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A B S T R A C T   

After performing hydraulic fracturing in shale reservoirs, the hydraulic fractures and their adjacent rocks can be 
damaged. Typically, the following fracture damage scenarios may occur: (1) choked fractures; (2) partially 
propped fractures with unpropped or poorly propped sections at the middle or tail of fractures; (3) fracture face 
damage; and (4) multiple damage cases. The classical fracture skin factors are derived under steady-state con-
ditions. They are not accurate when the damaged length is relatively long and are not applicable for multiple 
damage and partially propped fractures. In this article, a new analytical model is established considering all 
above-mentioned fracture damage mechanisms, complex gas transport mechanisms, and the stimulated reservoir 
volume (SRV) of shale gas reservoirs. 

The matrix model is a spherical element model considering the slip flow, Knudsen diffusion, surface diffusion, 
and desorption. Natural fractures are idealized as a thin layer that evenly envelops the matrix. The reservoir- 
fracture flow model is a ten-region linear flow model which can handle fracture damage mechanisms. Specif-
ically, the inner reservoir region is treated as an SRV where the secondary fracture permeability obeys a power- 
law decreasing trend due to the attenuate stimulation intensity. 

This model is validated by matching with the Marcellus Shale production data. And the degraded model’s 
calculation matches well with that of a published linear flow model. New type curves are generated and 
sensitivity analyses are conducted. Results indicate that the presence of the SRV diminishes pressure and de-
rivative values in certain flow regimes depending on the SRV properties. Different damage mechanisms all 
control specific flow regimes but the fracture face damage shows the slightest influence. In the multiple fracture 
damage case, some typical flow regimes can be easily identified except those induced by the partially propped 
fractures. The field application example further ensures the applicability in dealing with real field data.   

1. Introduction 

Shale gas reservoirs with ultra-low permeability are generally arti-
ficially fractured to obtain economical gas rates. Owing to the ultra-low 
matrix permeability, fractures serve as the major flow channels for gas 
production. Unfortunately, during hydraulic fracturing, induced frac-
ture impairment may occur due to various mechanisms including 
proppant embedment (Guo and Liu, 2012; Liu et al., 2018), fine mi-
grations (Pope et al., 2009), proppant crushing and deformation (Mittal 

et al., 2018; Han and Wang, 2014), fracturing fluids leak-off (Ning et al., 
1995; Guo and Liu, 2014), proppant backproduction (Parker et al., 
1999), proppant diagenesis (LaFollette and Carman, 2010), insufficient 
proppant injection, proppant over-displacement (Themig, 2010), and 
stress-induced fracture damage (Valko and Economides, 1993). In this 
article, the fracture damage of shale gas formations involves the 
following types. The first type is the choked fracture which has a 
damaged section at the connection between the horizontal well and the 
hydraulic fracture. A reduction of fracture permeability or fracture 
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width can occur in the damaged section, as shown in Fig. 1. Proppant 
backproduction and over-displacement are the main causes of this 
damage (Romero et al., 2003) while proppant embedment and crushing 
can be possible reasons as well. The second type refers to the partially 
propped fracture with an insufficiently propped or unpropped section 
and an undamaged near-wellbore region within the fracture, as shown in 
Fig. 2. It can result from the undesired proppant distribution and 
placement, proppant embedment and crushing, and insufficient prop-
pant injection and is heavily influenced by the hydraulic fracture ge-
ometry. The third type is the fracture face damage which involves a 
damaged region at the fracture face, as shown in Fig. 3. Common causes 
of this damage include fracturing fluids leak-off, polymer impairment, 
the phase change near fractures, and stress effects (Romero et al., 2003; 
Reinicke et al., 2013). Moreover, the above-mentioned damage mech-
anisms may co-exist in a multi-stage fractured horizontal well (MFHW), 
which refers to multiple fracture damage. 

Actually, damaged fracture height caused by stress effects is also a 
fracture damage mechanism. Here, we treat these fractures as partially 
penetrating fractures which can be handled by our model as well. 
Although we know well about the damage mechanisms, how they affect 
the pressure and rate responses of a fractured shale gas reservoir has not 
been fully understood. In the literature, skin factors have been widely 
used to simulate fracture damage in well testing and production. Cin-
co-Ley and Samaniego (1977) established a model which is modified 
from a finite conductivity fracture model to include wellbore storage 
and fracture damage. Their study reveals that the fracture face damage 
can be estimated from the early-time well responses through type-curve 
matching. Then, Cinco-Ley and Samaniego (1981) further considered 
the effects of choked fracture damage on the transient pressure behavior 
and analyzed different pressure responses between finite-conductivity 
and damaged fractures. Azari et al. (1991) presented how choked frac-
ture damage controls the well performances of constant-pressure pro-
duction cases. Results show that it impairs the productivity of wells with 
high-conductivity fractures more significantly. Wang et al. (2000) 
studied the fracture face skin effects caused by the liquid condensate in 

gas-condensate reservoirs. They concluded that the productivity of 
fractured gas-condensate wells experiences a dramatical reduction due 
to this tantamount fracture face skin. Romero et al. (2003) used a direct 
boundary element method (BEM) to investigate the influence of fracture 
face skin and choked fracture skin on fractured well performances. Re-
sults indicate that the nonuniform fracture face skin significantly re-
duces the dimensionless productivity index while choked fractures’ 
effects are less complex and can be addressed through an apparent drop 
of the proppant number. The stress-induced fracture face skin was 
examined by Reinicke et al. (2013). They pointed out that the me-
chanical interaction between rocks and proppants can cause a perme-
ability reduction up to 90% at the fracture face. However, the 
fundamental equations of skin factors are derived under the steady state 
and are accurate when the damaged-zone length is relatively small 
(Cinco-Ley and Samaniego, 1977). Moreover, the pressure and rate 
behavior of dual-porosity shale reservoirs under multiple fracture 
damage conditions or partially propped fracture conditions cannot be 
analyzed through traditional skin factors. Recently, linear flow models 
were derived to handle only the fracture face skin under unsteady state 
conditions (Miao et al., 2019; Wu et al., 2019). For partially propped 
fractures, Qin et al. (2018) developed a double-segment fracture model 
which considers the damaged fracture effective length caused by frac-
ture closure and can interpret effective fracture properties and identify 
fracture closure. However, that model is only applicable for infinite 
reservoirs and is not suitable for more complex fracture damage cases. 
For multiple fracture damage, Zeng et al. (2019) developed a 
single-porosity composite linear-flow model. However, that model is too 
simple to deal with dual-porosity shale formations with SRVs and 
complex gas transport mechanisms. And the flow regimes of 
dual-porosity shale formations with SRVs are significantly different from 
those of a single-porosity reservoir. Until now, no effective and simple 
method has been proposed to evaluate complex fracture damage cir-
cumstances of shale gas formations. 

Apart from fracture damage, the existence of newly generated large 
fracture networks has been observed and evidenced by microseismic 
mapping in many shale reservoirs (Mayerhofer et al., 2010). The prop-
erties of the SRV are key parameters for post-fracturing performances. 
The induced fracture network size can be treated as a 3-D volume and is 
dependent on the rock properties and the injected fracturing-fluid vol-
ume (Mayerhofer et al., 2010). Within the SRV, the stimulation intensity 
decreases along the fracture branch propagation direction, which leads 
to the fracture network transport property variation (Wang et al., 
2015b). In the literature, many researchers used power-law expressions 
to depict fracture network property variations in the fluid-flow direc-
tion, as shown below (Chang and Yortsos, 1990; Acuna et al., 1995; 
Wang et al., 2015b; Fan and Ettehadtavakkol, 2017a, 2017b) 

kfSRVðyÞ¼ k0

 
y

yref

!H� E� θ

; (1)  

ϕfSRV ðyÞ¼ϕ0

 
y

yref

!H� E

; (2)  

where H is the mass fractal dimension; E is the Euclidean dimension; θ is 
the fractal exponent which increases with higher fracture network tor-
tuosity and poorer connectivity; y is the flow direction coordinate; yref is 
the reference length of the power-law equation in ft; kfSRV is the fracture 
network permeability that changes along the flow direction in md; k0 is 
the permeability at yref in md; ϕfSRV is the fracture network porosity; ϕ0 

is the porosity at yref . Fan and Ettehadtavakkol (2017a) validated the 
induced fracture network property power-law distribution by matching 
the power-law fracture distribution with Barnett Shale microseismic 
fracture density data. To obtain analytical solutions, we follow the 
assumption of Fan and Ettehadtavakkol (2017b) and assume H ¼ E. 

Fig. 1. Schematic of choked fractures (plan view).  

Fig. 2. Schematic of a partially propped fracture (plan view).  

Fig. 3. Schematic of fracture face damage (plan view).  
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Consequently, kfSRVðyÞ ¼ kf ðy=y’
sÞ
� θ and ϕfSRVðyÞ ¼ ϕf . Here y’

s is the 
reference length which is the sum of fracture face invaded thickness and 
half-fracture width in ft. Fan and Ettehadtavakkol (2017b) assumed that 
the unstimulated reservoir volume (USRV) is single-porosity, which can 
underestimate the contribution of USRVs as they are naturally fractured. 
The aforementioned literature review has revealed several gaps in 
modeling shale gas production with damaged hydraulic fractures. This 
research aims at establishing a more general analytical model that 
considers special features of stimulated shale gas reservoirs and complex 
fracture damage and uncovering how SRV properties and different 
fracture damage mechanisms affect the responses of MFHWs in shale gas 
plays. 

2. Conceptual models 

In this section, the conceptual models and the assumptions used to 
develop the mathematical models are introduced. The reservoir is a box- 
shaped shale gas reservoir with closed outer boundaries. The MFHW is 
drilled at the center of the reservoir. To effectively describe the artifi-
cially fractured shale reservoir, we utilize three distinct porous systems: 
the matrix, natural (secondary) fractures, and hydraulic fractures. As 
indicated in Figs. 4 and 5, the spherical flow in shale matrix elements 
and the composite linear flow in the reservoir-fracture system are 
considered. For matrix gas flow modeling, an improved model that takes 
into account the slip corrected flow, Knudsen diffusion, surface diffu-
sion, desorption, and real-gas effects is employed. Following de Swaan- 
O’s model (de Swaan, 1976), the matrix gas moves from the inner 
spherical block to its surface. The secondary fracture system is idealized 
as a constant-thickness layer that envelopes the spherical blocks. Due to 

Fig. 4. Schematic of the matrix flow model.  

Fig. 5. Schematic of the reservoir-fracture linear flow model (modified from Fan and Ettehadtavakkol, 2017a; Zeng et al., 2019).  
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the relatively high permeability of secondary fractures, the matrix gas is 
instantaneously and evenly distributed in 1/2 of the secondary fracture 
layer volume (Ozkan et al., 2010). After entering secondary fractures, 
the gas flow turns into 1-D linear flows in each reservoir-fracture flow 
region. Fig. 5 illustrates the composite linear flow model with ten 
linear-flow regions for the reservoir-fracture system. Regions 5 and 6 
serve as the reservoir volume beyond the hydraulic fracture height with 
1-D vertical flows. Regions 3 and 4 represent the reservoir volume 
beyond the hydraulic fracture tip with 1-D flows in the x-direction. The 
height of the two regions equals the hydraulic fracture height. And re-
gions 2 and 1 are the inner reservoir blocks representing the USRV and 
the SRV respectively with 1-D flows in the y-direction. Particularly, four 
sub-regions are applied to handle complex fracture damage. Damaged 
zone 3 is suitable for fracture face damage. Damaged zone 2 is designed 
for partially propped or unpropped sections. One can also change the 
propped zone properties to simulate the partially propped or unpropped 
section in the middle of a fracture. And damaged zone 1 can deal with 
choked fractures. Therefore, it is flexible and easy to model complex and 
multiple fracture damage with these sub-regions. Flows in different flow 
regions are coupled via flux and pressure continuity conditions at their 
interfaces. Other assumptions include:  

(1) The reservoir is isothermal with single gas-phase flows. The gas 
flow in the matrix involves complex transport mechanisms 
(slippage, Knudsen diffusion, surface diffusion, desorption, and 
real-gas effects) while the gas flow within fractures simply obeys 
Darcy’s law.  

(2) A cased-hole completion is applied to the MFHW, therefore, the 
fluids flow into the wellbore through hydraulic fractures only. 
Gravity effects are ignored due to the single-phase flow condition 
and the extremely tight texture of shale rocks.  

(3) The MFHW can produce under either a constant-rate condition or 
a constant-pressure condition.  

(4) Due to the symmetry, 1/8 of a fracture drainage volume is 
selected to derive the mathematical models, as shown in Fig. 5. 

3. Mathematical models 

In this section, the mathematical models and their analytical solu-
tions are outlined. For convenience, the analytical solutions are all 
demonstrated in the Laplace domain in the dimensionless form. Here, 
the definition of dimensionless variables is introduced first. 

The dimensionless pseudopressure is defined as 

ppD ¼
kref href

1422qFtT
�
ppðpiÞ � ppðpÞ

�
; (3)  

where qFt is the total flow rate of the MFHW in Mscf/D; T is the tem-
perature in �R; kref is the reference permeability for the dimensionless 
variable definition in md; href is the reference height in ft; pp is the 
pseudopressure in psi2/cp; pi is the initial reservoir pressure in psi; and p 
is the pressure in psi. The pseudopressure is expressed by the following 
equation (Ozkan et al., 2010; Al-Hussainy and Ramey, 1966) 

ppðpÞ¼ 2
Z p

pref

k
ki

p
μgZ

dp; (4)  

where μg is the gas viscosity in cp; pref is the reference pressure in psi; k 
and ki are permeability and initial permeability in md; and Z is the Z- 
factor. The dimensionless time is expressed as 

tD¼
ηref ta

d2
ref
; (5)  

where dref is the reference length in ft; ηref is the reference diffusivity in 
ft2/hour; and ta is the pseudotime in hour and is given by Anderson and 
Mattar (2007). 

ta¼ μgicti

Z t

0

dt
~μg~ct

: (6) 

Here, ~μg and ~ct are gas viscosity and total compressibility under the 
average pressure condition in cp and psi� 1 respectively; and μgi and cti 

are gas viscosity and total compressibility under the initial condition in 
cp and psi� 1. We use the pseudopressure and pseudotime to linearize the 
diffusivity equations (Ozkan et al., 2010; Anderson and Mattar, 2007). 
The dimensionless distances in the x-direction are written as 

x1D¼ xF
�

dref ¼ x3
�

dref ; (7)  

xFD1¼ x1
�

dref ; (8)  

xFD2¼ x2
�

dref ; (9)  

xeD¼ xe
�

dref ; (10)  

where xF and x3 are the hydraulic fracture length in ft; x2 is the distance 
from the wellbore to damaged zone 3 in ft; x1 is the choked section 
length in ft; xe is the half reservoir width in ft; and x1D, xFD2, xFD1, and xeD 
are their corresponding dimensionless length. The dimensionless dis-
tances in the y-direction include 

y1D¼ y1
�

dref ; (11)  

y2D¼ y2
�

dref ; (12)  

y’
sD¼ðysþwF = 2Þ

�
dref ; (13)  

wD¼wF
�

dref ; (14)  

where wF is the hydraulic fracture width in ft; ys is the thickness of the 
damaged fracture face in ft; y1 is the half SRV width in ft; y2 is the half 
fracture spacing in ft; and wD, y’

sD, y1D, and y2D are their corresponding 
dimensionless length. For the z-direction, we have 

z1D¼ z1
�

dref ¼ hF
� �

2dref
�
; (15)  

z2D¼ z2
�

dref ¼ h
� �

2dref
�
; (16)  

where hF is the fracture height in ft; h is the reservoir height in ft; z1 is the 
half fracture height in ft; z2 is the half reservoir height in ft; and z1D and 
z2D are the dimensionless expressions of z1 and z2. In the spherical flow 
direction, we also have 

rD¼ r
�

dref  ð0� r� rmÞ; (17)  

where r is the distance from the location we study to the spherical 
element center in ft; rD is the dimensionless form of r; and rm is the 
matrix element radius in ft. The diffusivity terms are given by 

ηref ¼
2:637� 10� 4kref

ϕref μref ctref
; (18)  

ηmn¼

�
2:637� 10� 4kappm

ϕmμmgicappmi

�

n
; (19)  

ηfn¼

�
2:637� 10� 4kf

ϕf μfgictfi

�

n
; (20)  

ηFn¼

�
2:637� 10� 4kF

ϕFμFgictFi

�

n
; (21)  

where the subscript ref is for reference variables; app is for apparent 
variables; m represents matrix properties; i is for parameters under the 
initial condition; f describes secondary fracture properties; F describes 
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hydraulic fracture properties; and n indicates the n-th region. According 
to Ozkan et al., (2010), ηmn � ηmni. The dimensionless expressions of 
them are 

ηmDn¼ ηmn
�

ηref ; (22)  

ηfDn¼ ηfn
�

ηref ; (23)  

ηFDn ¼ ηFn

�
ηref : (24)  

3.1. Matrix flow models 

After defining the dimensionless variables, we formulate the con-
ceptual models in this section. The mass balance for the spherical matrix 
flow can be expressed as 

�
1
r2

∂
∂r
�
r2ρmgvm

�
¼

∂
�
ρmgϕm

�

∂t
þ

∂
�
ð1 � ϕmÞρscgVEsc

�

∂t
; (25)  

where ρmg is the matrix gas density in lbm/ft3; vm is the matrix gas total 
velocity in md-psi/(cp-ft); ϕm is the matrix porosity; ρscg is the standard 
gas density in lbm/ft3; and VEsc is the standard-condition equilibrium gas 
volume that is adsorbed per unit rock grain volume in scf/cf. For real-gas 
adsorption, many scholars used the following equation (Wu et al., 
2016a; Wang et al., 2015a; Civan et al., 2013; Song et al., 2016) 

VEsc ¼VL
p=Z

p=zþ pL
; (26)  

where VL represents the Langmuir volumetric concentration in scf/cf,; 
and pL is the Langmuir pressure in psi. In fact, Eq. (26) (the Langmuir 
equation) is a function of the mean molecular speed (Langmuir, 1918). If 
the real-gas effects are added to the mean molecular speed, the mean 
molecular speed can be written as (Michel Villazon et al., 2011) 

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8
π

ZRT
M

r

: (27) 

In Eq. (27), we use SI units for convenience. v is the mean molecular 
speed in m/s; R is the universal gas constant (8.314 J/mol/K); T is in K 
here; and M is the gas molar mass in kg/mol. By applying Eq. (27), the 
equilibrium gas volume is modified as 

VEsc ¼VL
p
� ffiffiffi

Z
p

p
� ffiffiffi

Z
p
þ pL

: (28) 

Eq. (28) is used to describe gas adsorption and its derivation is given 

in the Appendix. The matrix gas is produced through two mechanisms 
including free gas transport and adsorbed gas surface diffusion. Similar 
to Wasaki and Akkutlu (2015), the free gas phase and the adsorbed gas 
phase follow their own paths. Therefore, the total gas velocity can be 
expressed as the sum of the free gas velocity and adsorbed gas diffusion 
velocity 

vm¼ vmfg þ vms: (29) 

In Eq. (29), vmfg is the matrix free gas velocity in md-psi/(cp-ft). Free 
gas transport in matrix nanopores involves the slip corrected flow and 
Knudsen diffusion. By using the Beskok-Karniadakis model (Beskok and 

Karniadakis, 1999) to modify the permeability term, the free gas ve-
locity can be written as 

vmfg¼ �
kmfg

μmg

∂pm

∂r
¼ � ξ1

ϕm

τm

r2
pm

8
ð1þαKnÞ

�

1þ
4Kn

1 � bKn

�
1

μmg

∂pm

∂r
; (30a)  

kmfg¼ kml
ϕm

τm
ð1þ αKnÞ

�

1þ
4Kn

1 � bKn

�

; (30b)  

where kmfg and kml are the matrix free gas permeability and liquid 
permeability of a nanopore in md; ξ1 is a unit conversion coefficient 
(9.4127 � 1013 md/ft2) converting ft2 into md; τm is the matrix tortu-
osity; rpm is the matrix nanopore (nanochannel) radius in ft; Kn is the 
Knudsen number; and α and b are coefficients of the Beskok-Karniadakis 
model. The Knudsen number in this model is defined as Kn ¼ λ=rpm ac-
cording to Beskok and Karniadakis (1999). λ is the mean free path of gas 
molecules and is given by the following equation in SI units (Jennings, 
1988; Michel Villazon et al., 2011) 

λ¼
μmg

pave

ffiffiffiffiffiffiffiffiffiffiffiffi
πZRT
2M

r

; (31)  

where pave is the average pressure in Pa. The velocity for the adsorbed 
gas phase is 

vms¼ � ξ2
MDs

ρmg

∂Cs

∂r
¼ � ξ2

Dsð1 � ϕmÞpscZT
pmTsc

VLpL

2
ffiffiffi
Z
p

�
1þ pmcmg

�

�
pmffiffi

Z
p þ pL

�2
∂pm

∂r
; (32)  

where ξ2 is a unit conversion coefficient, 158 md-psi-D/(ft2-cp) (Ertekin 
et al., 1986; Zeng et al., 2017); Ds is the surface diffusion coefficient in 
ft2/D; Tsc is the standard condition temperature in K or �R; cmg is the 
matrix gas compressibility in psi� 1; and Cs is matrix gas molecular 
concentration in lbm-mol/ft3. Here, Cs is given by 

Cs¼
ð1 � ϕmÞρscgVEsc

M
: (33) 

The unit of the gas molecular weight is lbm/lbm-mol for Eq. (33). 
Combining Eqs. (4), (25) and (28)–(30), and (32), the mass balance 
equation can be written as the following pseudo-pressure form 

1
r2

∂
∂r

�

r2kappmi
∂ppm

∂r

�

¼ μmgcappmϕm

�
kappmi

kappm

�
∂ppm

∂t
; (34)  

where  

and 

cappm¼ cmg þ
pscTZ
pmTsc

ð1 � ϕmÞ

ϕm

VLpL

2
ffiffiffi
Z
p

�
pmcmg þ 1

�

�
pmffiffi

Z
p þ pL

�2: (36) 

Using the pseudo-pressure and pseudo-time to linearize Eq. (34) and 
converting it into the dimensionless form, we obtain 

1
r2

D

∂
∂rD

�

r2
D

∂ppmD

∂rD

�

¼
1

ηmD

∂ppmD

∂tD
: (37) 

Correspondingly, the initial condition and boundary conditions for 

kappm¼ ξ1
ϕm

τm

r2
pm

8
ð1þ αKnÞ

�

1þ
4Kn

1 � bKn

�

2

6
6
41þ ξ2

μmgDsð1 � ϕmÞpscZT
kmfgpmTsc

VLpL

2
ffiffiffi
Z
p

�
1þ pmcmg

�

�
pmffiffi

Z
p þ pL

�2

3

7
7
5; (35)   
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the matrix spherical flow are shown by 

ppmDðrD; xD; tD¼ 0Þ¼ 0; (38)  

ppmDðrD¼ 0; xD; tDÞ¼ ppmDð0; xD; tDÞ; (39)  

ppmDðrD¼ rmD; xD; tDÞ¼ ppfDðxD; tDÞ: (40) 

Here, xD represents one of the three 1-D secondary fracture flow 
coordinates. Because the dimensionless pseudopressure in the matrix 
element center is an unknown finite parameter, we define the following 
function to facilitate solving Eqs. (37)–(40) (Ozkan et al., 2010) 

FmDðrD; xD; tDÞ¼ rDppmDðrD; xD; tDÞ: (41) 

Therefore, in the Laplace domain, Eqs. (37) and (39) and (40) can be 
written as 

∂2FmD

∂r2
D
�

s
ηmD

FmD ¼ 0; (42)  

FmDðrD¼ 0; xD; sÞ¼ 0; (43)  

FmDðrmD; xD; sÞ¼ rmDppfDðxD; sÞ: (44) 

Solving Eqs. (42)–(44) gives 

FmDðrD; xD; sÞ¼
rmDsinh

� ffiffiffiffiffiffiffiffiffiffiffiffi
s=ηmD

p
rD

�

sinh
� ffiffiffiffiffiffiffiffiffiffiffiffi

s=ηmD

p
rmD

� ppfDðxD; sÞ: (45) 

Therefore, the solution for the matrix flow is obtained 

ppmDðrD; xD; sÞ¼
rmDsinh

� ffiffiffiffiffiffiffiffiffiffiffiffi
s=ηmD

p
rD

�

rDsinh
� ffiffiffiffiffiffiffiffiffiffiffiffi

s=ηmD

p
rmD

�ppfDðxD; sÞ: (46)  

3.2. USRV flow models 

The matrix gas is instantaneously and uniformly distributed in the 1/ 
2 volume of the secondary fracture layer. Therefore, mass transfer be-
tween the matrix and the secondary fracture layer can be written as 
(Ozkan et al., 2010; Zeng et al., 2017) 

f ðx; tÞ ¼ �
2
hf

�

ρmg
kappmi

μmg

∂pm

∂r

��
�
�
�
ðrm ;x;tÞ

: (47) 

Then, the mass balance equation for the secondary fracture linear 
flow in USRVs is 

Table 1 
Input data for the model verification.  

Parameters Values 

Reservoir size (length �width � height) 2000 ft � 1000 ft�
250 ft  

Reservoir temperature 568.67 �R 
Initial pressure 2300 psi 
Matrix porosity 0.05 
Matrix tortuosity 4.47 
Water saturation 0 
Matrix nanochannel (pore) radius 8 � 10� 8 ft 
Matrix element radius 5 ft 
Langmuir volume 15.727 scf/cf 
Langmuir pressure 500 psi 
Total compressibility 2.5 � 10� 4 psi� 1 

Hydraulic fracture number 4 
Hydraulic fracture spacing 500 ft 
Hydraulic fracture half-length 400 ft 
Hydraulic fracture height 230 ft 
Hydraulic fracture width 0.01 ft 
Hydraulic fracture permeability (for all regions within the 

hydraulic fracture) 
3000 md 

Hydraulic fracture porosity (for all regions within the 
hydraulic fracture) 

0.38 

Secondary fracture layer thickness 1 � 10� 3 ft 
Secondary fracture permeability (for all regions) 200 md 
Secondary fracture porosity (for all regions) 0.45 
Surface diffusion coefficient 0.23 ft2/D 
Length of damaged zone 1 (no damage for this case) 20 ft 
Length of the propped zone 280 ft 
Length of damaged zone 2 (no damage for this case) 100 ft 
Thickness of damaged zone 3 (no damage for this case) 0.01 ft 
Fractal exponent (homogeneous region 1) 0 
Reference permeability 2000 md 
Reference height 250 ft 
Reference length 250 ft 
Reference porosity 0.45 
Reference gas viscosity 0.0184 cp 
Reference total compressibility 2.5 � 10� 4 psi� 1  

Fig. 6. Comparison between the seven-region linear flow model (Zeng et al., 2017) and the degraded model.  
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�
∂
�
ρfgvf

�

∂x
þ

"

�
2
hf

�

ρmg
kappm

μmg

∂pm

∂r

��
�
�
�
ðrm ;x;tÞ

#

¼
∂
�
ρfgϕf

�

∂t
: (48) 

Rewriting the above equation in the dimensionless pseudopressure 
form in the Laplace domain, we obtain the diffusivity equation that 
couples the matrix flow and the secondary fracture flow as follow 

∂2ppfD

∂x2
D
� cðsÞppfD ¼ 0; (49)  

where the c-function is 

cðsÞ¼
s

ηfD
�

2kappmdref

hf kf

�
1

rmD
�

ffiffiffiffiffiffiffiffi
s

ηmD

r

coth
� ffiffiffiffiffiffiffiffi

s
ηmD

r

rmD

��

: (50)  

3.2.1. Region 6 
For region 6, the 1-D diffusivity equation can be written as 

∂2ppfD6

∂z2
D
� cðsÞ6ppfD6¼ 0: (51) 

The no-flow boundary condition at the top or bottom of the reservoir 
is 

Fig. 7. Secondary fracture permeability variation along the y-direction in the SRVs with different SRV fractal exponents.  

Fig. 8. Effects of the SRV fractal exponent on pressure responses.  
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∂ppfD6

∂zD

�
�
�
�

zD¼z2D

¼ 0: (52)  

And the pressure continuity conditions on the interfaces of regions 6 and 
2 and regions 6 and 4 are given by 

ppfD6

�
�
zD¼z1D

¼ ppfD2

�
�

zD¼z1D
¼ ppfD4

�
�
zD¼z1D

: (53) 

Solving Eqs. (51)–(53) gives the solutions of region 6 

∂ppfD6

∂zD

�
�
�
�

zD¼z1D

¼ � ppfD2

�
�

zD¼z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

ðz2D � z1DÞ�; (54a)  

∂ppfD6

∂zD

�
�
�
�
zD¼z1D

¼ � ppfD4

�
�
zD¼z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

ðz2D � z1DÞ�: (54b)  

3.2.2. Region 5 
Similarly, for region 5, the 1-D diffusivity equation can be written as 

∂2ppfD5

∂z2
D
� cðsÞ5ppfD5¼ 0: (55) 

The no-flow boundary condition at zD ¼ z2D is 

Fig. 9. Effects of the SRV fractal exponent on rate responses.  

Fig. 10. Effects of the SRV width on pressure responses.  
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∂ppfD5

∂zD

�
�
�
�

zD¼z2D

¼ 0: (56)  

And the pressure continuity conditions on the interfaces of regions 5 and 
1, regions 5 and 3, and region 5 and damaged zone 3 are 

ppfD5

�
�
zD¼z1D

¼ ppfD1

�
�

zD¼z1D
¼ ppfD3

�
�
zD¼z1D

¼ ppfDs

�
�

zD¼z1D
: (57) 

Solving Eqs. (55)–(57), we obtain the solutions of region 5 

∂ppfD5

∂zD

�
�
�
�

zD¼z1D

¼ � ppfD1

�
�

zD¼z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

ðz2D � z1DÞ�; (58a)  

∂ppfD5

∂zD

�
�
�
�
zD¼z1D

¼ � ppfD3

�
�
zD¼z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

ðz2D � z1DÞ�; (58b)  

∂ppfD5

∂zD

�
�
�
�
zD¼z1D

¼ � ppfDs

�
�
zD¼z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

ðz2D � z1DÞ�: (58c)  

3.2.3. Region 4 
For region 4, the diffusivity equation is given by 

∂2ppfD4

∂x2
D
þ

kf 6

kf 4z1D

∂ppfD6

∂zD

�
�
�
�
zD¼z1D

� cðsÞ4ppfD4¼ 0: (59) 

Fig. 11. Effects of the SRV width on rate responses.  

Fig. 12. Effects of the SRV length on pressure responses.  
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The no-flow condition at the reservoir outer boundary is 

∂ppfD4

∂xD

�
�
�
�

xD¼xeD

¼ 0: (60)  

And the pressure continuity condition at xD ¼ x1D between regions 4 and 
2 can be written as 

ppfD4

�
�
xD¼x1D

¼ ppfD2

�
�
xD¼x1D

: (61) 

Solving Eqs. (59)–(61) gives the solution of region 4 

∂ppfD4

∂xD

�
�
�
�
xD¼x1D

¼ � ppfD2

�
�
xD¼x1D

ffiffiffiffiffi
α4
p

tanh
h ffiffiffiffiffi

α4
p
ðxeD � x1DÞ

i
; (62)  

where 

α4¼
kf 6

kf 4z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

ðz2D � z1DÞ� þ cðsÞ4: (63)  

3.2.4. Region 3 
Similarly, we have the diffusivity equation for region 3 as follow 

Fig. 13. Effects of the SRV length on rate responses.  

Fig. 14. Effects of the SRV height on pressure responses.  
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∂2ppfD3

∂x2
D
þ

kf 5

kf 3z1D

∂ppfD5

∂zD

�
�
�
�
zD¼z1D

� cðsÞ3ppfD3¼ 0: (64) 

The no-flow condition at the reservoir outer boundary is 

∂ppfD3

∂xD

�
�
�
�

xD¼xeD

¼ 0: (65)  

And the pressure continuity conditions between regions 3 and 1, and 
region 3 and damaged zone 3 are 

ppfD3

�
�
xD¼x1D

¼ ppfD1

�
�
xD¼x1D

¼ ppfDs

�
�
xD¼x1D

: (66) 

Solving Eqs. (64)–(66) gives the solutions for region 3 

∂ppfD3

∂xD

�
�
�
�
xD¼x1D

¼ � ppfD1

�
�
xD¼x1D

ffiffiffiffiffi
α3
p

tanh
h ffiffiffiffiffi

α3
p
ðxeD � x1DÞ

i
; (67a)  

∂ppfD3

∂xD

�
�
�
�
xD¼x1D

¼ � ppfDs

�
�
xD¼x1D

ffiffiffiffiffi
α3
p

tanh
h ffiffiffiffiffi

α3
p
ðxeD � x1DÞ

i
; (67b)  

where 

α3¼
kf 5

kf 3z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

ðz2D � z1DÞ� þ cðsÞ3: (68) 

Fig. 15. Effects of the SRV height on rate responses.  

Fig. 16. Effects of choked fractures on pressure responses.  
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3.2.5. Region 2 
For region 2, the diffusivity equation is given by 

∂2ppfD2

∂y2
D
þ

kf 6

kf 2z1D

∂ppfD6

∂zD

�
�
�
�
zD¼z1D

þ
kf 4

kf 2x1D

∂ppfD4

∂xD

�
�
�
�

xD¼x1D

� cðsÞ2ppfD2 ¼ 0: (69) 

The no-flow boundary condition between two adjacent hydraulic 
fractures is shown by 

∂ppfD2

∂yD

�
�
�
�

yD¼y2D

¼ 0: (70)  

And the pressure continuity condition between regions 2 and 1 is 

ppfD2

�
�
yD¼y1D

¼ ppfD1

�
�

yD¼y1D
: (71) 

Solving Eqs. (69)–(71) gives the solution of region 2 

∂ppfD2

∂yD

�
�
�
�
yD¼y1D

¼ � ppfD1

�
�
yD¼y1D

ffiffiffiffiffi
α2
p

tanh
h ffiffiffiffiffi

α2
p
ðy2D � y1DÞ

i
; (72)  

where 

Fig. 17. Effects of choked fractures on rate responses.  

Fig. 18. Effects of the damaged middle section on pressure responses.  
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α2¼
kf 6

kf 2z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ6
q

ðz2D � z1DÞ�þ
kf 4

kf 2x1D

ffiffiffiffiffi
α4
p

tanh
h ffiffiffiffiffi

α4
p
ðxeD � x1DÞ

i

þ cðsÞ2:
(73) 

Now all the solutions for USRVs are obtained. 

3.3. SRV flow models 

The mass balance equation for the secondary fracture linear flow in 

SRVs is given by 

∂
�

kfSRV ðyÞ
∂ppf
∂y

�

∂y
þ kfSRVðyÞ

∂2ppf

∂x2 þ kfSRVðyÞ
∂2ppf

∂z2

þ

"�

�
2kappmi

hf

∂ppm

∂r

��
�
�
�
ðrm ;x;tÞ

#

¼ϕfSRV ðyÞcfgμfg
∂ppf

∂t
:

(74) 

Converting Eq. (74) into the dimensionless form in the Laplace 
domain yields 

Fig. 19. Effects of the damaged middle section on rate responses.  

Fig. 20. Effects of the damaged section near the fracture tip on pressure responses.  
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∂2ppfD1

∂y2
D
�

θ
yD

∂ppfD1

∂yD
þ

kf 3

kf 1x1D

�
yD

y’
sD

�θ∂ppfD3

∂xD

�
�
�
�
x1D

þ
kf 5

kf 1z1D

�
yD

y’
sD

�θ∂ppfD5

∂zD

�
�
�
�

z1D

� cðsÞ1

�
yD

y’
sD

�θ

ppfD1¼ 0:
(75) 

The above equation can be rewritten as 

∂2ppfD1

∂y2
D
�

θ
yD

∂ppfD1

∂yD
� α1

�
yD

y’
sD

�θ

ppfD1¼ 0; (76)  

where 

α1¼

�

cðsÞ1þ
kf 3

kf 1x1D

ffiffiffiffiffi
α3
p

tanh
h ffiffiffiffiffi

α3
p
ðxeD � x1DÞ

i

þ
kf 5

kf 1z1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

ðz2D � z1DÞ�

�

:

(77) 

Eq. (76) is the diffusivity equation for the SRV (region 1). The flux 
continuity condition between regions 1 and 2 is 

∂ppfD1

∂yD

�
�
�
�
yD¼y1D

¼
kf 2

kf 1

�
y1D

y’
sD

�θ∂ppfD2

∂yD

�
�
�
�
yD¼y1D

: (78)  

Fig. 21. Effects of the damaged section near the fracture tip on rate responses.  

Fig. 22. Effects of fracture face damage on pressure responses.  
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And the pressure continuity condition between region 1 and damaged 
zone 3 is 

ppfD1

�
�
yD¼y’

sD
¼ ppfDs

�
�
yD¼y’

sD
: (79) 

Solving Eqs. (76)-(79) through the method of Fan and Ettehadta-
vakkol (2017a), we obtain the solution for the SRV 

∂ppfD1

∂yD

�
�
�
�

yD¼y’
sD

¼ ppfDs

�
�
yD¼y’

sD
β1; (80)  

where 

β1¼
λ1ω
�
y’

sD

�ω� 1�Iν� 1
�
λ1
�
y’

sD

�ω�σ � Kν� 1
�
λ1
�
y’

sD

�ω��

Iν½λ1ðy’
sDÞ

ω
�σ þ Kν½λ1ðy’

sDÞ
ω
�

: (81)  

λ1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1ðy’
sDÞ
� θ

q

ω ; (82)  

ω¼ θ þ 2
2

; (83)  

γ¼
θ þ 1

2
; (84) 

Fig. 23. Effects of fracture face damage on rate responses.  

Fig. 24. Effects of multiple fracture damage on pressure responses.  
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σ¼
λ1ωyω� 1

1D Kν� 1
�
λ1yω

1D

�
�

kf 2
kf 1

�
y1D
y’

sD

�θ
ffiffiffiffiffiα2
p tanh

h ffiffiffiffiffiα2
p
ðy2D � y1DÞ

i
Kν
�
λ1yω

1D

�

λ1ωyω� 1
1D Iν� 1ðλ1yω

1DÞ þ
kf 2
kf 1

�
y1D
y’

sD

�θ
ffiffiffiffiffiα2
p tanh

h ffiffiffiffiffiα2
p
ðy2D � y1DÞ

i
Iνðλ1yω

1DÞ

:

(85) 

IνðxÞ and KνðxÞ are the two linearly independent solutions of the 
modified Bessel’s equation. And ν is the order. 

3.4. Fracture sub-region flow models 

3.4.1. Damaged zone 3 
For damaged zone 3, the diffusivity equation is shown by 

∂2ppfDs

∂y2
D
þ

kf 3

kfsx1D

∂ppfD3

∂xD

�
�
�
�
xD¼x1D

þ
kf 5

kfsz1D

∂ppfD5

∂zD

�
�
�
�
zD¼z1D

� cðsÞsppfDs¼ 0: (86)  

where kfs is the secondary fracture permeability of damaged zone 3 in 
md. In damaged zone 3, secondary fracture permeability is lower 
compared with that of USRVs. The flux continuity condition between 

region 1 and damaged zone 3 is 

kf 1

�
y’

sD

y’
sD

�� θ∂ppfD1

∂yD

�
�
�
�
yD¼y’

sD

¼ kfs
∂ppfDs

∂yD

�
�
�
�
yD¼y’

sD

: (87) 

The pressure continuity conditions between damaged zone 3 and the 
primary hydraulic fracture are 

ppfDs

�
�
yD¼

wD
2
¼ ppFD1

�
�
yD¼

wD
2
¼ ppFD2

�
�
yD¼

wD
2
¼ ppFD3

�
�
yD¼

wD
2
; (88) 

Solving Eqs. (86)-(88) gives the solution of damaged zone 3 

∂ppfDs

∂yD

�
�
�
�
yD¼

wD
2

¼ β2ppFD1

�
�

yD¼
wD

2
¼ β2ppFD2

�
�
yD¼

wD
2
¼ β2ppFD3

�
�
yD¼

wD
2
; (89)  

where   

Fig. 25. Effects of multiple fracture damage on rate responses.  

β2¼
ffiffiffiffiffi
αs
p

�
kfs

ffiffiffiffiffiαs
p

þ kf 1β1

�
exp
h ffiffiffiffiffiαs
p �

wD
2 � y’

sD

�i
�
�

kfs
ffiffiffiffiffiαs
p

� kf 1β1

�
exp
h
�

ffiffiffiffiffiαs
p �

wD
2 � y’

sD

�i

�
kfs

ffiffiffiffiffiαs
p

þ kf 1β1

�
exp
h ffiffiffiffiffiαs
p �

wD
2 � y’

sD

�i
þ
�

kfs
ffiffiffiffiffiαs
p

� kf 1β1

�
exp
h
�

ffiffiffiffiffiαs
p �

wD
2 � y’

sD

�i; (90)   
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αs¼
kf 3

kfsx1D

ffiffiffiffiffi
α3
p

tanh
h ffiffiffiffiffi

α3
p
ðxeD � x1DÞ

i
þ

kf 5

kfsz1D

ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

tanh½
ffiffiffiffiffiffiffiffiffiffi

cðsÞ5
q

ðz2D � z1DÞ�

þ cðsÞs:
(91)  

3.4.2. Damaged zone 2 
For damaged zone 2, the diffusivity equation is written as 

∂2ppFD3

∂x2
D
þ

kfsb
wD
2 kF3

∂ppfDs

∂yD

�
�
�
�
�
�
yD¼

wD
2

�
s

ηFD3
ppFD3 ¼ 0; (92)  

where kfsb is the bulk secondary fracture permeability defined by 
(Apaydin et al., 2012) 

kfsb¼ kfs
Vf

Vf þ Vm
¼ kfs

4πr2
mhf
�

2
4πr2

mhf
�

2þ 4πr3
m

�
3
¼

3kfshf

3hf þ 2rm
: (93) 

The no-flow boundary condition at the fracture tip is 

∂ppFD3

∂xD

�
�
�
�
xD¼x1D

¼ 0: (94)  

And the pressure continuity condition between damaged zone 2 and the 
propped zone is given by 

ppFD3

�
�

xD¼xFD2
¼ ppFD2

�
�
xD¼xFD2

: (95) 

Solving Eqs. (92)-(95) gives the solution of damaged zone 2 

∂ppFD3

∂xD

�
�
�
�
xD¼xFD2

¼ � ppFD2

�
�
xD¼xFD2

ffiffiffiffiffiffiffi
αF3
p

tanh
h ffiffiffiffiffiffiffi

αF3
p

ðx1D � xFD2Þ
i
; (96)  

where 

αF3¼
s

ηFD3
�

kfsb
wD
2 kF3

β2: (97)  

3.4.3. Propped zone 
Similarly, for the propped zone, the diffusivity equation is expressed 

by 

Table 2 
Reservoir and MFHW properties for matching the Marcellus well performance.  

Parameters Values 

Reservoir size (length �width � height) 5000 ft � 1400 ft�
100 ft  

Reservoir temperature 609.67 �R 
Initial pressure 5300 psi 
Bottom-hole pressure 1000 psi 
Effective matrix porosity 0.0608 
Matrix tortuosity 4.05 
Water saturation 0.24 
Matrix nanotube (pore) radius 2.3 � 10� 8 ft 
Matrix element radius 5 ft 
Langmuir volume 15.727 scf/cf 
Langmuir pressure 500 psi 
Total compressibility 2.28 � 10� 4 psi� 1 

Hydraulic fracture number 10 
Hydraulic fracture spacing 500 ft 
Hydraulic fracture half-length 520 ft 
SRV half-width 125 ft 
Hydraulic fracture height 100 ft 
Hydraulic fracture width 0.01 ft 
Hydraulic fracture permeability (damaged zone 1) 8 md 
Hydraulic fracture permeability (propped zone) 1000 md 
Hydraulic fracture permeability (damaged zone 3, no 

damage) 
1000 md 

Hydraulic fracture porosity (for all regions within the 
hydraulic fracture) 

0.38 

Secondary fracture layer thickness (for all regions) 1 � 10� 3 ft 
Secondary fracture permeability (USRVs) 30 md 
Secondary fracture permeability (damaged zone 3) 0.3 md 
Maximal secondary fracture permeability (SRVs) 400 md 
Secondary fracture porosity (for all regions) 0.45 
Surface diffusion coefficient 0.23 ft2/D 
Length of damaged zone 1 33 ft 
Length of the propped zone 267 ft 
Length of damaged zone 2 (no damage here) 220 ft 
Thickness of damaged zone 3 (no damage for this case) 0.01 ft 
Fractal exponent 0.25 
Reference permeability 2000 md 
Reference height 250 ft 
Reference length 250 ft 
Reference porosity 0.45 
Reference gas viscosity 0.0184 cp 
Reference total compressibility 2.5 � 10� 4 psi� 1  

Fig. 26. Comparison between analytically simulated rates and historical data from the Marcellus-shale well.  

J. Zeng et al.                                                                                                                                                                                                                                     



Journal of Petroleum Science and Engineering 187 (2020) 106686

18

∂2ppFD2

∂x2
D
þ

kfsb
wD
2 kF2

∂ppfDs

∂yD

�
�
�
�
�
�
yD¼

wD
2

�
s

ηFD2
ppFD2 ¼ 0: (98) 

The flux continuity condition between this region and damaged zone 
2 is given by 

kF3
∂ppFD3

∂xD

�
�
�
�
xD¼xFD2

¼ kF2
∂ppFD2

∂xD

�
�
�
�
xD¼xFD2

: (99) 

The pressure continuity condition between the propped zone and 
damaged zone 1 is 

ppFD2

�
�
xD¼xFD1

¼ ppFD1

�
�

xD¼xFD1
: (100) 

Solving Eqs. (98)-(100) gives the solution for this region 

∂ppFD2

∂xD

�
�
�
�
xD¼xFD1

¼ � ppFD1

�
�
xD¼xFD1

β3; (101)  

where   

αF2¼
s

ηFD2
�

kfsb
wD
2 kF2

β2: (103)  

3.4.4. Damaged zone 1 
Finally, the diffusivity equation of the choked region is 

∂2ppFD1

∂x2
D
þ

kfsb
wD
2 kF1

∂ppfDs

∂yD

�
�
�
�
�
�
yD¼

wD
2

�
s

ηFD1
ppFD1 ¼ 0: (104) 

The flux continuity condition between the choked region and the 
propped region is 

kF1
∂ppFD1

∂xD

�
�
�
�
xD¼xFD1

¼ kF2
∂ppFD2

∂xD

�
�
�
�
xD¼xFD1

: (105)  

And based on Darcy’s law, the boundary condition at the fracture and 
wellbore interface is given by 

∂ppFD1

∂xD

�
�
�
�
xD¼0
¼ �

qFj

qFt

πkref href dref

kF1wFhF
: (106) 

Solving Eqs. (104)-(106) yields the dimensionless pseudopressure at 
the wellbore 

ppFD1

�
�
xD¼0¼

qFj

qFt

πkref href dref
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p
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exp
�
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xFD1

�

3

7
7
7
7
5
;

(107)  

where qFj is the flow rate of the j-th hydraulic fracture in the Laplace 
domain, and 

αF1¼
s

ηFD1
�

kfsb
wD
2 kF1

β2: (108) 

For the constant-pressure production case, the definition of the 
dimensionless pseudopressure is different. The dimensionless rate of 
that case is shown by 

qFDj

�
�

xD¼0¼
qFj

qFt

1
ppFD1j

�
�
xD¼0

1
s
; (109)  

where the subscript j represents the j-th hydraulic fracture and 

ppFD1j

�
�
�
xD¼0 

is calculated by Eq. (107). 

3.5. Model verification 

Since it is difficult to find a comprehensive simulator that addresses 
all the features of the proposed model, the newly developed model is 
degraded into a homogeneous ten-region dual-porosity model (kf1 ¼ kfi;

i ¼ 2; 3; 4; 5 ;6;  θ ¼ 0) with an ideal gas phase, and is compared with 
a published seven-region linear flow model (Zeng et al., 2017). The four 
fracture sub-regions are used but the properties of these regions are the 
same as the undamaged one. In this way, we can validate the 1-D flow 

directions of the ten regions. If the assumed flow directions are correct, 
complex fracture damage can be realized by merely changing the 
properties of the four fracture sub-regions, which has no influence on the 
flow directions in these regions. Besides, using damaged zone 3 to 
address fracture face damage has been validated by comparing a simpler 
linear flow model with numerical results (Wu et al., 2019). The input 
data used for comparison of the two models are listed in Table 1. The 
reservoir and fracture properties are selected from Zeng et al. (2017) 
while the pore size of matrix is based on Wu et al. (2016b). Fig. 6 
demonstrates the comparison between the simplified model and the 
published model. An excellent agreement has been achieved and five 
typical flow regimes can be observed. The first flow regime is the frac-
ture linear flow regime with a half-slope. After that, a concave 
matrix-fracture transient regime occurs. This is followed by the 
quarter-slope bi-linear flow regime. Next, the flow regime turns into a 
transient compound linear flow regime where the fracture interference 
appears but the pressure wave generated by gas extraction has not 
reached the outer reservoir boundary. Finally, the unit-slope boundary 
dominated regime emerges. Therefore, the assumed 1-D flow directions 
in these flow regions are correct. At the end of this paper, a field 
application example will be given, which further ensures the reliability 
of this model accounting for SRVs and complete features of shale gas 
reservoirs with damaged fractures. There could be alternative flow di-
rections in these 1-D reservoir flow regions in extreme geometry cases. If 
the following conditions are met, results with high accuracy, compared 
with numerical results, can be obtained under current flow direction 
assumptions (Stalgorova and Mattar, 2013; Zeng et al., 2018). (1) 
y1 � 0:1y2: the half SRV width is at least 10% of the half fracture spacing 
(Stalgorova and Mattar, 2013); (2) xF � 0:1xe: the half fracture length is 
at least 10% of the half reservoir width (Stalgorova and Mattar, 2013); 
(3) xe � 2y2: the half reservoir width is no smaller than the fracture 
spacing (Stalgorova and Mattar, 2013); (4) hF � 0:6h: the hydraulic 
fracture vertical penetrating ratio is at least 60% (Zeng et al., 2018). If 
the fracture height and length are too small, the operation can be treated 
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; (102)   

J. Zeng et al.                                                                                                                                                                                                                                     



Journal of Petroleum Science and Engineering 187 (2020) 106686

19

as completely unsuccessful and no further analyses are required. 

4. Discussion of the results 

This section focuses on discussing the impacts of SRV properties and 
fracture damage on pressure and rate responses through a set of sensi-
tivity cases. The impacts of the SRV fractal exponent and the SRV size 
with undamaged fractures are first analyzed. Then, single and multiple 
fracture damage mechanisms are added and new type curves with 
distinct flow regimes caused by specific fracture damage are docu-
mented. In sensitivity analyses, the undamaged hydraulic fracture 
permeability and USRV secondary fracture permeability are 10000 md 
and 30 md respectively. Hydraulic fractures are fully penetrating the 
reservoir in the vertical direction unless we analyze the influence of SRV 
height in specific cases. In SRVs, the maximal secondary fracture 
permeability near the fracture face is 2000 md. Finally, this model is 
applied to a Marcellus Shale field example with significant skin effects 
(Nobakht and Clarkson, 2012), which further confirms the reliability 
and validity of this model. 

4.1. Effects of SRV properties 

The power-law permeability variation is employed to describe the 
intrinsic secondary fracture permeability distribution along the flow 
direction (y-direction) due to the decreasing stimulation intensity within 
SRVs. For fracture networks (or SRVs), the fractal exponent is from 0 to 
0.5 according to Acuna et al. (1995). Fig. 7 shows the variation of SRV 
secondary fracture permeability along the y-direction with different 
fractal exponents. It can be seen that the permeability decreases along 
the y-direction. When the fractal exponent is small (θ ¼ 0:01), only 
marginal drops in secondary fracture permeability can be observed. 
With the fractal exponent increases, the permeability reduction along 
the y-direction becomes more noticeable. And the permeability drops 
faster in the near-fracture areas (y < 20 ft). It is worth noting that the 
SRV half-width here is 125 ft and the secondary fracture permeability at 
y ¼ 125 ft is still larger than that of USRVs (30 md). Fig. 8 depicts the 
influence of the fractal exponent on transient pressure responses. When 
the fractal exponent increases from 0 to 0.25, the average SRV secondary 
fracture permeability decreases from 2000 md to around 250 md. The 
pressure values become obviously larger from the matrix-fracture 
inter-porosity flow regime to the end of the compound linear flow 
regime. However, this dramatic permeability reduction only affects the 
concave matrix-fracture transient regime in the derivative curve. This is 
because the SRV secondary fracture permeability is still considerably 
larger than the USRV fracture permeability (30 md) at θ ¼ 0:25. And it 
does not significantly affect the later secondary fracture property 
dominated regimes. When the fractal exponent further increases to 0.5, 
the average SRV fracture permeability is close to the USRV fracture 
permeability. Both the pressure and derivative go up except those in the 
fracture linear flow regime and the boundary dominant regime. Fig. 9 
shows that with θ increases, the secondary fracture permeability of SRVs 
decreases, resulting in a rate reduction after the fracture linear flow 
regime and a later arrival of the boundary-flow regime. 

Then, the SRV width, length, and height are changed respectively to 
investigate the impacts of the SRV size at constant θ (0.25). As shown in 
Figs. 10 and 12, an increasing in the SRV size lowers the pressure and 
derivative from the end of the matrix-fracture transient regime to the 
beginning of the boundary flow. And this influence is more observable 
when the SRV is relatively small. In this model, raising the SRV width 
contributes more to the increment of the SRV because the SRV length is 
larger than its width. In damaged zone 3 (thickness 0.01 ft), the sec-
ondary fracture permeability is also 2000 md because fracture damage is 
not considered in Figs. 10–15. Similarly, as shown in Figs. 11 and 13, the 
late-time rate responses are more sensitive to the increment in SRV 
width when the SRV size is relatively small. In contrast, the variation of 
SRV height mainly controls early to mid-time flow regimes. Figs. 14 and 

15 demonstrate that the increasing of SRV height reduces pressure and 
derivative values and enhances productivity from the fracture linear 
flow regime to the end of the bilinear flow regime. This is because when 
we change the SRV width, the hydraulic fracture geometry and its 
adjacent region remain unchanged. And if the SRV height varies, the 
hydraulic fracture height will also change resulting in earlier influences. 

4.2. Effects of fracture conductivity damage 

As mentioned earlier, four possible fracture damage scenarios are 
considered in this study. Fig. 16 displays the comparison among the 
undamaged and different-level choked fracture damage cases. It is 
shown that the existence of the choked section remarkably raises both 
pressure and derivative values in certain regimes. When the residual 
permeability of the damaged near-wellbore section is lower, the dura-
tion of this effect turns longer. In the heaviest damage case (0.01kF1), the 
original transient bilinear and compound linear flow regimes of Fig. 6 
are replaced by a new transient concave regime before the arrival of the 
boundary flow. For rate responses, as shown in Fig. 17, the production 
rates move down parallelly when severer choked damage occurs except 
for those near the boundary flow regime. And in the heaviest damage 
case, boundary flow’s arrival is delayed. 

Figs. 18 and 20 show the effects of partially propped or unpropped 
sections within hydraulic fractures on pressure responses. Particularly, 
we also consider the possible partially propped or unpropped section 
(length 200 ft, xF1 ¼ 100 ft, xF2 ¼ 300 ft) in the middle of the hydraulic 
fracture (length 400 ft) as shown in Fig. 18. This damage dominates the 
pressure behavior from the mid-to-late time matrix-fracture transient 
regime to the end of the compound linear flow regime. And the in-
crements of pressure and derivative caused by the fracture conductivity 
reduction become more noticeable after the concave transient regime. 
However, when the damaged section (length 200 ft, xF2 ¼ 200 ft, xF ¼

400 ft) is located at the fracture tail, the overall influence of this damage 
is smaller, as shown in Fig. 20. Because it is a log-log type curve, the 
duration of this effect is relatively long. By comparing Figs. 18 and 20, 
one can conclude that the damage in the middle of a hydraulic fracture 
results in a stronger influence on well performances even the fracture- 
tail region is undamaged, which means the undamaged tail does not 
contribute significantly to effective fracture length. Figs. 19 and 21 
depict that the productivity is higher from the late matrix-fracture 
transient regime to the fracture interference regime but drops faster 
later with the reduction of conductivity damage. Moreover, in the 
heaviest damage case, the duration of the fracture interference regime is 
longer. 

4.3. Effects of fracture face damage 

Figs. 22 and 23 compare the performances of the undamaged case 
and cases with various levels of fracture face damage. Note the sec-
ondary fracture permeability of damaged zone 3 is lower than that of the 
USRV for all damaged cases. It is found that fracture face damage con-
trols the late fracture linear flow regime to the end of the matrix-fracture 
transient regime. When the damage becomes heavier, the humps of both 
pressure and derivative curves turn larger and the concave matrix- 
fracture transient regime in the derivative curve moves down. For rate 
curves, the influence of fracture face damage becomes more noticeable 
when the residual permeability is lower than 1% of the undamaged one. 
And this damage does not affect late-time performances. 

4.4. Effects of multiple damage 

The comparison between the undamaged case and the multiple 
damage case is shown in Figs. 24 and 25 and the multiple damage case 
here involves fracture face damage, choked fracture damage, and 
damaged fracture-tail regions. Based on the features shown in Figs. 16, 
17, 22 and 23, it is easy to diagnose fracture face damage and choked 
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fracture damage. Nevertheless, it is difficult to detect the partially 
propped or unpropped section near the fracture tip directly from the two 
multiple damage curves. The properties of the partially propped or 
unpropped section can represent the effective fracture length. Thus, 
engineers can notice choked damage and fracture face damage from type 
curves with multiple damage more easily than interpret the effective 
fracture length. 

4.5. Field case studies 

Previously, the degraded model has been verified against a published 
seven-region linear flow model and the new model with complete fea-
tures has not been implemented to interpret field data. In this part, the 
proposed model is utilized in the history matching of the production 
data from the Marcellus Shale (Nobakht and Clarkson, 2012). The well is 
a 5000-ft MFHW with 10 equally spaced hydraulic fractures producing 
under a constant-pressure condition. The reservoir and MFHW proper-
ties are summarized in Table 2. The SRV size (y1; xf ) is calculated from 
the fracture complexity index (FCI) which is defined as the ratio of 
fracture network width to its length (Cipolla et al., 2008). According to 
Cipolla et al. (2008), the FCI normally ranges from 0.1 to 0.5. In this 
model, the hydraulic fracture length is equal to the fracture network 
length. As the actual SRV size is unknown, we assume the SRV width 
(250 ft) is half the fracture spacing (500 ft) with an FCI of 0.24. The 
matrix intrinsic permeability given in the literature is 90 nd. Therefore, 
the input matrix pore radius of this model is 2.3 � 10� 8 ft (correspond-
ing matrix intrinsic permeability 93 nd). It is also worth noting that the 
water saturation is 24% and the effective porosity for the gas flow within 
the matrix consequently becomes 6.08%. Fig. 26 exhibits the matching 
results with a reasonable agreement between the analytical computation 
results and the actual gas rates. The natural and hydraulic fracture 
properties are estimated from the field case. Choked fracture damage 
and fracture face damage are identified, which is in accordance with the 
description of the significant amount of skin of this case in the literature. 
In this well-matched case, the estimated choked section within the hy-
draulic fracture is 33 ft with a 99.2% conductivity reduction. The esti-
mated thickness of the impaired fracture face is 0.01 ft with a 99% 
permeability reduction. 

5. Conclusions 

In this paper, we present a new analytical model for MFHWs in shale 

gas reservoirs with SRVs and damaged hydraulic fractures. This 
approach is verified against a published analytical model and field 
production data. The solutions shown here are applicable for analytical 
computation of well responses of general shale gas formations. On the 
basis of this research, the following key conclusions can be drawn:  

(1) The existence of the SRV can be a possible reason that makes the 
type curve deviate from those of homogeneous dual-porosity 
shale reservoirs. The larger the SRV fractal exponent is, the 
heavier the SRV secondary fracture permeability drop occurs 
along the y-direction and the permeability decreases faster near 
the hydraulic fracture. The variation of the SRV fractal exponent 
with large values affects more flow regimes than the variation of 
the SRV width and length. The response from the variation of SRV 
height is significantly different compared with changing its width 
and length.  

(2) The dominant periods of fracture face damage range from the late 
fracture linear flow regime to the end of the matrix-fracture 
transient regime. Choked fractures cause the most serious in-
fluences on the early-to-mid time pressure and rate responses. 
And the partially propped fractures affect the regimes between 
the mid-time matrix fracture transient regime and the boundary 
flow regime. Choked damage and partially propped sections can 
influence the arrival of the boundary-dominated regime. Both 
choked fractures and fracture face damage can be easily identi-
fied from the type curve of the multiple fracture damage case.  

(3) The model that accounts for both the SRV and the complex 
fracture damage is applicable for conducting the history match-
ing of field data. Detailed high-quality input parameters, such as 
the SRV size and the fractal exponent, can improve the inter-
pretation accuracy of reservoir and fracture properties. 
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Appendix. Derivation and verification of the modified Langmuir adsorption equation 

According to Atkins and De Paula (2009), the following relation can be obtained for ideal gas 

pV ¼
1
3

nMv2
rms ¼ nRT; (A-1)  

where n is the gas amount in mol; vrms is the root-mean-square speed. Similarly, the following relationship for the real gas can be obtained 

pV ¼
1
3

nMv2
crms ¼ ZnRT; (A-2)  

where vcrms is the real-gas Z-factor corrected root-mean-square speed. Combining Eqs. (A-1) and (A-2) yields 

vcrms¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3ZRT

M

r

: (A-3) 

The relationship between the mean molecular speed and the root-mean-square speed is expressed by Atkins and De Paula (2009) 

v¼
ffiffiffiffiffi
8

3π

r

vcrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
8ZRT
πM

r

: (A-4) 

Therefore, Eq. (27) is obtained. In fact, the Langmuir equation is a function of the mean molecular speed. Let we follow the derivation of Langmuir 
(1918) to derive Eq. (28). When the gas is in equilibrium at the shale nano-pore surface, the rate of gas condensation on the nanopore surface is uαcθ, 
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where u is the number of free-gas molecules that strike the pore surface per unit time per unit surface area (the molecule-wall collision frequency per 
unit surface area); αc is the fraction of molecules that strike the pore surface and then are held by the surface force; and θ is the ratio of the bare surface 
area to the total surface area. The adsorption on the nanopore surface only happens in the bare surface area and gas evaporation only occurs in the 
surface area that is completely covered by the adsorbed gas molecules. The molecule-wall collision frequency in the molar unit per unit surface area 
(mol/s/m2) can be expressed by Thompson and Owens (1975); Tan (2014). 

u¼
1
4

Cn

NA
v ¼

1
4

p
ZRT

v ¼
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πMZRT
p ; (A-5)  

where NA is the Avogadro constant. The rate of gas evaporation can be expressed by νeθ1, where νe is the rate of gas evaporation on the surface that is 
completely covered by gas molecules in mol/s/m2; and θ1 is the ratio of the surface area covered by adsorbed gas molecules to the total surface area. 
Therefore, in the equilibrium state, the rate of gas adsorption on the surface equals the rate of gas evaporation 

uαcθ¼ νeθ1; (A-6)  

and 

θþ θ1 ¼ 1: (A-7) 

Substituting Eq. (A-6) into (A-7) yields 

θ1¼
αcu

νe þ αcu
¼

pffiffiffiffiffiffiffiffiffiffiffiffi
2πMZRT
p

νe
αc
þ pffiffiffiffiffiffiffiffiffiffiffiffi

2πMZRT
p

¼

pffiffi
Z
p
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2πMRT
p νe

αc
þ pffiffi

Z
p
: (A-8) 

By defining pL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πMRT
p νe

αc 
in Pa, we finally have 

θ1¼
p
� ffiffiffi

Z
p

p
� ffiffiffi

Z
p
þ pL

; (A-9)  

VEsc ¼VL
p
� ffiffiffi

Z
p

p
� ffiffiffi

Z
p
þ pL

: (A-10) 

The following two figures compared the modified model, the original model, as well as the ideal-gas model. The experimental data are from sample 
2 of Yu et al. (2016). It is found that under a high-temperature condition (350 �F, Fig. A-1), the original and modified real-gas models match well with 
experimental results. For a lower temperature condition (150 �F, the field case), the revised model results fall between two boundaries drawn by the 
ideal-gas model and the previous real gas model, as shown in Fig. A-2.

Fig. A 1. Comparison of experimental data (Yu et al., 2016) and the real-gas adsorption models. 

J. Zeng et al.                                                                                                                                                                                                                                     



Journal of Petroleum Science and Engineering 187 (2020) 106686

22

Fig. A 2. Comparison of the three models under the field case temperature.  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.petrol.2019.106686. 
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