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A B S T R A C T

Coalbed methane (CBM) has emerged as a clean energy resource in the global energy mix, especially in countries
such as Australia, China, India and the USA. The economical and successful development of CBM requires a
thorough evaluation and optimization of well placement prior to field-scale exploitation. This paper presents a
two-stage, step-wise optimization framework to obtain the optimal placement of wells for large-scale develop-
ment of CBM reservoirs. In the first stage, an optimal uniform well pattern is obtained by optimizing well pattern
description parameters with the particle swarm optimization (PSO) algorithm. Subsequently, the location and
status (active/inactive) of each well are perturbed and optimized within the patterns through the integration of
the generalized pattern search (GPS) algorithm and a quality map (QM) representing the production potential.
This framework was tested in a synthetic anthracite CBM reservoir in the Qinshui basin (with high gas content
and low permeability) and a real field high volatile bituminous reservoir in the Illinois basin (with low gas
content and high permeability). The results show that: (i) significant variations in the net present value (NPV)
exist with respect to different uniform well patterns (even for cases where the total number of wells are iden-
tical), the optima of which can be efficiently determined by the PSO within 100 numerical simulation runs; (ii)
the optimization of well perturbations by the GPS results in a more noticeable improvement in NPVs for the
synthetic (12.3%) than for the real field model (4.6%); (iii) for the low permeable synthetic model with narrow
optimal well spacings (320 m × 200 m), the contribution of the optimization of well perturbation to the NPV
increment is heavily dependent on the uniform well placement solution; (iv) for the high permeable real field
model with large optimal well spacings (1300 m× 1300 m), the initial uniform well placement has a very minor
effect on the subsequent well perturbation solutions in terms of NPV; (v) the proposed framework significantly
outperforms the conventional well-by-well concatenation procedure in terms of computational efficiency, ro-
bustness and optimal criteria set for production potential.

1. Introduction

Development of coalbed methane (CBM) as an energy resource of-
fers subsidiary benefits, such as improving underground coal mining
safety and reducing methane emission to the atmosphere (Karacan
et al., 2011). However, CBM drainage, especially from low-permeability
coal seams, usually has low recovery efficiency. Therefore, special well
completions and production mechanisms are needed to achieve com-
mercial gas rates (Ozkan and Clarkson, 2012). Although enhancement

techniques, such as the multi-lateral horizontal drillings (Keim et al.,
2011) and CO2 enhanced CBM (CO2-ECBM) (Ross et al., 2009; Zhou
et al., 2013) can be utilized to increase the CBM production, further
field tests are needed to validate their technical and economic feasi-
bility (Moore, 2012). For example, multi-lateral horizontal wells may
have the high risk of being collapsed that significantly reduces gas
production and hence the economics (Keim et al., 2011; Ren et al.,
2014). As such, the vertical wells stimulated with hydraulic fractures
(Badri et al., 2000) still act as a primary and most reliable means for
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large-scale field development of CBM resources especially for low-per-
meability coal seams (Palmer, 2010).

Previous studies (Feng et al., 2012; Salmachi et al., 2013, 2014)
suggest that the economics of a CBM development project using vertical
wells is highly dependent on the well locations. Numerous investiga-
tions document the determination of optimal well placement in CBM
reservoirs based on analytical models or numerical simulations.
Clarkson and McGovern (2005) developed an approach to optimize
CBM exploration and development strategies through the integration of
the Monte Carlo simulation, reservoir simulation and economics. Xu
et al. (2013) derived an analytical mathematical model based on the
concept of “balanced depressurization” to optimize well pattern and
spacing for hydraulically fractured wells in anisotropic CBM reservoirs.
Zuber et al. (1990) studied the gas production and economic prospects
of various well-spacing and hydraulic-fracture scenarios through nu-
merical simulation and found that permeability and achievable hy-
draulic-fracture dimensions are the key parameters for the optimization
of well spacing. The work by Wicks et al. (1986), Young et al. (1992),
Chaianansutcharit et al. (2001), and Bumb and McKee (1984) led to the
common conclusion that pressure interference exerts favorable effects
on gas production and drilling more wells can enhance the ultimate
recovery factor. It should be noted, however, that the drainage effi-
ciency of uniform well patterns—such as five-spot and rectangular
patterns may be questionable when applied in CBM reservoirs that
exhibit strong heterogeneities (Cai et al., 2011; Liang et al., 2011;
Pashin, 2010; Yao et al., 2013). Besides, the consideration of optimal
well spacing must be made based on an economic decision (Zulkarnain,
2005).

During the past decade, a number of investigations have been re-
ported on the use of numerical simulation integrated with statistical
analysis or intelligent optimization algorithms to determine optimal
well placement in underground hydrocarbon reservoirs (Bangerth et al.,
2006; Chen et al., 2018, 2019; Forouzanfar and Reynolds, 2014;
Humphries and Haynes, 2015; Humphries et al., 2014; Isebor et al.,
2014; Jesmani et al., 2016; Wang et al., 2016, 2019; Zhang et al.,
2017). Feng et al. (2012) and Salmachi et al. (2013) optimized the
location of vertical wells in CBM reservoirs using numerical simulation
assisted by the particle swarm optimization (PSO) and genetic algo-
rithm (GA), respectively. Salmachi et al. (2014) combined numerical
simulation with detection theory (decision trees) to find the potential
optimal locations of infilling wells in the development of a synthetic
CBM reservoir. A distinguished advantage of using optimization algo-
rithms is that a broader set of scenarios can be systematically explored
in order to find optimal solutions for some given conditions (Bangerth
et al., 2006). However, for large-scale multi-well field development,
optimization can be particularly challenging due to a large number of
variables and an extensive search space (Zhang et al., 2014). An in-
crement in the search dimensions (number of optimization variables)
tends to increase the risk of getting trapped in local optima during the
optimization process, rather than finding the global optimum. Conse-
quently, it is important to construct an efficient and robust method to
deliver a set of nearly optimal solutions (Bangerth et al., 2006). Un-
fortunately, few efforts have been made to reach such optimal solutions
with respect to the development of CBM reservoirs.

This paper presents a step-wise optimization framework for fast
determination of the optimal well placement for the large-scale devel-
opment of CBM resources. The proposed framework was applied in both
a synthetic and a real CBM reservoir, whose performance was compared
with the conventional well-by-well concatenation method.

2. Methodology

In this study, the optimal placement of wells is obtained by a step-
wise procedure consisting of two stages (Fig. 1). In the first stage, the
well pattern and spacings are optimized to determine an optimal uni-
form layout of wells. Once the optimal well pattern and spacings are

determined, the location of each well can be identified, which provides
the initial solution to the second step. In the second step, the location of
each well is perturbed and optimized based on a quality map (QM) that
considers the boundary constraint defined by the well spacings in the
previous step.

2.1. Uniform well placement and well perturbation

2.1.1. Description of uniform well placement (step 1)
Two typical well patterns, namely rectangular and five-spot patterns

are commonly used for primary drainage of CBM (Tang and Li, 2013).
For both well patterns, the layout of wells is designed along two or-
thogonal directions following principal permeabilities, which can also
be proxied as parallel to the face and butt cleat directions (which are
represented as X- and Y-directions, respectively in Fig. 1). In this study,
we use three variables to represent the layout of wells, {sx, sy, Index},
where sx, sy specify well spacings along the X- and Y-directions, re-
spectively, and Index denotes the well pattern. Each well is assumed to
be placed at the center of a grid block, which is a general default setting
method in numerical reservoir simulations. It is noted that for a re-
servoir model consisting of uniform grid blocks, well spacings sx and sy
should always be a multiple of the grid block dimensional lengths of dx
and dy, respectively. For a given uniform well pattern description vector
of {sx, sy, Index}, the well locations (coordinates in terms of grid block
numbers along X- and Y-directions) can be determined as follows.

2.1.1.1. Calculate the maximum number of wells that can be
accommodated within the reservoir. Under the assumption that each
well is placed at the center of a grid block, the maximum rows of wells
that can be placed along the X- (nx,max) and Y- (ny,max) directions within
the reservoir can be identified as:

= ⎡
⎣⎢

− ⎤
⎦⎥

+n floor d N
s

·( 1) 1x max
x x

x
,

(1)

= ⎡
⎣⎢

− ⎤
⎦⎥

+n floor
d N

s
·( 1)

1y max
y y

y
,

(2)

where Nx and Ny are the number of grid blocks along the X- and Y-
directions, respectively; floor[•] denotes the maximum integer that is
not higher than the argument “•” in the brackets.

2.1.1.2. Determine the locations of nx,max×ny,max wells. Once the number
of wells is determined, these wells can then be uniformly deployed
across the reservoir plane subject to the well pattern description vector.

For a rectangular well pattern, the location (λ, η) of a well in the ith
column and jth row, represented with grid block coordinates, can be
calculated straightforwardly by considering the well layout and re-
servoir geometry (see Fig. 2a for details):
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where ceil[•] denotes the minimum integer that is higher than the
argument “•” in the brackets.

For the five-spot well pattern, wells in odd numbered rows are as-
signed to be placed the same as in the rectangular well pattern and
therefore the locations can be determined using Eqs. 3 and 4. Compared
with the rectangular well pattern, the five-spot pattern has one less well
in the even numbered rows (Fig. 2). Again, combining the well layout
and reservoir geometry, one can obtain the coordinate (λ, η) for wells at
the even numbered rows, which can be written as (see Fig. 2b for de-
tails):
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2.1.2. Perturbation of wells (step 2)
For reservoirs exhibiting strong heterogeneity in permeability, it is

reasonable to improve the solution further by performing optimization
via perturbations of the well locations determined from the regular well
pattern. To improve the optimization efficiency, we propose a pertur-
bation procedure that invokes the concept of a QM, which has proven to
significantly improve the optimization efficiency of well placement
optimization problems (Ding et al., 2014, 2019; Nakajima and Schiozer,
2003).

It is recognized (Feng et al., 2012; Salmachi et al., 2013) that coal
seam permeability and gas content are two key factors influencing
optimal well placement - wells are more apt to be placed in areas with
higher permeability and higher gas content in order to improve the
economics. The underlying mechanism behind this conclusion is that
higher gas content provides an elevated gas reserve with an increase in
mass released once pressure drawdown occurs, while higher perme-
ability ensures a greater flow rate tapping an expanded volume of the
reservoir. These two factors improve gas production rates and hence the
economics of the operation. As such, it is reasonable to assume by
analogy that the grid blocks with higher permeability and higher gas
content are potential near-optimal positions for accommodating wells.
In this paper, we suggest using an index to rank the production po-
tential of a grid block, which is defined as:

=IOP k c hi
j

i
j

i
j

i
j (7)

where k is permeability; c is gas content, h is thickness; the subscript i
represents the ith well; and superscript j represents the jth grid block
near the ith well. For a specific well, the “grid blocks near” are those
within its own control/tributary area (sx × sy).

It should be noted that for a multiple well placement problem, all
wells being shifted to the grid block with their respective highest IOPi
does not guarantee a global optimum. This is because there is the
possibility that wells may be moved to their respective tributary grid
blocks that are i) within a narrow distance to other wells or ii) close to
boundaries (Fig. 3). To resolve such contradiction, we assign a
threshold number of grid blocks with high IOPs for each well as the
potential optimal candidates. Each potential candidate has an equal
probability to be chosen as the optimal solution, whereas the other grid
blocks with lower IOPs will never be selected. In this regard, the per-
turbation vector can be written as:

⏟ ⏟ ⏟
′ = ⎧

⎨⎩
… ⎫

⎬⎭
x θ θ θ, , ,

Well Well
n

Welln
1
1

2
2 (8)

where θi denotes the numbering of a grid block sorted in a descending
order of IOP for the ith well. For example, if we assign a number of N
grid blocks that are ready to be selected as the candidate perturbed
position, θi = 1 represents the grid block with the highest IOP while
θi = N represents the grid block with the lowest IOP for the ith well.
θi = 0 represents that the well remains in its original location in the
uniform well pattern and no perturbation occurs.

In addition to well position perturbations, the perturbation of well
status (inactive or active) can also be optimized in order to further
improve the NPV (Onwunalu, 2010) by eliminating redundant wells.
This strategy should benefit heterogeneous reservoirs where wells in
some local regions are associated with extreme low producibility. In
this study, the perturbation of well status can be easily incorporated by
extending θ to a negative value. For the ith well, θi < 0 represents that
this well is inactive, i.e., this well is removed from the reservoir model.

As such, the optimization of well perturbation is transformed to a
combinational optimization problem, i.e., we target to optimize the
selection of candidate grid block and inactive/active status for each
well so that the combination of all the selections for all wells results in
an optimal solution.

Perturbation

Perturbation

a) b)

c) d)

X

Y

Fig. 1. Uniform rectangular (a) and five-spot (c) well patterns and their corresponding perturbed well locations (b and d). The dashed rectangular block represents
the boundary constraining well perturbation. Solid and open circles represent locations of wells before and after perturbation, respectively. Thick solid lines are
reservoir boundaries.
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2.2. Optimization algorithms

To date, numerous optimization algorithms have been applied for
solving well placement problems, which generally fall into two cate-
gories: gradient-based and derivative-free methods (Bangerth et al.,
2006). The solution surface to a well placement problem can be ex-
tremely rough and discontinuous gradients may exist. Additionally,
gradient-based methods are more likely to be trapped in local optima
compared with derivative-free algorithms because well placement
problems are usually nonconvex and may contain multiple local optima
(Wang et al., 2016). As a comparison, the derivative-free methods do
not require the gradient information but only need the objective func-
tion value as a guide for their evolution. Such merit makes derivative-
free methods more efficient in solving problems such as the optimiza-
tion of well placement for the development of hydrocarbon reservoirs.

In this paper, two derivative-free algorithms were used for solving
the proposed two-stage well placement optimization problem namely
particle swarm optimization (PSO) and generalized pattern search
(GPS). Numerous studies (e.g., Ding et al., 2019; Wang et al., 2019;
Onwunalu and Durlofsky, 2010) have demonstrated the robustness of
these two algorithms in solving oilfield optimization problems in terms
of convergence speed and accuracy. PSO is a stochastic global search
method that is especially suitable for optimization problems without
prior knowledge of a near-optimal solution, while GPS is quite efficient
when a high-quality initial guess of the optima is available. Onwunalu
and Durlofsky (2011) show that well perturbations help improve the

X

Y
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j=……
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sy

y

x
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j=……

y
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,max 1y ys n

x xN d

y yN d

a)

b)

Fig. 2. Illustration of how to calculate uniform well locations for (a) rectangular and (b) five-spot well patterns.

Fig. 3. Illustration of well perturbation with a background of IOP. Solid circle –
optimal uniform well placement; open circle – optimal well perturbation; star –
grid block with the highest IOP; cross – grid block with the lowest IOP. A grid
block on or adjacent to the boundary has the highest IOP for the upper two
wells, respectively, which however are not the optimal perturbation solutions
because wells on or adjacent to the boundary have significantly less produci-
bility due to their limited controlling area; The grid blocks with the highest
IOPs for the respective lower two wells are grouped closely to each other, and
neither is the optimal perturbation solution also due to the limited controlling
areas of wells.
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economics over a uniform well placement pattern; however, such im-
provement is less significant than that during the optimization phase for
a uniform well pattern. This indicates that the optimization of a uni-
form well pattern is possibly a global optimization problem whereas
optimization of well perturbation is a local one. In this respect, we set
the PSO for determining the optimal well pattern and spacings, and the
GPS for solving the well perturbation problem. Mathematical details of
PSO and GPS algorithms are well described in Torczon (1997), Audet
and Dennis Jr. (2002), Kennedy and Eberhardt (1995), and Kaveh
(2014), which are therefore not repeated in this paper.

2.3. Objective function

In this study, net present value (NPV) is used as the objective
function. NPV is a measure of profitability - that is the present value of
cash flows discounted at an average annual discount rate, i0, in excess
of the present value of the investment (Luo et al., 2011). The basic
capital costs for a CBM well include outlays for land, permits, drilling,
completion, infrastructure (water handling facilities, electric power and
electrical cable, gas gathering and transmission facilities, etc.), well
maintenance, and water management (ARI, 2002; Bank and Kuuskraa,
2006). For practical consideration, the capital costs are reduced to three
parts: well construction, water disposal cost and well operating ex-
pense. Construction of wells is assumed to be completed in the first year
for all drilling scenarios. The NPV can be calculated as:

∑= ⎡
⎣⎢

− − −
+

⎤
⎦⎥

−
=

Q P R Q C C N
i

N CNPV
(1 )

(1 )t

T g g t w w m w
t w d1 0 (9)

where Qg and Qw are annual production of gas and water (m3), re-
spectively; Pg is wellhead gas price ($/m3); Cw is cost of treatment and
disposal of produced water ($/m3); T is the producing lifetime of the
target area (year); Cd is the cost of well construction ($/well); Cm is the
cost of operating expense per well per year ($); Rt is tax rate on the
produced gas; i0 is the annual discount rate (%); and N is the total
number of wells drilled.

2.4. Numerical reservoir simulator

Production profiles for each scenario of well placement are gener-
ated by conducting reservoir simulation using CMG's GEM simulator.
The GEM is a three-dimensional compositional simulator that is capable
of simulating the sorption, diffusion and flow phenomena of CBM
transport in coal and it is widely used in CBM reservoir and production
engineering studies (Karacan and Olea, 2015; Karacan et al., 2014;
Salmachi and Karacan, 2017). Details of the mathematical models re-
garding the CBM module in GEM can be found in GEM (2015), which
are therefore not repeated in this paper.

2.5. Optimization procedure

The general workflow of well spacing and placement optimization is
illustrated in Fig. 4 and described briefly as follows.

1) Randomly initialize well pattern indices and spacings.
2) Calculate the location of each well using Eqs. 1 through 6.
3) Call GEM to conduct reservoir simulations and to calculate the ob-

jective function values based on the simulated production profiles.
4) Update well pattern description index and spacings with PSO.
5) Repeat Steps 2 through 4 until the preset maximum number of

iterations is reached.
6) Set the optimal well placement determined from Steps 1 through 5

as the initial solution point of GPS; in this step, the initial pertur-
bation vector x’ = {0,0, …,0}.

7) Update well perturbation vectors x’ using the GPS until the preset
maximum number of iterations is reached.

3. Application of the optimization procedure for case studies

In this section, the proposed step-wise procedure is applied for op-
timizing well placement in two CBM reservoirs. The first case involves a
synthetic model that is representative of the geological conditions of an
anthracite CBM reservoir in the Qinshui basin, China. The second case
is a real high-volatile bituminous coalbed in the Illinois basin that has
been built and calibrated by Karacan et al. (2014).

3.1. Case 1: well placement in a synthetic model

3.1.1. Model description
In this case, a synthetic model was constructed to represent the

typical geological features of low permeability and high gas content
reservoirs in anthracite coals of the Qinshui basin, China (Liu et al.,
2013; Lv et al., 2012). The model consists of 80 × 80 × 1 grid blocks in
the X-, Y- and Z-direction, respectively. Each grid block has a dimension
of 20 m × 20 m in the lateral plane. Heterogeneities in formation
thickness, permeability and gas content are included in this model,
which are shown in Fig. 5. Permeability evolution due to pressure
drawdown and matrix shrinkage (see e.g., Chen et al., 2013; Li and

Randomly initialize sx, sy, Index

Start

Calculate the location of each well

Conduct reservoir simulations and 
compute objective function values

Update sx, sy, Index using PSO

k<Kmax1

k=k+1

Initialize perturbation vector 

Conduct reservoir simulations and 
compute objective function values

Update x’ using GPS

k<Kmax2

k=k+1

End

k=1

k=1

Optimization of 

uniform well 

placement

Optimization of  

well perturbations

Fig. 4. Flow chart of the two-stage procedure for optimizing well placement.
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Elsworth, 2015; Wu et al., 2010) is represented by a modified Palmer-
Mansoori model (GEM, 2015; Palmer and Mansoori, 1998), with the
parameters shown in Table 1. Relative permeability curves were

adopted from experimental data on a Qinshui basin coal sample by
Shen et al. (2011) (Fig. 6). Typically, relative permeability for coal
samples in the Qinshui basin are associated with a narrow two-phase
flow span and a high connate water saturation. Input reservoir prop-
erties for numerical simulations are summarized in Table 1.

Fig. 5. Spatial distribution of (a) formation thickness, (b) permeability and (c) cleat pressure and d) gas content of the synthetic model.

Table 1
Reservoir properties for the reservoir models.

Parameter Synthetic model Real field model

Reservoir depth (m) 576–594 157–186
Formation thickness(m) 4.41–5.65 0.69–2.13
Permeability (mD) 0.33–1.29 38–117
Porosity (−) 0.02 0.01–0.06
Pressure (KPa) 5760–5940 1505–1787
Gas content (m3/t) 14.5–17.1 3.18–3.75
Rock compressibility (KPa−1) 1.5 × 10−5 2.5 × 10−5

Sorption strain (−) 0.02 0.012
Langmuir pressure for sorption stain curve

(KPa)
4500 4500

Poison ratio (−) 0.21 0.21
Young's modulus (KPa) 1.5 × 106 2.9 × 106

Langmuir volume (m3/t) 30 11.1–12.1
Langmuir pressure (KPa) 3000 3920
Desorption time (d) 1 20
Temperature (K) 313.15 311.6
Bulk density (kg/m3) 1300 1400
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Fig. 6. Relative permeability curves used in this study.
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As a common practice, vertical wells in CBM reservoirs are usually
stimulated by hydraulic fracturing to increase productivity. Ideally,
using local grid refinement together with near-wellbore permeability
enhancement should reflect the effect of hydraulic fracture on pro-
duction more accurately (Zuber et al., 1990; Zhang and Bian, 2015).
However, this approach requires more computational effort and

Table 2
Parameterization for the PSO and GPS algorithms.

Algorithm Parameters Values

PSO Swarm size 10
Particle inertia coefficient 0.9 to 0.6
Cognitive attraction coefficient 1.0
Social attraction coefficient 2.0
Max.no. of function evaluations 100

GPS Expansion factor 5.0
Contraction factor 0.1
Poll method 2n positive basis
Max. no. of function evaluations 100

Table 3
Economic parameters for computing NPV.

Parameter Synthetic model Real field model

Well construction (million $/well)a 0.34 0.1
Gas price ($/m3) 0.24b 0.09c

Water disposal ($/m3)d 6.25 6.25
Well operating expense ($/well/year)e 6000 6000
Annual discount rate (%)e 10 10
Tax rate on the produced gas (%)e 8 8

a The well construction costs include expenses for drilling, completion and
surface facilities. The well drilling cost is set to be $410/m, which is the
averaged value for drillings in onshore oil/gas fields according to EIA (2016).
The averaged well depths are 585 m and 170 m for the synthetic and real field
models, respectively. Thus, the drilling costs are ~$240,000 and $70,000 for
the synthetic and real field models, respectively. As implied in EIA (2016), the
drilling cost takes a portion of 60–80% of the total construction costs for ver-
tical wells. We picked a mediate value of 70% for approximating the total well
construction costs based on the well drilling costs, which are ~$3,400,000 and
$100,000 for the synthetic and real field models, respectively. The approxi-
mated well construction cost for the synthetic model agrees well with the data
provided by Wu et al. (2018) for the Qinshui CBM reservoirs, although it is
determined based on the EIA data for the US oil/gas fields.

b Adopted from Wu et al. (2018)
c Adopted from EIA website (https://www.eia.gov/naturalgas/data.php#

prices).
d Adopted from EIA (2016).
e Adopted from Salmachi et al. (2013).

Fig. 7. The NPV surface corresponding to well spacings for (a) rectangular and (b) five-spot well pattern of the synthetic model. Note: the minimum for the NPV color
bar is set to be zero for clear visualization.

Fig. 8. Relation between the NPV and the number of wells corresponding to all
possible scenarios of well pattern and spacings for the synthetic model.

Fig. 9. NPV evolution trajectories during the first- and second-stage optimiza-
tion for the synthetic model.
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simulation time because more grid blocks are added. In this study, the
effect of the hydraulic fracturing on production is considered by setting
a skin factor of −4.0 on the wells (Karacan, 2013). The borehole radius
is 0.076 m and all wells are operated at a constant water production
rate of 10 m3/d, which if not satisfied is turned to a constant bottom-
hole pressure constraint of 0.2 MPa. The production duration is set to be
15 years, which covers the general life span of CBM wells (Feng et al.,
2012; Salmachi et al., 2013; Xu et al., 2013).

The performance of an optimization algorithm is heavily dependent
on its parameterization, which should be best determined through the
meta-optimization (Chen et al., 2018). Since this paper is primarily
concerned with the step-wise optimization framework rather than with
the optimization algorithms, the meta-optimization technique is left for
further investigation and is not considered here. Nonetheless, sensi-
tivity analyses of the effect of optimization parameterizations on the
algorithm performance were conducted (see Appendix A1) and the
optimal parameter settings are summarized in Table 2. The maximum
number of function evaluations is set to be 100 for both the PSO and
GPS algorithms.

The lower boundary of both well spacings along the X- and Y-di-
rections was set to be 200 m, with the consideration of avoiding pe-
netration of hydraulic fractures into adjacent wells by assuming a
maximum fracture half-length of 100 m. For low-permeability coal
seams in Qinshui basin, optimal well spacings are generally less than
400 m × 400 m (Meng et al., 2018; Yan, 2015). However, a pre-
liminary sensitivity analysis on this synthetic model indicates that using
a loose upper boundary for well spacing tends to increase the prob-
ability of success to find the global optimum (see Appendix A2). As
such, the upper boundary was expanded to 1000 m to allow the algo-
rithm to search over a large well spacing range across the reservoir
model. Economic parameters used for the computation of NPV are set
according to recent published data (Table 3), with an attempt to mimic
the actual cases.

3.1.2. Results
In this section, we will first report the global optimal uniform well

placement determined by manually simulating all possible well pattern
and spacing realizations. The proposed optimization procedure is then
applied and validated by comparing the optimization with the manual
simulation results.

3.1.2.1. Manual determination of the optimal uniform well
placement. Under the well spacing boundary setting of 200 to
1000 m, a total of 41 × 41 × 2 = 3362 realizations of uniform well
patterns are possible given a well block dimension of 20 m × 20 m. By
manually conducting numerical simulations of all these possible
realizations, one can obtain the gas and water rates, which can then
be used together with economic parameters (Table 3) to compute the
NPV surfaces (Fig. 7). As shown in Fig. 7, the NPV surfaces are
extremely rough and multiple local optimal points are demonstrated
especially in the lower left triangular region of the NPV surfaces. To
quantitatively compare the local optima solutions, we summarized the
top 45 solutions with relatively high NPVs in Appendix 3, which shows
that all these solutions give well spacings in the range of 200 to 460 m.
Such small well spacings are quite typical for, and commonly deployed
in, the low-permeability CBM formations in the Qinshui basin (Meng
et al., 2018; Yang and Ye, 2008). It also shows that the top 5 solutions
are associated with close NPVs – the lowest NPV among these solutions
is $2.254 × 106 (rectangular pattern with well spacings of
400 m × 200 m), which is only ~4.1% less than the global optimal
NPV of $2.351 × 106 (five-spot pattern with well spacings of
320 m × 200 m). The presence of these multiple near-optimal
solutions may increase the challenge for the algorithm to find the
global optima.

Fig. 8 shows the NPVs relative to the number of wells corresponding
to all possible 3362 realizations of well pattern and spacing. The figure
shows that the resulting NPVs first show a general increase and then
decrease with the number of wells. Such an observation agrees well
with that of Liu et al. (2019), which can be interpreted as a result of the
competition between incomes recovered from selling the gas and well
layouts of varying well numbers. Numerous studies (e.g.,
Chaianansutcharit et al., 2001; Gentzis and Bolen, 2008; Liang et al.,
2011; Young et al., 1992) have proven that the well interference effect
tends to promote reservoir pressure drawdown and accelerate gas

Fig. 10. Statistics of solutions resulting from 10 independent runs of the first-
stage optimization for the synthetic model. The legend denotes the optimal
NPVs with corresponding solutions given in Appendix A1.

Fig. 11. Comparison of optimal well placement with a background of IOP for
the synthetic model. a) uniform well placement; b) well placement with opti-
mized perturbations. The numbers are cumulative gas productions; solid circles
are active wells; triangular is the well location before perturbation; “×” de-
notes a well in the “shut-in” status after perturbation.
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Fig. 12. Spatial distributions of reservoir properties in the real field model. (a) top depth, (b) thickness, (c) porosity, (d) permeability, (e) cleat pressure, and (f) gas
content.

Fig. 13. The NPV surface corresponding to well spacings for (a) rectangular and (b) five-spot well pattern of the real field model. Note: the minimum for the NPV
color bar is set to be zero for clear visualization.
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desorption, which therefore is a predominantly favorable factor in in-
crementing gas production in a CBM reservoir. Drilling more wells
within the reservoir tends to amplify the well interference effect, which
contributes to increasing CBM production. However, drilling more
wells will also increase well construction investments and operating
expenses. It should be pointed out that although different realizations of
well pattern and spacing may result in the same number of wells, their
corresponding NPVs can vary rather significantly. For example, the
lowest and highest NPVs obtained by using 32 wells are
~ − $3.00 × 106 and 2.254 × 106, respectively, which highlights the
necessity of the optimization of well pattern and spacings.

3.1.2.2. Application of the optimization procedure. Since the optimal
uniform well placement has been obtained by manually scanning all
possible realizations, we can then apply the proposed optimization
procedure and evaluate its validity by comparing the optimization with
the previous results.

First, 10 independent optimization runs of uniform well pattern and
spacings using the PSO were conducted, and the evolution trends of
NPVs are demonstrated in Fig. 9. As shown, NPVs are non-uniform and
scattered during the initial exploration stage (~50 function evalua-
tions) of optimization, which is attributed to the stochastic nature of the
initialization and velocity update schemes of the PSO algorithm.
Nonetheless, all runs tend to switch from an exploration to an ex-
ploitation pattern (Kaveh, 2014) at ~50 function evaluations and then
converge gradually to an optimal or near-optimal solution after a
number of 100 function evaluations. Fig. 10 summarizes the optimal
solutions found by 10 independent runs. As shown, 7 runs succeed in
finding the global optimum with an NPV of $2.351 × 106. Although the

remaining 3 runs fail in reaching a global optimum, they give rather
close approximations to the global optimum solution. The minimal
optimized NPV among these 10 runs is $2.261 × 106, which is only
~3.8% less than the global optimal NPV of $2.351 × 106. The failure in
reaching the global optimal solution is attributed to the presence of
multiple local optimal solutions that are located around the global
optimum (Fig. 7), where the PSO may be easily trapped. Nonetheless,
the computational efficiency of the application of the PSO for opti-
mizing uniform well placement is clearly demonstrated: one can re-
cover a general high-quality solution after only 100 function evalua-
tions using the proposed method, whereas 3362 function evaluations
are needed if all possible realizations are simulated manually.

After the first-stage optimization for uniform well placement, the
optimization of well perturbations can be subsequently conducted to
further improve the solution and thereby, the economics. In this stage,
we assume that the global optimal solution to the uniform well place-
ment (five-spot pattern with well spacings of 320 and 200 m in the X-
and Y-directions, respectively) has been successfully obtained although
the first-stage optimization may result in a local optimal solution. We
will discuss how a near-optimal uniform well placement solution affects
the subsequent perturbation optimization results in Section 4.2. Since
the GPS is deterministic in nature, the optimization results are identical
provided that the starting points where optimization initiates are con-
stant. Therefore, the performance of the GPS regarding perturbation
optimization can be evaluated based on a single optimization run.

As illustrated in Fig. 9, the NPV first exhibit a substantial increase in
the initial stage (10 simulation runs) and then becomes relatively stable
towards the end of the perturbation optimization stage. The NPV after
100 objective function evaluations improves from $2.351 × 106 to
$2.641 × 106, with a percentage increase of ~12.3%. Fig. 11 compares
the optimal uniform and optimal perturbed well placements. It can be
seen that in this particular example, the location and well status of most
wells (35 out of 38) remain unchanged after well perturbation opti-
mization. This is in accordance with previous statements in Section 2.2
and in Onwunalu and Durlofsky (2011), that the contribution of well
perturbation optimization to NPV improvement is less significant than
that of uniform well pattern optimization because the uniform well
placement is already a near-optimal solution to the well placement
optimization problem. Nonetheless, it is interesting that three wells
with the least cumulative gas productions (≤2.37 × 106 m3) among 38
wells are perturbed after the perturbation optimization. Among the
three perturbed wells, two in the lower left part of the reservoir (with a
respective cumulative gas production of 2.37 × 106 and
2.30 × 106 m3) are shut in; the remaining one (with a cumulative gas
production of 2.35 × 106) in the lower right part of the reservoir is
shifted to a grid block with higher IOP than its previous location.

3.2. Case 2: well placement in a real field model

3.2.1. Model description
The real field model used in this study is adopted from Karacan et al.

(2014) that consists of a total of 101 × 51 × 1 grid blocks, each with a
lateral dimension of 50 m × 50 m. This model is for the Seelyville coal
located in the Indiana section of the Illinois Basin, which was con-
structed by means of geostatistical modeling integrated with history
matching (Karacan, 2013; Karacan et al., 2014). The target formation is
a high-volatile bituminous coal, which is characterized with low for-
mation thickness, high permeability and low gas content. Such a geo-
logical condition is significantly different from that of the synthetic
model, which could possibly be associated with a distinguished optimal
well placement solution.

Input reservoir properties for the numerical simulations are sum-
marized in Table 1. Fig. 12 depicts distributions of burial depth,
thickness, cleat porosity, permeability, pressure and gas content of the
model. As shown, significant heterogeneities are demonstrated con-
cerning formation thickness, porosity and permeability. Reservoir

Fig. 14. NPV evolution trajectories during the first- and second-stage optimi-
zation for the real field model.

Fig. 15. Statistics of solutions resulted from 10 independent runs of the first-
stage optimization for the real field model. The legend denotes the optimal
NPVs with corresponding solutions given in Appendix A1.
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pressure and gas content vary in a relatively narrow range, suggesting a
less notable heterogeneity. Relative permeability curves were taken as
“averaged” curves used in Karacan et al. (2014), which are depicted in
Fig. 6. Well settings and the optimization algorithm parameterization
are identical to those used in the synthetic model. The economical
parameters are shown in Table 3. It is noted that the average perme-
ability for the real field model is significantly higher than the synthetic
model, and therefore the upper boundary for well spacing should be
accordingly enlarged (Zulkarnain, 2005). Previous studies (Young
et al., 1992； Zuber et al., 1990) suggest that optimal well spacings for
bituminous CBM reservoirs are generally less than 640 acres
(~1600 m × 1600 m). For this real field model, the upper boundary
constraint for well spacing is set to be 2000 m to ensure an extensive
search range.

3.2.2. Results
Similar to the procedure in Section 3.1.2, we first report the uniform

well placement determined by manually scanning all possible

realizations and then apply and validate the proposed optimization
procedure for this real field model case.

3.2.2.1. Manual determination of the optimal uniform well placement. The
optimal uniform well placement was determined by manually
simulating all possible well pattern and spacing realizations (in a
similar manner as in the synthetic case) to be a rectangular pattern
with well spacings of 1300 and 1300 m along X- and Y-directions,
respectively. The optimal well spacing is relatively large compared to
that in the synthetic model (320 m × 200 m), which may be partly
attributed to the relatively high permeabilities of the Seelyville coal
seams. Generally, lower-permeability CBM reservoirs require smaller
well spacings in order to accelerate the depressurization of the reservoir
(Zulkarnain, 2005). Meanwhile, this real field model has a thin coal
seam and less gas content compared with the synthetic model, where
profitability can be significantly reduced using smaller well spacings
(more wells) because the in situ CBM reserves is limited and drilling
more wells may not contribute to significant improvement in gas

Fig. 16. Optimized well placement for the real field model. (a) comparison of the uniform optimal well pattern and well placement after perturbation optimization
with a background showing the IOP.; (b) and (c) show the reservoir pressure distributions after 15 years' production using the optimal uniform and the optimal
perturbed well placements, respectively. Note: Triangular and solid circles represent wells before and after perturbation optimization, respectively; the arrows
illustrate how wells are perturbed; numbers are cumulative gas productions after 15 years' production.
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productions. Our results are in accordance with previous studies (Young
et al., 1992; Zuber et al., 1990; Zulkarnain, 2005) that conclude an
increase in permeability and/or gas content tends to enlarge the
optimal well spacings.

Fig. 13 shows that the NPV surface for all possible scenarios of well
spacings and patterns. It is demonstrated that multiple local optimal
solutions are grouped around the global optimum especially for the
rectangular well pattern. Appendix A3 summarizes the top 45 most
productive solutions for uniform well placement solutions with rela-
tively high NPVs. It can be seen all these solutions give a rectangular
pattern with well spacings in the range of (1300–1800) m and
(1300–1500) m along the X- and Y-directions, respectively. The global
optimal solution has well spacings of 1300 and 1300 m along the X- and
Y-directions, respectively, with an NPV of $5.60 × 105. The presence of
such large number of local optimal solutions may magnify the difficulty
for the PSO to find the global optima, which will be addressed in the
following section.

3.2.2.2. Application of the proposed optimization procedure. For the
uniform well placement optimization stage, 10 independent runs
were conducted for this real field model and the trajectories of NPVs
are illustrated in Fig. 14. As shown, the NPVs evolve in a similar
manner to those of the synthetic model – all runs tend to be in an
effective exploration state where significant improvements in NPVs are
demonstrated and then converge gradually to the global optima or
near-optimal solutions. Compared with the synthetic model, more
simulation runs are needed in the exploration stage, which may be
due to the presence of more local optima in the real field model (Fig. 7).
Fig. 15 summarizes the final optimized NPVs at the end of uniform well
placement optimization (100 function evaluations) for 10 independent
runs. It can be seen that there are chances that the PSO algorithm gets
stuck in a local optimum – only 4 runs succeed in finding the global
optimal NPV of $5.600 × 105 while the remaining 6 runs result in
optimized NPVs less than but close to $5.600 × 105.

For the well perturbation optimization stage, we again assume that
the global optimal solution (rectangular pattern with well spacings of
1300 and 1300 m along the X- and Y-directions, respectively) has been
successfully obtained during the uniform well placement optimization
stage. The effect of a near-optimal uniform well placement solution on
the subsequent perturbation optimization results will be presented in
Section 4. It can be seen from Fig. 14 that the NPV climbs gradually
from $5.600 × 105 to $5.856 × 105 within 100 functional evaluations
during the perturbation optimization stage. An improvement of ~
$2.56 × 104 (4.6%) in NPV can be obtained after perturbation opti-
mization, compared with that of the optimal uniform well pattern. Such
improvement in NPV is rather limited, which is may be attributed to the

subtle difference in reservoir depressurizations that is to be discussed as
follows.

Fig. 16a compares the well placement optimized in the first and
second optimization stages. As shown, 3 among 8 wells were placed in
their respective grid block with higher IOP after perturbation optimi-
zation, while the remaining 5 wells remain in their initial position. All
wells remain active after well perturbation optimization, which suggest
that none of these wells is redundant. Figs. 16b and c show that cu-
mulative gas productions are increased for the three perturbed wells
compared with the uniform well placement. It is also shown that well
placement following optimal perturbations results in further pressure
drawdown especially in the inter-well regions (which is marked with
circles in Fig. 16b) compared with using the optimal uniform well
placement. As stated previously, increased depressurization is favorable
to gas production in CBM reservoirs, which therefore contributes to the
improvement in NPVs. However, it is noted that very minor difference
is demonstrated regarding the average reservoir pressures after
15 years' production using the uniform and perturbed well placements
(Figs. 16b and c). Such minor difference is attributed to the relatively
high permeability of the formation, which is favorable for accelerating
and thus reduces the effect of well placement on pressure drawdown
propagation.

4. Discussion

4.1. Comparison with the well-by-well concatenation optimization

4.1.1. Well-by-well concatenation optimization
The well-by-well concatenation optimization method is widely used

for optimizing well placement in hydrocarbon reservoirs (Chen et al.,
2018; Feng et al., 2012; Salmachi et al., 2013). In this method, the
location of each well is represented with its special coordinates. For a
multiple well placement optimization problem, the special coordinates
of wells are simultaneously tuned such that an objective function (e.g.,
NPV) can be optimized. Unlike the proposed step-wise optimization
procedure, the number of wells subject to placement optimization must
be presumed before optimization initiates. For example, if we consider
the placement optimization of a number of Nt wells in a single coal
seam, there should be a number of 2 × Nt variables representing the X-
and Y-coordinates of these wells that are to be optimized. One should
note that the optimal well placement solutions are significantly affected
by the presumed number of wells, which however can hardly be de-
termined accurately prior to the well placement optimization.

In this study, the number of wells was set to be the same as that in
the best uniform well pattern solution for each model case. Two sorts of
infeasible solutions may be produced in well-by-well concatenation
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Fig. 17. Comparison of the NPV evolution trajectories using well-by-well concatenation and the proposed two-stage optimization methods for the (a) synthetic and
(b) real field model.
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optimizations. The first infeasible solution is for a well that exists in or
out of the reservoir boundary, which is handled with a “bounce back”
strategy (Feng et al., 2012). The second infeasible solution is that which
results in the overlapping of wells, i.e., two or more wells are placed in
the same grid block. In this case, only one well at the grid block where
overlapping occurs was set to be active and all other overlapping wells
were assigned as “shut-in.” The well construction and operating ex-
penses of shut-in wells are eliminated from the calculation of NPV.

4.1.2. Comparison of the optimal NPV
Fig. 17 illustrates the evolution trends of NPVs for 10 runs of well-

by-well concatenation optimizations as a comparison to the proposed
procedure for both the synthetic and real field models. It clearly shows
that none of the 10 runs results in an NPV higher than the two-stage
procedure for either model. The best NPVs among 10 runs of well-by-
well concatenation optimizations are $7.471 × 105 and $5.189 × 105

for the synthetic and real field model, respectively. Compared with the

best runs of the two-stage optimization procedure, the percentage re-
ductions in NPV using the well-by-well optimization method are
~71.8% and ~ 11.4% for the synthetic and real field models, respec-
tively. It is also noted that severe deviations exist in NPVs between
different well-by-well concatenation optimization runs. For example,
the worst solution for the synthetic model has an optimized NPV of
$-5.771 × 104, corresponding to a relative deviation of ~100% with
reference to the best solution with an NPV of $7.471 × 105. This in-
dicates the strong intrinsic instability in the well-by-well concatenation
optimization procedure, and therefore multiple optimization runs
should be conducted to guarantee a near-optimum solution when using
the well-by-well optimization procedure. Fig. 17 also demonstrates that
the convergence speed of the well-by-well optimization procedure is
obviously slower than the two-stage procedure and therefore more si-
mulation runs are needed to reach a high-quality solution in a single
optimization run. Because field-scale reservoir simulations are usually
time-consuming and computationally expensive, the proposed two-
stage optimization procedure obviously outperforms the well-by-well
concatenation optimization in terms of computational efficiency.

4.1.3. Comparison of the optimal well placement
Fig. 18 compares the optimal well locations for the synthetic model

obtained by the well-by-well concatenation and the proposed optimi-
zation procedures. It is shown that the spatial distribution of well lo-
cations is highly irregular as obtained by the well-by-well concatena-
tion optimization - some wells are grouped close to one another that
results in sufficient local reservoir depressurization while some areas
not controlled by wells are poorly drained. As a comparison, the pro-
posed optimization procedure results in more evenly distributed well
placement and more effective reservoir depressurization. The average
reservoir pressures after a production duration of 15 years are 1080 and
973 KPa using the optimal well placements determined by the well-by-
well concatenation and the proposed procedures, respectively. Such
noticeable difference in reservoir depressurization is responsible for the
significant difference in NPVs optimized by either procedure.

Fig. 19 depicts the optimal well placement for the real field model
using the well-by-well concatenation method. Comparison between
Fig. 19 and Fig. 16c shows that the reservoir pressure drawdown using
the well placement optimized by the proposed procedure (560 KPa) is
slightly higher than that by the well-by-well concatenation method
(584 KPa). Such difference in the reservoir depressurization is less
noticeable than that for the synthetic model, which is again attributed
to the relatively high permeability of the Seelyville coal seams.

4.2. Effects of the first stage solution on the second stage results

As mentioned in Section 3, the PSO may be potentially trapped in
local optima during the first stage of optimization (of uniform well
placement) due to the extremely rough and coarse solution surface. In
this section, we will discuss how a local optimal solution obtained in the
first stage affects the optimization results in the second stage. For the
synthetic model, the top three local optimal solutions, as summarized in
Appendix A3, are used for sensitivity analysis with the consideration
that all optimization runs give a solution with NPVs higher than
$2.261 × 106 (which is ranked as the 3rd local optimal solution, see
Fig. 10). For the real field model, the 15th, 30th and 45th local optimal
solutions are analyzed.

As shown in Fig. 20a, for the synthetic model, the final optimal
NPVs after 100 objective function evaluations during the perturbation
stage are generally dependent on the initialization - a higher NPV ob-
tained during the first optimization stage results in a higher NPV during
the second stage. As stated in Section 3.1, only three wells (out of a total
of 38 wells) are perturbed during the well perturbation optimization
stage. Under the constraint of a narrow well spacing defined by the
uniform well placement optimization, the contribution of well pertur-
bation to NPV improvements is significantly compressed, which

Fig. 18. Comparison of the well placement in the synthetic model obtained by
the a) well-by-well concatenation and b) proposed two-stage optimization
methods, with the background showing the reservoir pressure distribution after
15 years' production. Note: for the well-by-well concatenation optimization
method, the solution with a highest NPV among 10 runs is shown in this figure;
Numbers are cumulative gas productions after 15 years' production.
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therefore signifies the effect of the uniform well placement solution. As
such, several optimization runs may be needed in practice to screen the
PSO solutions in order to guarantee a high quality well perturbation
solution. Nonetheless, it is noted that the PSO is highly efficient in
delivering the global optimum (Figs. 9 and 10) and therefore multiple
optimization runs should take limited additional computational costs.

Fig. 20b shows that the solution of the first optimization stage af-
fects the second optimization stage in a quite different manner for the
real field model, compared with that for the synthetic model. For the
real field model, the difference between the highest ($5.856 × 105) and
lowest ($5.515 × 105) optimal NPVs after well perturbations using
different initializations is only $3.41 × 104, which suggest a very minor
effect of the first-stage solution on the second-stage optimization re-
sults. It is also shown in Fig. 20b that a better uniform well placement
solution does not guarantee a higher NPV after well perturbation op-
timization. For example, i) the solution with the 15th local optimum
determined in the first optimization stage result in a lowest NPV after
well perturbation optimization and ii) the resulting NPV using the 30th
local optimum is lower than the 45th. One possible explanation for this
observation is that the optimal or near-optimal uniform well spacings
are relatively large for the real field model, and therefore wells can be
perturbed within a more expansive space than that in the synthetic
model. This results in more flexible well perturbations and tends to
weaken the predominant effect of the initial uniform well placement.
Besides, as mentioned in Section 3.2, this real field model has relatively
high reservoir permeability, and similar average reservoir pressure

drawdown may be attained even for different well placement patterns
provided the number of wells is identical. Such findings suggest that
local optimal solutions in the first optimization stage do not sig-
nificantly affect the final NPVs after the optimization of perturbation.

5. Conclusions

This paper proposes a general framework to optimize well place-
ment for large-scale field development of CBM through integration of
reservoir simulations, optimization algorithms and economics. The
optimization framework consists of two stages – viz. optimization of
uniform well placement and then optimization of perturbations in well
locations. The framework was applied to obtain the optimal well pla-
cement in both a synthetic and then a real field CBM reservoir, both of
which were demonstrated to outperform the well-by-well concatenation
optimization method in terms of computational efficiency and NPV.
Sensitivity analysis suggests that for an optimal uniform well placement
pattern with narrow well spacings in the synthetic model with low
permeability, the contribution of well perturbation to the NPV incre-
ment is heavily dependent on the uniform well placement solution. For
an optimal uniform well placement pattern with relatively large well
spacings in the real field model with high permeability, the initial
uniform well placement has a very minor effect on the subsequent well
perturbation solutions.

Fig. 19. Optimal well placement obtained by the well-by-well concatenation optimization method for the real field model with a background showing the reservoir
pressure distribution and numbers representing cumulative gas productions after 15 years' production.
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