressure difference scenario, the ten independent
runs exhibit noticeable variations in the final objective function values after even ~300
simulation runs. The variations are attributed to the stochastic nature of the iterative pro-
cess in BADS in the generation of solution candidates, which is a common issue for sto-
chastic optimization algorithms [5]. The averaged final objective function values (even
after ~300 numerical simulations) are also affected by the differential pressure. The final
averaged objective function values are ~0.001, 0.005, and 0.45 for scenarios with pressure
drops of >0.15 MPa, 0.1 MPa, and 0.05 MPa, respectively. The variations in the final objec-
tive function values indicate a noticeable influence of the pressure drop in the interpreta-
tion accuracy, which will be discussed in the following section.
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Figure 8. Evolution of the objective function values at varying pressure drops of (a) 0.3 MPa, (b)
0.25 MPa, (c) 0.2 MPa, (d) 0.15 MPa, (e) 0.1 MPa, and (f) 0.05 MPa: the dashed lines are for 10 indi-
vidual and independent runs, whereas solid lines are averaged values of the independent runs.

4.2. Effect of Pressure Drop on the Interpretation Accuracy

Figure 9 depicts the interpreted relative permeability with reference to the “true”
curves. As shown, the interpreted relative permeability curves from different independ-
ent runs are scattered around the true curves, which is possibly due to the random initial-
ization and stochastic nature of the BADS algorithm. Nonetheless, the averaged relative
permeability of ten independent runs agree well with the true curves at larger pressure
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drops (0.2, 0.25, and 0.3 MPa) (Figure 9a—c). For a pressure drop of 0.15 MPa, the inter-
preted gas relative permeability agrees well with the true permeability, whereas small
discrepancies exist for the water relative permeability at water saturations of >0.9 (Figure 9d).
For the scenario with a pressure drop of 0.1 MPa, the interpreted gas and water relative
permeability curves deviate noticeably from the true behavior especially in the region
around the endpoint saturations (Figure 9¢). For the scenario with an extreme small pres-
sure drop of 0.05 MPa, significant discrepancies exist between the estimated and true rel-
ative permeability curves: the connate water saturation is overestimated, whereas the rel-
ative permeabilities for both the gas and water phases are generally underestimated com-
pared with the true ones (Figure 9f). The discrepancies between the interpreted and true
connate water saturation for the extreme low pressure drop (0.05 MPa) may be attributed
to the dominating role of capillary forces relative to viscous forces that results in a high
water saturation remaining at the end of the displacement experiment (Figure 7b). The
relatively high residual water saturation misleads the BADS algorithm to derive a rela-
tively high connate water saturation. Once the connate water saturation is overestimated,
the relative permeability for both the gas and water phases should be forced to reduce in
order to improve the estimation accuracy.
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Figure 9. Comparison of interpreted versus true relative permeability curves for the synthetic sam-
ple with pressure drops of (a) 0.3 MPa, (b) 0.25 MPa, (c) 0.2 MPa, (d) 0.15 MPa, (e) 0.1 MPa, and (f)
0.05 MPa: Open circles are reference data points (red for gas and blue for water); dashed lines are
independent runs; solid lines are averaged values of the independent runs; and gray bands are the
+5% confidence interval.

To further investigate the effect of pressure drop on the interpretation accuracy, the
dimensionless flow parameter of end-effect number (Ncend) [60] is included. This is de-
fined as follows:

Pc,max

Neend = Ap (6)

where Ap is the pressure drop along the core sample.

For the specific synthetic models in this work, the calculated end-effect number val-
ues are shown in Figure 10. As addressed previously, the interpretation accuracy is rela-
tively high provided that the applied pressure drop on the core sample is not lower than
=0.1 MPa—this corresponds to an Ncend of =0.56. Bentsen [61] suggests that the effect of
the capillary term on fluid displacement can be neglected given Ncend<0.01 and Neend< 0.1
for two-phase systems with mobility ratios of 2 and 10, respectively. For the specific con-
ditions of this study (Table 1), the mobility ratio of gas over water is much higher (=70)
than that of [61]. Nonetheless, by analogy with [61], it should be reasonable to assume a
higher critical Ncend value below which the capillary end-effect can be neglected, specifi-
cally for the gas/water system in this study.

25 1
A ——— Scenarios in this study
20 A
— — = (Critical Nc, this study
g 159 \  eeea- Critical Nc [60]
9.
o A
210 A \
_____ x. _————
0.5 A =i
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0 0.1 0.2 0.3 0.4

Pressure drop, MPa

Figure 10. End-effect number for different pressure drop scenarios.
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Numerous studies have documented the use of significantly larger pressure drops or
flow rates than those in real reservoirs in order to minimize the capillary end-effect in core
flooding tests and thus to improve the interpretation accuracy of relative permeability
[56,57]. However, applying a large pressure gradient tends to increase the possibility of
viscous figuring considering the necessarily unfavorably high mobility ratio of gas rela-
tive to water [21-23]. This may produce relative permeability curves that are not repre-
sentative of the true reservoir conditions. For the methane-water—coal system, applying
larger pressure drops also results in more significant variations in the permeability change
and in gas adsorption along the core sample. Therefore, it should be of practical signifi-
cance to minimize the pressure drop applied on the core sample while ensuring the accu-
racy of interpretation, which can be readily achieved using the interpretation framework
proposed in this study.

Chen et al. [31] argued that endpoint saturations should be assumed prior to con-
ducting assisted history matching in order to ensure the accurate interpretation of results.
However, for gas and water systems, the endpoint gas saturation is usually difficult to
identify without advanced measurement techniques—such as X-ray CT or NMR relaxa-
tion imaging [33]. Moreover, an accurate determination of the true endpoint water satu-
ration usually requires extremely high injection rates and long-duration displacement.
From the results above, it is apparent that the proposed framework is capable of accurately
reproducing the true relative permeability curves without prior assumption of the end-
point saturations, provided that the displacement pressure is properly assigned —this rep-
resents a significant advancement over previous methods.

Figure 11 compares the interpreted capillary pressure curves with the true curve at
varying differential pressures. As depicted, the interpreted capillary pressure curves de-
viate noticeably from the true curve, especially where water saturation is <0.7. Previous
studies [34,51] indicate that accurate interpretation of the capillary pressure curve requires
that not only the injection/production and pressure data but also time-lapse saturation
profiles along the core sample be included in the objective function. However, the acqui-
sition of the time-lapse saturation profiles requires expensive and sophisticated experi-
mental techniques such as real-time X-ray CT scanning, which may not be available for all
core flooding tests. Dabbous et al. [62] and Reznik et al. [13] demonstrate that the maxi-
mum gas/water capillary pressure for bulk coals, at effective stresses of up to 6.9 MPa, are
generally less than 0.25 MPa. Such small capillary pressures have been argued to exert a
minor or even negligible effect on fluid flows in naturally fractured formations [63]. As
such, it is reasonable to neglect the errors in the interpretation of capillary pressure and to
place the accurate estimation of relative permeability as a priority.
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Figure 11. Comparison of interpreted versus true capillary pressure curves at varying pressure
drops of (a) 0.3 MPa, (b) 0.25 MPa, (c) 0.2 MPa, (d) 0.15 MPa, (e) 0.1 MPa, and (f) 0.05 MPa: open
circles are reference data points; dashed lines are 10 independent solution runs; and solid lines are
averages of the independent runs.

4.3. Comparison with the JBN Method

Figure 12 depicts the interpretation results of the routine JBN method for the rela-
tively large pressure drop of 0.3 MPa (corresponding to a large end-effect number value
of #2.2). As clearly shown, the derived relative permeability curves for both water and gas
phases using the JBN method deviate significantly from the true reference data. The de-
rived connate water saturation is approximately 0.738, which is 33% higher than the true
values (0.553). The derived water relative permeability values are on the order of magni-
tude of 107 to 1073, with the endpoint water relative permeability being =0.01 of the true
value. The derived gas relative permeability is of the order of 102, with the endpoint gas
relative permeability being =0.02 of the true value. Compared with the proposed interpre-
tation framework introduced and benchmarked in this study, the results interpreted using
the JBN are, in contrast, highly questionable and unreliable. As noted previously, the JBN
method was initially developed to represent incompressible two-phase water and oil flow
under the assumption of negligible capillary end-effects. For a real methane-displacing-
water test on a coal sample, three discrepancies exist relative to the necessary assumptions
for JBN: (i) the capillary end-effects are nonnegligible, (ii) gas compressibility and adsorp-
tion effects are significant, and (iii) permeability evolves in coal due to gas injection and
as a result of both sorptive-swelling and the pressure sensitive nature of the cleat system.
These factors are not accounted for in the JBN method, which therefore result in the dis-
crepancies between the interpreted and true relative permeabilities that we observe.
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Figure 12. Comparison of the Johnson-Bossler-Naumann (JBN) interpreted versus true relative
permeability curves.

To ascertain the effect of each of these factors on the JBN interpretation results, three
simulation model cases are tuned based on the basic model parameterization (Table 1 and
Figures 5 and 6), and the JBN method is applied to interpret the relative permeabilities for
each individual case (Figure 13). For all these cases, the pressure drop applied on the core
sample is set to be relatively large (0.3 MPa).
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Figure 13. Effects of varying factors on the interpretation of results recovered from the JBN
method.

(1) A first case involves only gas compressibility and adsorption by assuming zero ca-
pillary pressure and by accommodating no evolution in permeability. As can be seen
from Figure 13, for this case, the JBN-interpreted relative permeability curves agree
well with the true relations, indicating that gas compressibility and adsorption exert
minor effects on the accuracy of interpretation using the JBN algorithm.

(2) A second case is constructed by adding the capillary pressure while still excluding
permeability evolution. Apparent in Figure 13 is that the inclusion of the capillary
effect tends to lower the interpreted water relative permeability with reference to the
true curve. The interpretation of gas phase relative permeability appears to be less
affected compared with that for the water phase over the range of high water satura-
tions; however, the interpreted gas relative permeability is lower than the real mag-
nitude when the water saturation approximates the connate water saturation.

(3) A third case is constructed by adding the permeability evolution effect while still
excluding the impact of capillary pressure but otherwise represents the conditions of
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the first case. As depicted in Figure 13, for this case, the JBN-interpreted relative per-
meability curves deviate significantly from the true behavior. These results are actu-
ally quite similar to the curves interpreted for the basic model (that incorporate ca-
pillary end-effects, gas compressibility and adsorption, and permeability evolution).

In summary, the effect of gas compressibility and adsorption can be neglected in an
interpretation using the JBN method. Capillary end-effects exert a nonnegligible but sig-
nificantly smaller effect on the accuracy of interpretation using the JBN algorithm com-
pared to the impacts of permeability evolution. This latter effect of permeability evolution
is the primary source of error causing unreliable interpretation of permeabilities from the
JBN method. In other words, the JBN method only yields reliable relative permeability
estimates where capillary end-effects and permeability evolution (due to swelling and
changes in effective stress) are negligible.

However, swelling and stress-dependent permeability evolution are inherent in frac-
tured coals. This effect may however be reduced by using non-adsorbing gases as the dis-
placing fluid. As stated previously, the impact of the capillary end-effect may be reduced
by using a large pressure gradient. To further evaluate the flow regime where the JBN
method is valid for cases where permeability evolution is negligible, additional simulation
runs are conducted for increased pressure drops (0.4 and 0.5 MPa). The interpreted results
are shown in Figure 14. As apparent from the figure, the JBN method gives an accurate
estimation for the gas relative permeability at pressure drops of 0.4 and 0.5 MPa. For the
water phase, the estimated relative permeability curves at pressure drops of 0.4 and 0.5
MPa also agree with the true values for water saturations lower than the cross-point sat-
uration but are slightly lower than the true values at water saturations higher than this.
Overall, the accuracy of interpretation of the JBN algorithm is acceptable for pressure
drops larger than 0.4 MPa, which correspond to an Neend of #3.3. By comparison, the pro-
posed framework introduced in this study is capable of accurately reproducing the rela-
tive permeability given an Ncend of >0.56, which is obviously lower that that required for
the JBN method to return reasonable estimates.
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Figure 14. Effects of varying factors on the interpretation results of the JBN method.

5. Conclusions

An improved assisted history matching framework is developed and implemented
to improve the fidelity of relative permeability estimates where the impacts of end-cap
effects, capillary pressure differentials, and sorptive/stress-induced changes in permeabil-
ity are present. This new algorithm (BADS) is applied to recover gas/water relative per-
meability curves of coals from unsteady-state gas-displacing-water tests and to define its
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improvement over existing methods. Synthetic phase displacement experiments are con-
ducted by numerical simulation and by using varied pressure drops to both validate the
proposed framework and to determine its relative improvement. The performance of the
framework was compared with the performance of the existing JBN algorithm. We
demonstrate that the BADS algorithm is capable of reproducing the relative permeabilities
from unsteady-state displacement tests on synthetic samples with relatively high accuracy
provided that the end-effect number is higher than 0.56. The BADS algorithm is remarka-
bly efficient, which requires only a small number of numerical simulation runs to achieve
stable convergence: 100 to 150 runs. This rapid convergence represents a significant im-
provement over previous algorithms, such as EnKF, LM, and GA, that typically require
in excess of 500 numerical simulation runs to converge for the same representative prob-
lem. Furthermore, we demonstrate that the JBN method leads to unreliable interpretation
results in the presence of capillary end-effects and when permeability evolution as a result
of changes in pressure (impacts of sorption/swelling and changes in effective stress) are
present and significant. Conversely, the JBN method produces reasonable estimations
only where relatively large pressure drops (corresponding to an end-effect number of
>3.3) are present and where changes in permeability due to gas injection are negligible.
Future work is anticipated regarding application of the proposed framework in interpret-
ing gas/water relative permeability of coal from real core flooding tests so that the effects
of varying factors (i.e., pore pressure, displacement rate, etc.) on the relative permeability
can be identified. The proposed framework should be rather easily extended for water/oil,
gas/oil, and gas/water in shale, sand, and carbonate rocks. As far as we are concerned, the
only issue of the proposed method for application in other porous flow problems is the
representation of the relative permeability pressure curve. As has been stated previously,
for the gas/water/coal system, the relative permeability curve has been proven to be well
represented with Chen et al.’s model, which however may be replaced with other repre-
sentation methods such as the Corey-type or B-spline models [31] for other type of rocks.
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