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SUMMARY

A dual-porosity poroelastic model is extended to represent behaviour in cylindrical co-ordinates for the
evaluation of flow-deformation effects in cylindrical laboratory samples incorporating a central wellbore or
non-repeating axisymmetric injection on the periphery. Nine-node quadratic elements are used to represent
mechanical deformation, while eight-node linear elements are used to interpolate the pressure fields, which
offers significant advantages over the behaviour of other non-conforming elements. The model presented is
validated against simplified analytical results, and extended to describe the behaviour of homogeneous and
heterogeneous laboratory specimens subjected to controlled triaxial state of stress and injection tests.
Apparent from the results is the significant influence of stress-deformation effects over system behaviour.
Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid flow through natural fractures has been a subject of interest for numerous years
in the areas of energy exploitation and the development, protection and restoration of
water resources. Due to the topological complexities associated with natural fractures,
non-traditional approaches frequently have to be utilized to define fluid transmission and
mass transport behaviour as a function of the distribution and behaviour of fractures within the
porous matrix. Further, complications in quantifying flow are incurred when porous media are
subject to additional loads such as stress and temperature variations. Coupled phenomena are
difficult to represent, in part due to the poorly understood and complex response of natural
media, but also due to the difficulty in adequately characterizing behaviour of the fracture
component as subjected to variable stresses. Numerical methods may be used to unveil the
vagaries of response to complex loads, accommodating varied degrees of coupling, as necessitated
by the problem at hand.

Of critical importance is understanding the mechanisms by which anisotropic and heterogen-
eous permeability fields may develop1,2 as a result of instantaneously applied mechanical loads,
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and transient diffusive pressure and thermal effects. These phenomena develop complex response
that may only be represented by numerical means.

Extensive literature is available documenting the influence of deformation on fluid transmis-
sion, both in the field and in laboratory experiments. Bawden et al.3 showed that increasing
normal stress rapidly reduces permeability magnitudes, which may be associated with fracture
compressibility. Louis4 studied the influence of overburden stress variation on permeability
measured at various depths in boreholes drilled in fractured formations. After examination of
numerous test results, he concluded that the relationship between permeability and normal stress
followed a negative exponential function. However, numerous fracture permeability tests show
that this relationship does not often match real test data.5

The dominance of flow in fractures is exhibited in fractured crystalline rocks, such as
granite, or in shales and clays where matrix blocks contribute negligible fluid mass to
the highly conductive fractures. In contrast, fluid flow in unconsolidated materials such as gravels
or highly permeable sandstones is essentially interstitial where flow routes may be rather
tortuous. Fractured carbonate rocks such as limestones, clays or shales may comprise both
permeable fractures and matrix blocks. Flow in such media may represent an intermediate
characteristic between fracture flow and interstitial flow, approximating a dual-porosity response.
In the dual-porosity poroelasticity system, the process of solid deformations coupled with the
fluid flow is affected by the interaction between fractures and porous blocks. The behaviour of
a dual porosity medium lacking coupling with the solid displacement field has been investigated
since the early 1960s.6~10 A special and restricted case of coupled dual-porosity poroelastic
behaviour applicable to consolidation in fractured rock formations was presented by Duguid11

and Duguid and Abel.12 A generalized framework for flow through porous media with multiple
porosity was introduced later and indepedently by Aifantis,13,14 who employed a continum
mixture formulation. The application of this theory has been completed either through analytical
means,15 or by numerical methods.16

Elsworth and Bai17 presented an alternative dual-porosity poroelastic solution with applica-
tion to two-dimensional geometry. Bai et al.18 extended the traditional dual-porosity concept to
the behaviour of generalized multiporous media with emphasis on reservoir ccharacteristics. The
present study provides an improved dual-porosity poroelastic model developed in three-dimen-
sional cylindrical co-ordinates, suitable for simulating coupled flow and deformation through
fractured rock specimens prepared in the laboratory. This solution is further simplified for
axisymmetric cases. In order to obtain precise coupling between displacement and pressure fields,
quadratic displacement and linear pressure interpolation functions are chosen. A nine-node
non-linear isoparametric brick element is used to achieve a higher-order interpolation for
displacements than for pressures, in which an eight-node linear isoparametric brick element is
used. This method achieves similar improvements as adding the non-conforming modes, but
appears to be more robust than the latter approach. Attempts have been made to provide
pressure as well as displacement contour profiles in a point injection/withdrawal situation.
Parametric investigation focuses on identifying the influences of spatial heterogeneities on the
pressure and deformation fields.

2. MODEL FORMULATION

Based on the coupled phenomena of fluid flow and solid deformation in a fractured porous
medium, a set of coupled governing partial differential equations can be established with fluid
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pressure and rock displacement as primary unknowns:14,18
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where subscripts 1 and 2, represent the matrix and fractures, respectively; j and G are Lamé
constants, a is the fluid pressure ratio factor or Biot coefficient,19 b is the relative compressibility
representing the lumped deformability of the fluid and the solid, k is the permeability, k is the fluid
dynamic viscosity, u is the transfer coefficient, u is the solid displacement, and p is the fluid
pressure.

2.1. Numerical formulation

The effective stress law for a dual-porosity medium may be expressed as:
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where subscripts i"1 and 2 represent the matrix and fractures, respectively, Lr are the total
stresses, Lr% are the effective stresses, m is a one-dimensional binary vector and can be expressed
as mT"(1 1 1 0 0 0) for a three-dimensional formulation.

Considering the linear relationship between stresses and strains, the modified effective stress
law in a dual-porosity system may be expressed as17
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where D
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is a composite elasticity matrix representing matrix and fractures and will be defined
later, and C

i
is the compliance matrix.

Substituting the modified effective stress law in equation (5) into the force equilibrium equation
p
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"0 where inertial effects are neglected, applying then the variational principle, and dividing
through by *t, the momentum balance in finite element form can be expressed as
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where » is the volume of the integral domain, S is the domain surface on which traction f is
applied, M and N are the vectors of shape functions interpolating fluid pressures and solid
displacement, respectively, and B is the strain—displacement matrix, which will also be defined
later.

Incorporating laminar flow and neglecting gravitational potential, Darcy’s law can be written
as

q
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(7)

where q
i
is the vectors of fluid fluxes within matrix (i"1) or fractures (i"2).
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Equating the devergence of Darcy’s velocity in equation (7) to the rate of fluid accumulation
due to all sources, such as the effect of temporal variation of volumetric strain, applying
Galerkin’s principle and pressure mapping functions, and neglecting the impact of fluid body
force, the mass balance in finite element form may be given for each phase i as
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where q is a vector of applied boundary fluid sources, and the sign $is determined based on i"2
and i"1, respectively.

The matrix form of the finite element equations, for a representative time level after using a fully
implicit finite difference scheme in the descretized time domain, may be established as
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where superscript T represents the matrix transposition, /"t#*t, and
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where f * is the surface traction, q* is the fluid flux, N and M are the shape functions for
a nine-node higher-order and an eight-node linear isoparametric elements, respectively.

In the finite element method, the shape functions are used to map the element displacements
and fluid pressures at the nodal points. For the fluid pressure approximation in phase i, one has
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or at the nodal level,
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where p
i
is a vector of nodal pressure in phase i for the eight-node three-dimensional element. M is

a vector of shape functions for pressure, which can be given in short form as
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where m, g, and f represent the local co-ordinates of the bi-unit cube with the origin at the
centroid, and are confined by the magnitudes of !1 and 1, representing nodal co-ordinates m

j
, g

j
and f

j
.

Although frequently used in practice,20—24 it may be inappropriate to assume that the interpo-
lation functions for solid displacements N and for fluid pressure M are identical. It is understood
that the component of the partial stress tensor is continuously differentiable to the first order. As
a result, the polynominal interpolation functions for the pore pressure distrubution must be one
order lower than that chosen for the displacement field. Sandhu and Wilson25 were among the
first to apply the quadratic displacement and linear pressure expressions to evaluate finite
element functions using triangular elements.

However, higher-order elements are frequently considered, creating computational difficulties
being supposedly mathematically superior. To date, significant efforts have been devoted to
determining the appropriate conditions for use, and advantage of using non-conforming shape
functions (or incompatible mode).26—31 By definition,27 an incompatible mode is generated when
the constant strain conditions are not satisfied for a four-node isoparametric quadrilateral
element; or, in a more general sense, the shape functions are non-conforming if they are designed
in such a manner that the continuity conditions for the displacement functions are different at
different element interfaces. The focus of efforts is primarily is non-coupled elastic problems, such
as beam bending analysis, in which the higher-order functions, similar to the analytical shear
function in elastic beam theory,32 are added to the linear displacement functions to improve
computational accuracy. The results from these studies are incontrovertibly encouraging but are
reflected in the development of suitable rectangular elements.31 Taylor et al.28 suggested a re-
medial approximation for arbitrarily shaped elements with an improvement in passing the patch
test, however, only in limited and specific cases. According to our investigation, it appears that the
suggested non-conforming shape functions are applicable only for certain bending problems to
minimize the errors due to the difference between spurious shear and pure bending. However, the
method may result in computational difficulties when used for other scenarios because the
suggested non-conforming functions may improve the calculation for displacements only along
certain element interfaces (e.g. vertical edges). This method may become especially suspect for
higher dimensions (e.g. three-dimensional) even though the related functions were suggested by
Wilson et al.31 Furthermore, almost no data are available with the regard to the effect of the
suggested method in the coupled poroelastic analysis, with one exception, by Khaled et al.,16 who
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applied the method in two-dimensions. However, no details were given in their study. In
similar studies, our experience indicates increased difficulties in obtaining sensible results
using the non-conforming shape functions, particularly for three-dimensional problems and
when the element shape is non-rectangular. As a result, an alternative approach is
investigated.

In this work, a quadratic displacement field and a linear pressure field are chosen. For the
choice of a 3-D element, a higher-order representation can be accommodated by adding a central
node to the element. This internal nodal variable is designed only to achieve a higher-order
interpolation for the displacement than for the pressure. For the nine-node element (eight corner
nodes and one central node), the expressions for the approximation in mapping nodal displace-
ments may be described as
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or at the nodal level,
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where u is a vector of nodal displacements and uT"Mu
r
, uh, uzN. N is a vector of shape functions

for displacements. For the first eight nodes, N are chosen to be identical to M in equation (22).
For the central node, however, N is given as follows:

N
9
"(1!m2) (1!g2) (1!f2) (24)

This higher-order shape function improves the elemental behaviour in the displacement and
subsequent stress modes. For example, the present method does not possess any difficulties in
passing the patch test, in comparison with other traditional non-conforming methods. Further
comparative study is carried out to identify the importance of using the present method.33 For
a column consolidation using the three-dimensional elements, the present method with the linear
pressure and non-linear displacement shape functions yields the accurate result, as indicated as
the normalized values of mode 1 in Table I. In contrast, the method with the same order
non-linear pressure and displacement shape functions leads to 2—5 percent deficiencies (see mode
2 in Table I), while the method using linear pressure and displacement shape functions results in
6—12 per cent surplus (see mode 3 of Table I), compared with the values in mode 1. Among the
different modes, the one with the linear displacement shape function may produce the most
inaccurate results.

For simplicity, the superscript * for variables in equations (21) and (23), indicating the finite
element approximation, are omitted in the following description.

Table I. Comparative analysis of different shape functions

Mode u
3

p
1

p
2

Note

1 1)00 1)00 1)00 Linear p, Nonlinear u
2 !0)02 !0)05 !0)05 Nonlinear p, Nonlinear u
3 #0)12 #0)06 #0)06 Linear p, Linear u
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Strains within a single element may be related to nodal displacements through the derivatives
of the shape functions B as

e"Bu (25)

2.2. Matrices in cylindrical co-ordinates

The strain—displacement transformation matrix, B, is given by
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and E is the elastic modulus, l is Poisson’s ratio, s is the homogeneous fracture spacing, K
n
is the

fracture normal stiffness, and K
sh

is the fracture shear stiffness.
k
1

and k
2

are the permeability tensors for matrix and fracture as follows:
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The integration region is a three-dimensional cylindrical domain. As an example, at the
element level, the stiffness matrix A can be written as
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where DJ D is a Jacobian determinant, m, g and f represent local co-ordinates, r is the radius of the
cylindrical domain, which can be approximated as
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where j is the number of nodes per element.

2.3. Matrices in axisymmetric co-ordinates

For the case that the domain is axisymmetric with respect to the z-axis while the loads and
material properties are axisymmetric, the three-dimensional cylindrical problem may be degen-
erated to a two-dimensional system. In view of the present problem, the displacements u and
v occur in the r and z directions in a cylindrical co-ordinate system, where the displacement w in
the h direction remains unchanged since the changes of stress and pressure are independent of
angular co-ordinate h. Consequently, shearing strains c

rh and c
zh also vanish. The strain—displace-

ment transformation matrix, B, reduces to
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The elasticity matrix D
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and the related compliance matrix C
i
can be expressed as
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The integration region is in a two-dimensional axisymmetric domain. Again, at the element level,
the stiffness matrix A can be written as

A"2nP
1
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P
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~1

BTDBDJDrdmdg (41)

where r can be determined from equation (34).

3. MODEL VERIFICATION

The numerical models presented in cylindrical and axisymmetric co-ordinates are verified against
some existing solutions, as described in the following.

3.1. Case 1

For a thick hollow cylinder with flow across the domain, the present numerical solution is
compared with the analytical solution.34 The finite element mesh layout and boundary condi-
tions in cylindrical co-ordinates are depicted in Figure 1, where only a quarter of the domain is
shown due to symmetry. There are total 64 elements and 125 nodes. Permeability anisotropy in
the radial and vertical orientations is considered. The data used in the calculation are listed
in Table II (Column (a)). Because the verification is against single-porosity behaviour, flow
through fractures is maintained at a minimum by assigning vanishing porosity and negligible
permeability.

Figure 2 shows the comparison of pore pressure between numerical and analytical solutions
subject to various ratios of radial to vertical permeabilities. It is assumed that k

r
is equal to kh in

the horizontal plane. Agreement between numerical and analytical results is excellent. It is
apparent that increased radial permeability results in the earlier pressure variation, indicating the
more dominant flow along that orientation.

3.2. Case 2

The second case tests both cylindrical and axisymmetric models. The simulation is related to
radial flow through a confined homogeneous aquifer where the analytical solution is available
from Mueller and Witherspoon.35
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Figure 1. Mesh layout of flow in a hollow cylinder

Table II. Selected parameters for verification and modelling

Parameter Unit (a) (b) (c) (d) (e)

Elastic modulus E MN/m
2

100 10 1 10 1
Poisson’s ratio v — 0)2 0)2 0)2 0)25 0)25
Internal flow rate q

a
m

3
/s 0)8 0)5 1 5 5

External flow rate q
b

m
3
/s 0)4 — 0 4 4

Fracture stiffness K
n

MN/m2/m 2 20 0)1 1)1 0)1
Fluid bulk modulus K

&
MN/m2 0)1 0)01 0)001 0)01 0)01

Matrix porosity n
1

— 0)3 0)2 0)4 0)4 0)4
Fracture porosity n

2
— 0)0 0)0 0)1 0)1 0)1

Matrix permeability k
1
/k m4/(MNs) 10 ~8 10 ~10 10 ~5 10 ~5 10 ~6

Fracture permeability k
2
/k m4/(MNs) 10 ~25 10 ~25 0)1 0)1 0)01

Fracture spacing s m 1 1)25 0)2 1)2 0)2
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Figure 2. Comparison of temporal pore pressures

Figure 3. Mesh layout of flow in a cylindrical domain

A production situation is considered with a well of radius r
8

and constant flow rate q
8
. The well

penetrates an aquifer with outer radius r
%

and thickness h. Figure 3 shows the schematic mesh
layout and boundary conditions. In the analysis, 32 elements and 45 nodes are used for the
axisymmetric model, while 96 elements and 180 nodes are used for the cylindrical model.
A variable mesh spacing along the radial direction has been adopted to enhance the numerical
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Figure 4. Comparison of well drawdowns

accuracy. Parameters used in the simulation are given in Table II (Column (b)). Again, the
equivalent single-porosity conceptualization is used for comparison purposes.

Figure 4 illustrates the comparison of well drawdown between the presented axisymmetric and
cylindrical models and analytical solution. Again, an excellent match is obtained. It should be
pointed out that Valliappan and Khalili—Naghadesh20 examined this case using an alternative
dual-porosity poroelastic formulation. They were also able to match the analytical solution.

4. NUMERICAL SIMULATION OF LABORATORY TESTING

It is common practice to determine the permeability of rock specimens though either transient or
steady state injection and withdrawal techniques in which either pore pressure or flow rate is
measured in the laboratory environment. Incorporating the effect of loading and induced stresses
on the pore pressure, response is less common. Under such conditions, numerical investigation of
such effects appears to be of prime interest, as demonstrated in the following, where only the
transient fluid loading is considered.

Field injection or pumping through a centrally located well can be simulated by either
divergent or convergent flow tests via a central hole in the laboratory rock sample. Figure
5 shows a cylindrical sample with a point injection inside the central hole and the configuration of
the finite element meshes. Because both geometry and loading are symmetric to the vertical axis,
the axisymmetric finite element model can be used to predict variations of stress and pore
pressure. The nine basic parameters for the calculation, as introduced in the previous formula-
tion, are listed in Table II (Column (c)). Figure 6 shows the normalized pressure, radial and
vertical stresses as a result of fluid injection.

In the laboratory determination of permeability of rock sample, a point injection is usually
made through the side of the sample, such as shown in Figure 7 where the determination of
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Figure 5. Mesh layout of an axisymmetric model

Figure 6. Spatial distribution of pressure and displacements

horizontal permeability is desired. Under such circumstances, the axisymmetric model cannot be
used because the loading configuration is not symmetric to the vertical axis. Ideally, the
cylindrical model described in this paper can be used for the simulation. For the convenience of
mesh layout, a 3-D finite element model in Cartesian coordinate is chosen for the simulation.36
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Figure 7. Mesh layout of a point injection and withdrawal

The finite element arrangement is depicted also in Figure 7, where total number of nodes and
elements are 378 and 252, respectively. The parameters used in calculation are given in Table II
(column(d)).

Figure 8 illustrates the normalized displacements along horizontal and vertical directions,
together with the normalized fluid pressure 5000 seconds after the initiation of loading. Radical
changes of horizontal displacement are obvious near the inlet and the outlet, where the negative
values imply that the displacement is opposite to the x-axis direction. The peak changes of
vertical displacement can be located at the upper and lower portions approximately one third
distance between the inlet/outlet and top/bottom surfaces of the sample, due to the sample
constraints. The pressure profile is similar to that of horizontal displacement.

The changes of the normalized displacement and pressure in three different horizontal planes
(marked in Figure 7) are further examined. Figures 9, 10 and 11 describe the distribution of the
normalized displacements along x-, y- and z-axis directions along with the normalized pressure
profiles within the three different horizontal planes 5000 seconds after the initiation of loading,
respectively. It should be noted that u

z
vanishes at the third plane due to the symmetry. In

comparison, the displacement and pressure are most uniformly distributed in the plane farthest
from the source/sink (e.g. the first plane). This indicative influences of stresses on pressure at
different places has been verified through examining the case with a pure elastic deformation.
Pore pressures are displayed relative to a pre-withdrawal ambient fluid pressure of zero, hence
negative pore pressures are negative relative to this benchmark.

The influence of formation heterogeneities can be identified by spatially varying modeling
parameters. In this analysis, the heterogeneities of the formation are studied by placing two
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Figure 8. Spatial distribution of pressure and displacements

different kinds of materials in the domain, as shown in Figure 12. The modelling parameters in the
dark area of Figure 12 are given in Table II (column(e)), as the opposite of the other areas listed in
Table II (column(d)). The softer material (lower elasticity modulus), smaller fracture stiffness and
fracture spacings are typical parameters chosen for the latter case, replicating the inhomogeneous
soft bands in the otherwise homogeneous media.

Figure 13, 14 and 15 describe the normalized displacements along the x, y and z-axis directions
and the normalized pressure profiles at three different horizontal planes as shown in Figure 7.
Indeed the displacement and pressure contours show the largest differences in magnitudes
between homogeneous (Figure 9) and heterogeneous (Figure 13) rocks at the first plane, due to
the existence of the soft layer between planes 1 and 2. The results in the other planes show less
radical differences between the homogeneous and heterogeneous media.

5. CONCLUSIONS

A dual-porosity poroelastic finite element formulation in cylindrical co-ordinate is presented to
study the interactive behaviour of fluid flow and rock deformation for stress controlled injection
tests in a fractured rock specimen. The numerical formulation for the simplified axisymmetric
configuration is also given for the study with specific loading conditions and material properties.
Accurate coupling between the quadratic displacement and linear pressure fields is preserved to
achieve an improved numerical approximation in comparison with the traditional non-conform-
ing formulation. Numerical solutions are verified against some simplified analytical results with
excellent agreement. Numerical analysis attempts to replicate laboratory experiments where both
divergent flow through a centrally-located borehole and point injection and collection across
a cylindrical rock specimen are incorporated. The results reveal the significant influences of stress
variations on the changes in fluid pressure during the transient period of fluid flow. Rock
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Figure 9. Distribution of pressure and displacements in first plane Figure 10. Distribution of pressure and displacements in second plane
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Figure 11. Distribution of pressure and displacements in third plane Figure 12. A heterogeneous rock sample
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Figure 13. Distribution of pressure and displacements in first plane Figure 14. Distribution of pressure and displacements in second plane
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Figure 15. Distribution of pressure and displacements in third plane

heterogeneities may play an important role to channel the fluid flow, where soft rock materials
may form natural barriers to isolate the poroelastic impact in a localized area.
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