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Abstract
Ground conditions, including characteristics of fractures, joints, bed separations, and strengths of rock layers, are critical 
factors for proper design of openings in underground mining and construction projects. Correct understanding of geologic 
conditions allows for improvement and optimization of ground support design and minimizing incidents of ground failure 
and instabilities in underground workings. Rock bolts have been widely accepted as the preferred method of ground support 
in almost all forms of rock excavation applications. The concept of monitoring drilling data to evaluate characteristics of 
geological features of interest in the rock surrounding the underground opening is a very attractive option for developing the 
geological model of the ground on real-time basis. This includes information on distributions of joints and bed separations, 
locations of voids, and strengths of rock layers, which enables the automated and rapid evaluation of ground conditions while 
drilling is in progress. Several smart drilling systems have been developed and proposed to detect joints; however, they offer 
limited capabilities and have exhibited difficulties in identifying joints with small apertures. The current study was focused on 
developing a more sensitive method to locate joints with smaller apertures along the hole being drilled with an instrumented 
roof bolter. A series of full-scale drilling tests were carried out in samples which contained simulated joints with different 
inclined angles in controlled laboratory conditions. New joint detection programs, with improved capabilities based on 
various pattern recognition algorithms, have been developed and used for analysis of data recorded in the full-scale drilling 
tests. To precisely locate joints, composite parameter was also used to offer more accurate detection. This paper reviews the 
laboratory testing program, data analysis, logic/algorithms used in the programs, statistical analysis of the detection results, 
and comparison of the various algorithms for this application.

Keywords Inclined joints · Fracture detection · Composite drilling parameters · Field penetration index (FPI) · 
Instrumented roof bolter · Pattern recognition algorithm

1 Introduction

Any form of ground instability, particularly roof falls and wall 
failures, may cause damage to equipment, delays and loss of 
production, and in some cases injuries or even fatalities in 
underground mining and construction activities. Proper design 
of rock support is the key for mitigating ground instability, 
and creating a safe work environment. Geotechnical inves-
tigations are routinely performed to evaluate ground condi-
tions. This includes the recording of joint distributions, locat-
ing voids, and tracking discontinuities, as well as measuring 
rock strength which determines rock mass conditions and 
related ground support requirements. Core holes are typically 
drilled in various projects for geotechnical investigation, and 
rock samples are collected for additional laboratory testing 
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to determine rock properties of interest, such as the uniaxial 
compressive, tensile, and shear strengths. At the site, rock 
quantity designation (RQD) is measured on the core samples 
or estimated from the scan lines on the walls/outcrops to deter-
mine rock mass classification (using RMR, Q, GSI, etc.), when 
combined by laboratory testing. In addition, borehole logging 
in the form of optical or sonic logs is often conducted which 
offers visual inspections of boreholes to observe geological 
features of interest in ground, including joints, voids, bed sep-
arations, rock layers, etc. (Mahtab et al. 1973; Fitzsimmons 
et al. 1979; Unrug 1994; Tang and Doug 2005; Williams and 
Johnson 2004).

In many mining and tunneling projects, limited geotechni-
cal borings are drilled and even fewer borings are used for rock 
coring or borehole logging. As such, many critical geological 
features may be missed, while the geologic conditions in the 
subsurface might undergo considerable variations even over 
a short distance. In addition, measurements of rock proper-
ties require laboratory tests as well as specialized borehole 
logging in field that are time consuming and thus interject a 
time lag between drilling operation to the time when these 
results are available for interpretation. This can lead to delays 
in design and construction of the projects. Meanwhile, during 
construction and underground mining activities, the delayed 
availability of information does not facilitate timely adjustment 
of ground support measures.

The main premise of the study reported in this paper is 
to allow for analysis of the information from the drilling 
operation in real time to offer pertinent information on rock 
strengths, joints, and other forms of discontinuities. Such sys-
tem offers instantaneous updates to geological models describ-
ing ground conditions and can be used for quick reaction to 
variations in the ground that could require adjustments in 
ground support. One of the main forms of ground support in 
any underground application is the use of rock bolts which are 
installed in the boreholes drilled by a roof bolter. This study is 
focused on the process of data collected from the roof-bolting 
units to evaluate rock strengths and locations of joints along 
the holes. Measured data from full-scale testing were used to 
train a pattern recognition program for assessment of the rock 
strength and detection and locating of open joints along the 
borehole. The results of using different joint detection algo-
rithms and statistical analysis of the various programs used to 
track the joints in rock are presented in this paper. Comparison 
of the results allows for selection of the more versatile and 
accurate algorithm with higher potential for field applications.

2  Background

Many studies have focused on the material characterization 
while drilling in different applications. This includes oil 
well drilling, mining, and tunneling constructions, where 

systems known as Monitoring While Drilling (MWD) have 
been developed and used in different operations with various 
degrees of success. Underground mining and tunnel con-
struction projects have experimented smart drilling units for 
identifications of the various rock formations and tracking 
of the joints along the holes drilled for blasting or installa-
tion of rock bolts. Rostami et al. (2014) maintained that this 
concept can be introduced for application in tunneling and 
underground mining/construction for geological mapping of 
the ground. A key component of performing ground char-
acterization while drilling is to record and analyze drilling 
parameters while drilling through various rock types to iden-
tify target geological features based on correlations between 
these features and certain patterns in the data and drilling 
parameters. For example, Fig. 1 presents typical behaviors 
of the drilling thrust force corresponding to various rock 
discontinuities, which are modified from the drilling torque 
in previous studies (Itakura et al. 1997).

One of the early studies on the MWD technology was 
conducted by Brown and Barr (1978; Barr 1984), they pro-
posed the idea of using instrumented drilling for site inves-
tigations. In the early 1990s, the Spokane Research Center 
of the National Institute of Occupational Safety and Health 
(NIOSH, formerly known as USBM) performed a research 
project to develop the MWD technology in mining field. An 
instrumented roof bolter was developed to monitor drilling 
parameters, including thrust, torque, penetration rate, and 
rotational rate, to predict geological features in roof strata 
(Frizzell and Howie 1990; Frizzell et al. 1992; Signer and 
King 1992; King et al. 1993). A detection system, which was 
an instrumented roof-bolting unit to monitor drilling, was 
proposed by Parvus Corporation of Salt Lake City, Utah to 
monitor drilling parameters (Takach et al. 1992; Hill et al. 
1993). In addition, four more intelligent drilling systems, or 
instrumented roof bolters, have been offered by the Muro-
ran Institute of Technology in Japan, the Robotics Institute 
of Carnegie Mellon University in the United States, J.H. 
Fletcher & Co. in United States, and Atlas Copco AB in 
Sweden. Table 1 shows a summary of these four smart drill-
ing systems based on instrumented roof bolters for ground 
characterization (Kahraman et al. 2016; Liu et al. 2018).

Over the years, intelligent drilling systems have been 
advanced for ground characterization, such as joint detection 
and rock strength estimation, by monitoring various drilling 
parameters. However, these systems typically had limited 
accuracy relative to varying ground conditions, and therefore 
needed further improvement to be widely employed in field 
applications. For example, one of the remarkable studies in 
this field was conducted by a research team at West Virginia 
University (WVU). The WVU team, collaborating with J.H. 
Fletcher & Co., developed a smart drilling system that was 
focused on a roof bolter to monitor drilling processes for 
ground characterization; however, this intelligent system 
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had limited success in detecting joints and/or voids with 
an aperture less than 3.175 mm (1/8-in) in many labora-
tory and field tests (Finfinger et al. 2000; Peng et al. 2003; 
Collins et al. 2004; Anderson and Prosser 2007). The other 
three drilling systems have also had similar limitations. In 
addition to missing certain joints (false negative), many 
false alarms have been reported (false positive), identifying 
joints and/or voids that do not actually exist in the ground. 
Using the MWD technologies, such as the percussive drill 
or the rotary drill units, for rock characterizations were also 
studied in the past few years (Posiva 2010; Schunnesson 

and Kristoffersson 2011; Rai et al. 2015; Hatherly et al. 
2015; Ghosh et al. 2017; Khorzoughi et al. 2018). However, 
the ability of these drills in sensing hairline joints was not 
discussed.

The research work reported in this paper mainly 
focuses on improving the precision and sensitivity of the 
joint detection system to identify joints and/or voids with 
an aperture less than 3.175 mm (1/8-in) by monitoring 
drilling parameters that are recorded while drilling. A 
J.H. Fletcher & Co. roof bolter was employed in full-
scale drilling tests in this research to refine capabilities 

Fig. 1  Typical behaviors of the 
thrust force as drill encounters 
various rock discontinuities

Table 1  A summary of four intelligent drilling systems to instrument roof bolters for ground characterization (Kahraman et al. 2016; Liu et al. 
2018)

System Country Parameters Specification Remarks

Parvus Corporation System United States Thrust, torque, RPM, penetra-
tion rate

The real-time specific energy of 
drill was calculated

Not currently applied

Muroran Institute of Technology 
System

Japan Thrust, torque, RPM, penetra-
tion rate

The system could estimate roof 
rock 3-D geo-structure

No updates

Robotics Institute of Carnegie 
Mellon University System

United States Thrust, torque, RPM, penetra-
tion rate

A neural network was used to 
classify rock lithology

No updates

J. H. Fletcher & Co. Feedback 
Control System

United States Thrust, torque, RPM, penetra-
tion rate

Real-time detection of roof geol-
ogy. Drilling parameters can 
be preset

Commercially available

Atlas Copco AB Boomer E3-C30 
based MWD-systems

Sweden Percussive pressure, feed pres-
sure, dampener pressure, rota-
tion pressure, RPM, penetra-
tion rate

The system could interpret rock 
strength include Schmidt 
Hammer, Point-Load, Indirect 
Brazilian Tensile, and Uniaxial 
Compressive Strengths

Commercially available
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of joint detection models and related data analysis pro-
grams. A set of new sensors, including acoustic and vibra-
tion sensors, were mounted on the drilling unit to record 
additional drilling parameters for further data analysis. 
This paper will briefly review procedures for laboratory 
testing, detection-programs development based on pattern 
recognition algorithm (Murphy 2012; Bishop 2006; Duda 
et al. 2012). These programs were used to examine their 
capability to maximize their detection rate, while mini-
mizing the number of false alarms. Figure 2 presents a 
flowchart summarizing the pattern recognition programs 
for joint/void detection.

3  Full‑Scale Laboratory Drilling Tests

A series of laboratory tests were planned and carried out 
with a J.H. Fletcher & Co. developed rotary-drilling roof 
bolter at the J.H. Fletcher & Co. testing facility in Hunting-
ton, WV, United States. A drill control unit (DCU), which 
allows for automatic control of the drilling cycle and collect-
ing drilling data during the drilling process, was installed 
on the drill. Drilling parameters, including feed pressure 
(thrust), rotation pressure (torque), penetration rate, RPM, 
drill bit position in the borehole, and vacuum or water pres-
sure, were monitored by the DCU while drilling, and were 
used for joint detection in this study. The sampling interval 

Fig. 2  The schematic of pattern recognition programs available/proposed for joint/void detection
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of the DCU was preset at 100 Hz for data collection. In 
addition, vibration and acoustic sensors were added to the 
drilling unit drive system to generate related data as addi-
tional sources of information for improving the capabilities 
of the unit for characterizing the ground while drilling. The 
acoustic sensor was a simple Piezoelectric disk, or piezo 
buzzer, which is also known as a contact microphone. The 
vibration sensor, which was a PiezoStar accelerometer, is 
known as PCB 353B31 accelerometer. In this study, both the 
acoustic and vibration data were collected using sampling 
rate of 1000 Hz. (Anderson and Prosser 2007; Bahrampour 
et al. 2015; Liu et al. 2017; Rostami et al. 2014, 2015). Fig-
ure 3 shows the J.H. Fletcher roof bolter testing unit with the 
data-recording system.

In laboratory testing, a set of concrete blocks were cast, 
following by curing for more than 28 days. The dimensions 
of each block were approximately 0.9 m × 0.9 m × 0.76 m, 
and these blocks were arranged into three groups represent-
ing soft (S), medium (M), and hard (H) roof rocks, respec-
tively. Corresponding UCS strengths of samples in S, M, 
and H groups were  ~ 20 MPa, 50 MPa, and 70 MPa. Test 

samples were made by stacking one block on the top of 
another, leaving a gap with a clearance of approximately 
2 mm between adjacent blocks to simulate a joint for detec-
tion. Figure 4 is an example of a cast concrete block and test-
ing sample. The location of the planned joint was, therefore, 
at a depth of ~ 0.76 m within each testing sample. Further-
more, various combinations of the above-mentioned blocks 
allowed for simulations of different existing conditions of 
the joints in nine combinations of concrete blocks. Table 2 
shows the matrix for full-scale laboratory drilling tests for 
joint detection.

4  Analysis of Drilling Data for Joint 
Detection

Drilling parameters including feed pressure (thrust), rotation 
pressure (torque), rate of penetration (ROP), rotary speed 
(revolution per minute, RPM), acoustic, vibration, etc., 
were recorded while drilling into the test samples. Review-
ing properties of the recorded drilling data indicate that 

Fig. 3  The J.H. Fletcher roof 
bolter testing unit with the data-
recording system

Fig. 4  An example of a cast 
concrete block and a testing 
sample
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signature behaviors can be observed while drilling through 
the pre-designed joints. Given the objective and scope of 
the study, the test settings were designed to simulate various 
possible scenarios of encountering various rock strengths 
along the borehole. Some of the observed signature behav-
iors in the monitored drilling parameters were because of 
the drill control system of self-adjusting to keep the preset 
ROP and RPM, while the drill bit encountered a joint/void. 
In addition, the captured signature behavior was different 

from one drilling parameter to another. For example, mean 
changes in the feed pressure and rotation pressure were the 
signature of passing through a joint, while changes in the 
frequency and amplitude of signal were the signature of the 
same feature in the acoustic and vibration data. Therefore, 
the objective of statistical analysis of joint detection algo-
rithms, in particular pattern recognition algorithm, was to 
examine the efficiency of the proposed methods to observe 
signature behavior of each drilling parameter. Figure 5 is an 
example of the drill bit position, feed pressure, and rotation 
pressure data that were recorded while drilling into the M–M 
test sample. As circled in Fig. 5, a clear change/drop was 
observed both in the data stream of feed pressure and rota-
tion pressure when the drill bit reached the pre-designated 
joint at a depth of ~ 0.76 m.

A preliminary analysis of properties of the collected 
acoustic data as well as the vibration data has also dem-
onstrated the feasibility of using these drilling parameters 
towards locating of joints. The recorded acoustic and 
vibration signals tend to have a higher frequency than the 
“noise” while drilling through the block. Thus, high-pass 
filters were designed to filter out the low-frequency com-
ponents for the recorded signals with objective of improv-
ing joint detection. Figure 6 shows an example of the raw 
and filtered acoustic data. A clear gap was captured in the 
filtered acoustic data when the drill bit encountered the 
pre-designated joint. Similar features were also observed 
when analyzing the recorded vibration data. However, sub-
sequent assessment of the results of analyzing vibration 
data showed that the detection rates and number of false 
alarms were far inferior to those detected using measured 
feed and rotation pressures and as such further work on 
the vibration data was suspended. In addition, the acoustic 
data has strict limits due to the interference by the noises 
in the surround environment; in other words, it tends to be 
easily disrupted or interfered by various sound sources. As 
such, it is extremely difficult to filter out “noises” from the 
raw acoustic data. Therefore, the acoustic data were also 
excluded in further analysis.

A closer examination of the drilling parameters showed 
that a sudden change in feed and rotation pressures can be 
captured in the data stream when the pre-arranged joint was 
encountered during the full-scale drilling tests. Thus, occur-
rence of these sudden changes in a certain direction has been 
considered to be a signature for the detection of joints in 
this research. The research team has focused on these signa-
tures when developing new pattern recognition algorithms to 
achieve higher accuracy and precision to detect joints while 
drilling. Higher accuracy is defined as an increased detection 
rate (%) combined with a reduced occurrence of false alarms 
in the detection process.

Table 2  Matrix of laboratory tests for joint detection

Concrete Block Strength: S, soft strength (~ 20 MPa or ~ 2900 psi); 
M, medium strength (~ 50 MPa or ~ 7200 psi); H, hard strength (~ 70 
MPa or ~ 10,000 psi)

Order Sample setup Joint condition

Bottom Top

1 S S A simulated “joint” with the 
aperture less than 3.175 mm (or 
1/8-in) that located at the depth of 
about 76.2 cm (or 30-in)

2 S M
3 S H
4 M S
5 M M
6 M H
7 H S
8 H M
9 H H

Fig. 5  Example of the drill bit position, feed pressure, and rotation 
pressure data collected while drilling
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5  Programs Development Based on Pattern 
Recognition Algorithms

The pattern recognition algorithms such as mean detection, 
CUSUM, etc. were designed based on the AI and machine 
learning routines that are used in various industries to iden-
tify and detect changes in data stream. The algorithm dis-
cussed in this section is one of the different algorithms used 
in this study that had better performance.

The cumulative sum (CUSUM) algorithm, which was 
initially presented by ES. Page (1954) and further refined 
by Basseville and Nikiforov (1993), is typically applied to 
identify abrupt changes in streaming data. To develop pat-
tern recognition systems for joint detection, the CUSUM 
algorithm has been employed and fine-tuned for developing 
joint detection algorithms in this research. As noted before, 
monitored drilling parameters, including the feed pressure 
and rotation pressure signals, were used in the analysis of 
mean change detection to identify the joint signatures. In 
addition, the “moving windows” statistical technique was 
incorporated in the updated CUSUM algorithm in which 
mean changes between two adjacent windows could be cal-
culated, as presented in Fig. 6. This approach allows the 
detection algorithm to report a joint alarm once the change 
over the preset threshold was detected and continuously 
examine following windows. The window scale can be 
defined according to the property of the monitored drilling 
data.

To implement the updated CUSUM algorithm, a time 
series yk (k = 1, 2, 3 …) was assumed to be a time Gauss-
ian random sequence with a variation of �2 . Supposing an 
unknown change exists in the data stream at time ta, and yk 
has a mean of �0 before ta, the mean value of yk becomes 
�1 = �0 − v after time ta. Therefore, the variable gk is used 

to process this time series and identify a changed feature as 
expressed in the following formula:

The detection alarm time can be defined as:

where h is an adaptive threshold that can be pre-defined 
based on the property of the analyzed data, v is the differ-
ence of mean values of the time series, yk , before and after 
the change, and g0 = 0 (Basseville and Nikiforov 1993). 
Figure 7 shows a plot of calculated gk from a feed pres-
sure signal. When the value of gk is equal to or larger than 
the threshold value h, the detection alarm will be activated; 
in this case, a joint is assumed to be identified. This algo-
rithm has been implemented in the detection program and 
data from various tests have been analyzed using the sug-
gested algorithm to measure the success of the program in 
the detection of joints using changing threshold values. The 
threshold values used for the detection algorithms were 50% 
of �0 values to allow for self-adjusting of the detection pro-
gram while drilling through different rocks.

6  Statistical Analysis on Joint Detection 
Results

In the laboratory tests, a pattern of boreholes was drilled in 
each set of test samples for detection of the pre-designed 
joints using the pattern recognition algorithms. Figure 8 rep-
resents an example of the joint detection results by analyzing 
the feed pressure, rotation pressure, acoustic, and vibration 
data on the M–S composite sample. A total of 18 boreholes 

(1)gk = max

{

gk−1 − yk + �0 −
v

2
, 0

}

.

(2)talarm = min
{

k ∶
(

gk ≥ h
)}

,

Fig. 6  An example of the raw 
and filtered acoustic data
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were drilled in this sample. The data collected from the tests 
have subsequently been analyzed and the results are summa-
rized in these graphs, where detection of the joint in the cor-
rect location is marked and the false alarm (or detected joints 
where they did not exist) was also marked (see Fig. 8). All 
the joints were successfully identified at approximate loca-
tion of the pre-designed joints. While, the potential errors 
and successes of analyzing different drilling parameters to 
sense joints in rock are not fully explored. The observations 
could provide suggestions for parameter selections and per-
formance evaluations in field practices. The selection of 
viable algorithms was based on maximum detection rates 
and minimum errors, as indicated by statistical analysis 
of the results. A detection rate of 100% was achieved in 
the analysis of the feed pressure in this scenario. But two 
false alarms (red diamonds) were also generated during the 
detection process in sample M–S. When analyzing the rota-
tion pressure data, all of the 18 joints were detected (100% 
detection rate) but 17 false alarms were also generated. Per-
forming pattern recognition on the acoustic and vibration 
data also provides reasonable joint detection results. The 
detection rate by analyzing the acoustic data was 100% with 
13 false alarms and the vibration data provide a detection 
rate of approximately 83% with 11 false alarms. Meanwhile, 
since the acoustic and vibration signals were recorded by a 
separate data acquisition system, there were some variations 
on the estimated joint locations compared to those recov-
ered from the feed and rotation pressure data. Similar joint 
detection results were also achieved from another eight block 
samples by monitoring the drilling parameters.

Table 3 shows the summary statistics of the joint detec-
tion results from the 156 boreholes (drilled holes in nine 
block combinations) by monitoring the drilling parameters 
of feed pressure, rotation pressure, acoustic, and vibration 
data. Of these four drilling parameters, the feed pressure 

offered the best performance in joint detection in all nine 
concrete composite samples. This generated an average 
detection rate of ~ 94% with 12 false alarms. Compared to 
the feed pressure, the rotation pressure provides a slightly 
lower performance in joint detection as it generates a higher 
number of false alarms. Analyzing the rotation pressure 
using the current algorithm offers a detection rate of approx-
imately 88% with a total of 109 false alarms. The acoustic 
and vibration sensors were initially mounted on the instru-
mented roof bolter to record related data for rock-strata clas-
sification. The recorded data also offered certain capabilities 
to identify joints and/or voids. The average detection rate 
obtained by analyzing the acoustic data was about 84% with 
39 false alarms in all 156 boreholes. The average detection 
rate was  ~ 68% with 92 false alarms when vibration data 
were used. The gravels used in the concrete blocks caused 
relatively large deviations in recorded drilling parameters 
compared to drilling through the rock. The signature of drill-
ing through gravels could confuse the detection algorithms 
to locate pre-designed features and therefore caused different 
detection rates and errors in different concrete settings. How-
ever, the performances of the monitored parameters in vari-
ous concrete settings were aligned with their performances 
in the overall analysis. To mitigate this problem, all the 
follow-up tests were conducted in grout samples with a set 
target strength and excluding large size gravels in the mix.

Detection results reveal that drilling parameters have 
different capabilities and performances for joint detection. 
Analysis of the data shows that monitoring different param-
eters might result in different detection results. For exam-
ple, a joint could be detected through analysis of one drill-
ing parameter, but was missed when interrogating another 
parameter. Similarly, analyzing one drilling parameter 
might cause a false alarm that is not generated by moni-
toring another parameter. Therefore, the use of statistical 

Fig. 7  A plot of calculated gk 
from a feed pressure signal
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analysis methods is critical to evaluate performances of vari-
ous detection algorithms using a certain drilling parameter 
and to make the proper selection of parameters or composite 
parameters to detect the target rock properties, in this case 
joints. In statistical hypothesis testing, the notion of Type 
I and Type II errors is an integral part of the evaluation 
process. A Type I error, also referred to as a false-positive 
error, commonly occurs when incorrectly rejecting a true 
condition of the null hypothesis (H0). Typically, a Type I 
error causes a conclusion that a supposed condition exists 

while in fact it does not. A Type II error, also referred to as 
a false-negative error, happens when improperly accepting a 
false null hypothesis (H0). Usually, a Type II error leads one 
to reject a true alternative hypothesis (Neyman and Pearson 
1933; Sheskin 2004; Peck and Devore 2011).

In this study, the null hypothesis (H0) was set as the exist-
ence of a void/joint in real. Therefore, a Type I error only 
occurs when a joint information was missed. A Type II error 
only occurs when a false alarm was generated and a joint 
was suggested by the program where it did not exist. As for 

Fig. 8  An example of joint detection results on the M–S composite sample by analyzing the feed pressure, rotation pressure, acoustic, and vibra-
tion data. a Feed pressure. b Rotation pressure. c Acoustic. d Vibration
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the statistical hypothesis testing of Type I and Type II errors, 
the power of a hypothesis test is typically applied to reject 
an incorrect null hypothesis (H0), and therefore make the 
right decision. The power of a drilling parameter is the prob-
ability calculated using 1 min the probability of the Type II 
error. Table 4 indicates probability and power summaries in 
evaluating joint detection results achieved from the moni-
toring of feed pressure, rotation pressure, and acoustics and 
vibrations.

According to the statistical analysis of the joint detec-
tion results, the feasibility of monitoring these four drilling 
parameters towards joint detection have been presented, but 
differences in their sensitivities and precisions are observed. 
Of these four drilling parameters, monitoring the feed pres-
sure offers the best performance in joint detection in all nine 
scenarios for the various sequences of rock hardnesses. It 
generates the smallest probabilities of both Type I (6%) 
and Type II errors (8%); in other words, the feed pressure 
provides the highest sensitivity and precision in identify-
ing joints and makes the minimum number of false alarms. 
Thus, the power of using the feed pressure is up to 92%.

Although the rotation pressure offers a slightly lower 
detection rate in joint detection (88%), it yields false alarms 
up to 109 in this study, meaning a probability of 70% for the 
Type II error. Therefore, it is possible to analyze the rotation 
pressure for the objective of joint detection but it tends to 
cause much higher false alarms.

For the acoustic data, notable differences in performance 
were observed, where relatively low probabilities of the 
Type I and Type II errors (16% and 25%, respectively) were 
achieved. Thus, the acoustic sensory data could be consid-
ered as an alternative parameter in terms of joint detection; 
however, it offered a relatively low number of detection 
(75%). The vibration data are prone to miss the joints alto-
gether and tends to issue more false alarms when it comes to 
joint detection, or Type I error (32%). The Type II error and 
the power of the vibration as a joint-detection index were 
59%, and 41%, respectively.

7  Use of Composite Parameters

The capabilities of using pattern recognition algorithms to 
monitor individual drilling parameters for joint detection 
were examined but possibility of improving the detection 
rates with composite parameters was also explored. This was 
due to different sensitivities of individual drilling param-
eters on joints or voids, which were marked as changes in 
recorded data. Using composite parameters, which are com-
binations of multiple individual drilling parameters, offered 
higher accuracy in identify joints or voids, as will be dis-
cussed here.

Field penetration index (FPI) is widely applied on tunnel 
boring machines (TBMs) for rock excavation in the field of 

Table 3  Statistics of joint detection results using the four drilling parameters in 156 boreholes

Concrete settings Feed pressure Rotation pressure Acoustic Vibration

Detection 
rate (%)

False alarms Detection 
rate (%)

False alarms Detection 
rate (%)

False alarms Detection 
rate (%)

False alarms

S–H 93 1 86 8 64 4 43 4
H–S 88 1 76 4 82 3 53 2
M–H 100 0 94 6 100 4 76 9
H–H 94 1 83 1 83 0 72 3
H–M 100 2 95 16 95 4 62 11
M–S 100 2 100 17 100 13 83 11
S–M 89 2 83 20 83 3 56 18
M–M 82 1 76 13 71 1 82 17
S–S 100 2 94 24 81 7 81 17
Summary 94 12 (8%) 88 109 (70%) 84 39 (25%) 68 92 (59%)

Table 4  Probabilities of the 
Type I and Type II errors and 
corresponding powers of using 
various drilling parameters

Drilling parameter Probability
(Type I error) (%)

Probability
(Type II error) (%)

Power (%)

Feed pressure 6 8 92
Rotation pressure 12 70 30
Acoustic 16 25 75
Vibration 32 59 41
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tunneling. It describes the boreability of the rock while oper-
ating a TBM in changing geological conditions (Tarkoy and 
Marconi 1991; Hassanpour et al. 2011). In tunneling, FPI 
is simply the rate of penetration normalized by thrust. It is 
calculated by dividing the thrust, in this case feed pressure, 
by the rate of penetration per revolution, expressed in “kN/
(mm/rev)” (MPa.rev/cm in this case). In this study, recorded 
FPI (based on pertinent parameters during the drilling test) 
was also analyzed with the above-proposed pattern recogni-
tion algorithms for joint detection, and it can be defined as:

where FP, feed pressure, MPa (or psi);
PR, penetration rate, cm/second (or inches/second);
RPM, rotary speed, rev/second;
FPI, MPa.rev/cm (or psi.rev/in).
Variations of FPI values while drilling through concrete 

blocks with different strengths as well as the pre-designed 
joint in the M–S sample can be clearly observed in Fig. 9a. 
Figure 9b shows joint detection results on the M–S sample 
by monitoring the FPI data.

Table 5 summarizes performance of the FPI on joint 
detection for all concrete samples. The average detection 
rate was up to 96% in all 156 boreholes; in addition, a total 
number of 14 false alarms, or 9%, were generated while 
drilling through the nine concrete sample combinations. 
The probabilities of causing Type I error and Type II error 
were 4%, and 9%, respectively. Therefore, a power of 91% 
was achieved by monitoring the FPI towards joint detec-
tion. Comparing to the feed pressure, which has the best 
performance on joint detection in above analysis, the com-
posite parameter FPI offers slightly higher detection rate (2% 
higher). Since using the FPI causes two more false alarms 
are generated, the FPI provides 1% lower power than the 
feed pressure.

8  Identification of Inclined Joints

As described above, the concrete samples had one simu-
lated joint perpendicular to the drilling direction. In real rock 
mass, the orientation of joints relative to the axis of drilled 
boreholes could be at angles ranging from  0o to  90o (Gong 
et al. 2005). Therefore, a set of new tests were performed in 
a specially designed and casted grout sample with multiple 
inclined joints. To simulate inclined joints, the soft strength 
Teflon material with the thickness of around 1.588 mm 
(or ~ 1/16 in) was placed in the concrete sample with pre-
designed angles, including inclined angles of  15o,  30o,  45o, 
and  60o relative to the horizontally drilling face. Figure 10a 
shows the schematic diagram of inclined joints in the con-
crete sample. #A and #B refer to two different samples in 

FPI =
FP

PR/RPM
,

one test block, where the # B was cast on the top of #A 
after it had been cured for 2 days. The sample was made 
of pre-designed grout with three different strengths (UCS), 
including Low (L, ~ 20 MPa), Medium (M, ~ 50 MPa), and 

Fig. 9  An example of joint detection results on the M–S sample by 
monitoring the FPI. a The variations of FPI. b The joint detection 
result

Table 5  Performance of the FPI on joint detection from all concrete 
samples

Drilling 
parameter

Average 
detection 
rate (156 
Holes)

False alarms 
(156 Holes)

Probability 
(Type I 
error)

Probability 
(Type II 
error)

Power

FPI 96% 14 (9%) 4% 9% 91%
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High (H, ~ 70 MPa) strengths, were used to fill various areas 
of #B, to simulate different rock layers. Figure 10b shows 
a picture of four inclined joints simulated with the Teflon 
material. Figure 10c demonstrates an inclined joint along a 
borehole observed from bore-scoping.

As noted before, the individual parameter feed pressure 
and the composite parameter FPI offer most reliable per-
formances on joint detection; therefore, these two param-
eters are employed as the main parameters for detections 
of inclined joints. Figure 11 displays the plot of recorded 
feed pressure data for drilling in the sample with inclined 
joints. As can be observed, the values of the recorded feed 
pressure vary while drilling through grouts with various 
strength values. Moreover, four distinct changes on the feed 
pressure data are observed at the location of four inclined 
joints. Similar apparent changes are also observed in the 
computed FPI data.

Drilling data from two nearby boreholes in which all four 
sets of inclined joints were located at similar depths were 
used in the analysis. Recorded feed pressure data from these 

two boreholes were analyzed by the modified algorithms, 
and correspondingly inclined joints in these two boreholes 
were identified at around expected locations, while no false 
alarms were observed. In addition, to evaluate the capability 
of the modified algorithms to locate inclined joints, bore-
scoping was also performed to look at the real depth in the 
boreholes. Figure 12 shows joint detection results achieved 
from analyzing the feed pressure data (FP) and the FPI data 
for drilling through inclined joints. The results show that 
perhaps detection of inclined joints could be easier since the 
drill bit spends more time in the joints within the borehole as 
compared to the joints that were perpendicular to the holes. 
This is due to the projected length of the inclined joints in 
the boreholes. At this time, the algorithms are incapable of 
identifying the angle of inclination of the joints along the 
borehole. This could be an interesting topic for further stud-
ies on this topic.

Fig. 10  Distributions of inclined 
joints in the concrete sample

a The schematic diagram of inclined joints

b Simulate inclined joints with Teflon material c A simulated joint in boresocping 
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9  Conclusions

In this research, new pattern recognition algorithms 
were proposed based on an updated CUSUM algorithm 
to precisely discriminate joints and/or voids with small 
apertures. The analysis of data collected from full-scale 
testing of roof bolter drills indicated that joints and/or 
voids with an aperture of less than 3.175 mm (1/8-in) can 
be effectively recognized by employing newly developed 
algorithms to monitor drilling parameters. Statistical 
hypothesis testing, including quantifying false-positive 
and false-negative errors and corresponding powers of 
using four individual drilling parameters, was performed 
to assess their rationality and reliability for joint detection 
using a rotary-drilling system. Statistical analysis verified 
the precision and sensitivity of the proposed pattern recog-
nition algorithms to sense joints with small apertures. The 
results show that among the four drilling parameters that 

were monitored in the full-scal tests, including feed pres-
sure, rotation pressure, acoustic, and vibration, the feed 
pressure is the preferred parameter which offers the most 
reliable and precise performance in sensing joints with 
an aperture less than 3.175 mm (1/8-in), with a minimum 
number of false alarms in various combinations of rock 
strengths on opposite sides of the joint.

The feasibility of using the composite parameters to 
provide more accurate joint detection has been examined 
in this study. Compared to the four drilling parameters, 
the composite parameter FPI offers better performance 
on joint detection. Subsequent laboratory drilling tests 
on samples containing four sets of inclined joints, with 
different orientation angles and smaller apertures (around 
1.588 mm or 1/16-in), also proved the possibility of using 
the modified algorithms for joint/fracture identification. 
This was based on using the detection program for analysis 
of recorded individual and composite drilling parameters.

Additional studies are essential to further improve the 
capabilities of the proposed pattern recognition algorithms 
to identify joints with more complex geometries and con-
ditions, such as joints with even smaller apertures, joints 
at various angles of inclination to drilling, and the simul-
taneous presence of multiple joints. Moreover, to mitigate 
negative effects of “noises” which are also involved in 
data for operational and natural reasons, particular filters 
suitable to the properties of monitored parameters are also 
necessary to initially clean up the data before analysis. 
Additional full-scale laboratory tests have been carried 
out with these objectives in mind and data analysis is 
underway.
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