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Plane strain fracture toughness (K, ) values are determined for the modified
ring (MR) test through numerical simularion of crack growth to highlight the
sensitivity of MR K, values on applied displacement or force boundary
conditions, stip conditions at the specimen—platen interface, and the Poisson
ratio (v) of the test material. Numerical calculation of fracture toughness in
the MR test is traditionally conducted assuming a uniform force along the
specimen loading surfaces and no slip between the specimen and the loading
platens. Under these conditions K, increases by 30-40% as v decreases from
0.4 10 0.1. When slip is allowed at the specimen—platen interface under a
uniform force, K, values are independent of v, and for any given v, are 5-25%
less than those determined under a no-slip boundary condition. Under a
uniform displacement of the specimen loading surfaces, K, is essentially
independent of v, regardless of specimen—platen interaction. Moreover,
although K, values determined wnder uniform displacement and no-slip
boundary conditions are always higher than those determined under uniform
displacement and slip-allowed boundary conditions, the average difference in
K, for these two methods is less than 5% for the two specimen geometries
exqmined. This suggests that under uniform displacement conditions, K, is
essentially independent of specimen—platen interaction. Because K. values
determined from MR testing are strongly dependent on the modeling pro-
cedure, future reports of K, determined from this test should be accompanied
by detailed reports of the modeling procedure. Until further testing reveals the
most accurate simulation technique, we advocate use of a uniform displacement
Sormulation for K determination from MR testing because results from this
method are insensitive to most modeling paramerers. Numerical results from
models conducted under uniform force, no-slip boundary conditions should be
viewed as an upper bound to K,,.

INTRODUCTION lation of crack-tip stress intensity factors in a model with
exactly the same dimensions as the laboratory specimen
{1]. Published results using the modified ring test have
utilized displacement discontinuity [1] and finite element
i2-4] techniques for the second phase of the test, but do

not provide detailed descriptions of the modeling pro-

The modified ring (MR) test for plane strain fracture
toughness determination involves two phases: labora-
tory deformation of a specimen, and numerical calcu-
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cedure. This paper is concerned with the parameters that
affect the numerical modeling results for MR tests on
unconfined specimens, specifically when the modeling is
accomplished using the finite element method.

In the first phase of the MR test, two diametrically
opposed, flat loading surfaces are machined along the
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Fig. 1. Geometry of modified ring test specimens: (a} initial modified
ring specimen; (b} crack geometry in 2 modified ring specimen.

edges of a cylindrical specimen, and a hole is drilled
in the center of the cylinder [Fig. 1(a)]. Compression
applied to the loading surfaces results in a distribution
of stress (o,,) along the specimen axis like that shown in
Fig. 2. Further compression initiates cracks at the top
and bottom of the center hole that propagate parallel to
the loading axis [Fig. 1(b)]. A typical loading curve
recorded during loading and cracking of a MR specimen
is shown schematically in Figs 3(a) and (b}.

Dhuring a test a specimen is compressed at a constant
displacement rate. The resulting axial compressive stress
increases until time 7,, when cracks initiate from the top
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Fig. 2, Numerical solutien for the distribution of g,, along the y-axis
of & modified sing specimen under vertical compression.
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Fig. 3. Mechanics of the modified ring test: {a) typical time-varying

record of applied stress during a modified ring test; (b) variation in

stress during crack growth in 2 moedified ring specimen; (¢} variation
in K, with time during cracking of a modified ring specimen.

and bottom of the central hole of the specimen. These
cracks propagate unstably, requiring a decrease in stress
from ¢; to ¢,. to conirol crack growth until time 1,
[Fig. 3(b)]. After time /,, interaction between the cracks
and the crack—normal compressive stress field near the
loading surfaces (Fig. 2) causes the mode I crack-tip
stress intensity factors (K)) to decrease with increasing
crack length [Fig. 3(c)]. Thereafter, a continuously
increasing stress is required to drive the cracks {Figs 3(a)
and (b)]. The maximum in the K vs time curve (Kjn,,)
defines the fracture toughness (K).) of the specimen
because it is this value of K, that marks the transition
from unstable to stable crack propagation [Fig. 3(c)l.
Unlike many other fracture toughness tests [5-7}, there
is no need to determine crack length in an unconfined
MR test because the critical crack length {a.} corre-
sponding to K., coincides with the local minimum in
the load vs time curve shown in Fig. 3(a) (i.e. o).

A detailed explanation of the numerical modeling
procedure used in calculating K. from a MR test is
required if the numerical results are significantly affected
by any aspects of the modeling technique. Our analyses
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indicate the numerical results from a MR test may be
affected by a variety of factors, including the elastic
properties of the specimen, the method of crack-tip stress
intensity factor calculation, the fixity of the specimen at
the loading platen, and whether the simulation was
solved using an applied force or an applied displacement
formulation. In this paper we evaluate the impact of the
aforementioned parameters on K. determined from
numerical modeling of a MR test using both the tra-
ditional applied force [1] and an applied displacement
formulation. Using a displacement formulation, a new
method for calculating K, is developed that appropri-
ately represents the behavior anticipated when applying
load through rigid platens.

NUMERICAL MODELING PROCEDURE

Numerical modeling in this study was accomplished
using the interactive finite element program FRANC
{(FRacture AWNalysis Code) developed at Cornell
University [8]. Because of built-in crack growth and
remeshing capabilities, FRANC is particularly well-
suited for numerical modeling of MR tests, where
knowledge of the variation in K, with increasing crack
length is required. Finite element modeling of such
incremental crack growth traditionally presents a
significant problem because each time a crack extends,
an entirely new problem must be formulated to account
for the continuailly changing geometry of the cracked
body. FRANC overcomes this difficulty by allowing
the user to insert new cracks into previously uncracked
model meshes, or to move existing crack tips to
any specified position in a model. Once a crack is
inserted or moved, the mesh around the new crack
segment 18 automatically regenerated to account for
the change in model geometry. User-defined adjustments
to the mesh are possible during this incremental
regeneration process, but such alierations are rarely
required.

FRANC simulates the familiar » =" singularity in the
elastic crack-tip stress field, where r is the radial distance
away from the crack tip [e.g. 9,10], by surrounding the
tips of each crack with a rosette of eight quadratic,
triangular, isoparametric, quarter-point elements
{11,12]. The remaining portions of any model mesh are
composed of eight-noded quadrilateral or six-noded
triangular, quadratic, isoparametric elements. As noted
by Barsoum [11] and Whittaker er al. [13], simulating the
crack-tip singularity with quarter-poini elements is
preferable to using elements with embedded singularities
[e.g. 14-16] because quarter-point elements satisfy all
essential convergence criteria (e.g. inter-element compat-
ibility and continuity of displacement; [17]), whereas
elements with embedded singularities may not consist-
ently satisfy these criteria. The accuracy of FRANC has
been proven in numerous applications [e.g. 18-20].

We constructed finite element models of two specimen
geometries that we hereafter refer to as MRS and MRF.
The two geometries were constructed for fracture tough-
ness tests on laboratory-grown synthetic ice (MRS) and
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firn (MRF), a porous natural ice formed by compaction
of snow. The respective dimensions of the MRS and
MRF specimens are: r,=3825mm, r=35mm,
L =15mm, and r,=65mm, r;= 1.1l mm, L =20 mm
(Fig. ). Using the automatic crack growth and remesh-
ing algorithms within FRANC, mode 1 stress intensity
factor (K,) vs crack length {a) curves for each of these
specimens were generated in the following manner. Two
cracks of equal length are first introduced to the un-
cracked model mesh. These cracks initiate from the top
and bottom of the central hole of the specimen and
extend equal distances away from the hole along the
y-axis (initial crack length for MRS: 4 = {0 mm; for
MRF: a,= 20 mm). We then make both cracks grow in
2 mm (MRS specimen) or 3 mm increments (MRF spec-
imen), calculating the model stresses, displacements and
stress intensity factors after each increment of crack
growth, until a complete K| vs @ curve similar to that in
Fig. 3(c) is generated.

The two meshes and boundary conditions we
employed for the applied force and applied displacement
formulations are shown in Fig. 4. We discretized the
entire specimen in order to examine the effects of local
asymmetries in the mesh that arise during the automatic
crack growth and remeshing stage of the modeling
procedure, resulting in slightly different mode I stress
intensity factors at the upper and lower crack tips. For
the applied force formulation the specimen is fixed in the
y-direction at the lateral edges of the hole, and equal and
opposite uniform forces (i.e. stress per unit length and
thickness) are applied to the specimen loading surfaces
[Fig. 4(a)]. In the applied displacement formulation the
specimen is fixed in the y-direction along the lower
loading surface and a uniform vertical displacement is
applied to the upper loading surface [Fig. 4(b}].

We examine two end-member cases of specimen—
platen interaction in both the applied force and displace-
ment formulations. For the case when there is no slip at
the specimen—platen interface in either the applied force
or displacement formulation, the entire length of both
loading surfaces is fixed in the x-direction. When simu-
lating slip along the loading platen in an applied force
formulation, only the midpoints of the specimen loading
surfaces are fixed in the x-direction [Fig. 4(a)], corre-
sponding to zero friction. When simulating slip under an
applied displacement formulation the midpoint of the
lower loading surface is fixed in x and y [Fig. 4(b)]. We
respectively refer to these two sets of specimen—platen
fixities as “slip” and “no-slip” boundary conditions.

Calculation of erack-tip stress intensity factors

Calculation of crack-tip stress intensity factors is the
most important aspect of numerical modeling of crack
propagation because the crack-tip stress intensity factors
determine the stability of a crack, and the direction of
unstable crack growth. FRANC offers three different
algorithms for caiculation of mode [ crack-tip stress
intensity factors: modified crack closure integral (MCC;
{21]), displacement correlation (DC; [12]) and J-integral
(J; [22D. Bittencourt er al. [20] reviewed the accuracy of
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Fig. 4. Finite element meshes and boundary conditions designed for this study: {a) MRS specimen mesh depicting the applied

force boundary conditions, (b) MRF specimen mesh depicting the applied displacment boundary conditions. Note that the

fixity of the specimen loading surfaces varies depending on whether we allow slip at the specimen-platen interface. The
boundary conditions shown are those for the slipping case. Plane strain behavior is assumed in all models,

each of these techniques as implemented in FRANC by
comparing the finite element solutions with existing
analytical solutions for simple mixed-mode crack prob-
lems. They found that the accuracy of the numerical
solution varied both with the method of stress intensity
fFactor calculation and the fineness of the mesh, especially
in the vicinity of the crack tips.

We calculated K, at both crack tips using each of the
aforementioned algorithms, and compared these sol-
utions at different degrees of mesh refinement to examine
the affects on K. Table | records the average K, at the
tip of each crack propagating through 10 equal incre-
ments of growth away from the hole of an MRS
specimen under applied force and slip-allowed boundary
conditions, Table 2 records analogous information for
an MRS specimen under applied displacement and
slip-allowed boundary conditions. The average K| at
each crack tip is reported because at all stages of crack
growth in both models, the difference in K, between
the upper and lower crack tips was less than 3%. Part
{a) of each table records the K| values calculated from
the original mesh generated by FRANC during the
automatic remeshing stage of crack growth. Parts (b)~(d)
of each table record the K| values calculated after
each of three successive cycles of mesh refinement, where
in one cycle of refinement the radius of the rosette
of singular, triangular, isoparametric, quarter-point
elements surrounding the crack tip is reduced by half
(Fig. 5).

Tables | and 2 reveal that K} determined from each of
the three methods may vary by as much as ~6% when
calculated from the original, unrefined mesh. However,
as shown by Bittencourt er al. [20], this difference is
negligible after two or three cycles of mesh refinement.
Consequently, all K| values presented in this paper are
calculated after three cycles of refinement. Moreover,
because Bittencourt et al. [20] found that the MCC
technique yielded the most accurate stress intensity
factor calculation, providing solutions for mode I and I1
stress intensity factors within 3% of the analytical
solution for the problems they studied, the remainder of
K, values reported in this paper were calculated with the
MCC technique.

FRACTURE TOUGHNESS DETERMINATION

Previous analyses of the modified ring test utilized an
applied force formulation and concentrated on charac-
terizing the effects of specimen geometry on the critical
crack length (a.) and maximum mode I stress intensity
(Kimae ) determined for a given material [e.g. 1,13]. This
previous research demonstrated the reproducibility of
model results for a given material and modeling pro-
cedure. In contrast, we examine the influence of various
model parameters on the K, observed in any particular
specimen and thereby discuss the accuracy of K. deter-
mined from MR tests. For any given specimen geometry,
the solution for K,,,, and hence K. obtained from a MR
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Table 1. Effects of mesh refinement and method of calculation on the
mode [ stress intensity factor determined under constant force and
slip-allowed boundary conditions for a modified ring specimen with
normalized dimensions: r/r,=0.1307 and Ljr,=03992. In this
model, Young's modulus =» ¢ GPa, Poisson ratio =0.32 and normal-
to-the-houndary, axial stress = 2.238 MPa. Numbers in boid are the
peak stress intensity factors (i.e. K,) encountered during crack growth

Crack Length, a

(mm) K, (DC) K MCC) K ()
{a} For the original, wnrefined mesh

{t] 120.66 123.79 129.45
2 125,18 127.72 133.45
4 13149 133.83 139.93
6 138.48 141.32 147.74
ig 147.05 148.20 135.82
20 15139 154.51 161.28
2 155,33 158.18 165.83
24 154.98 158.79 166,70
26 149.05 155.00 161,96
28 137.86 [44.37 150.57
(b)Y Afrer one cycle of mesh refinement

10 12296 123.17 13292
12 126.90 126,70 126.39
14 133.05 133.01 132.78
16 140.12 140.03 139.65
18 147.96 147.90 147.63
20 133,16 15347 153.01
22 157.42 157.64 157.35
24 157.29 158.34 157.92
26 152,18 133.96 153.51
28 141.29 143,38 143,17
(¢} After nwo cveles of mesh refinement

10 123.03 123.11 122,935
12 126.70 126.70 126.39
14 132.99 132.86 132.74
16 139.93 139.82 139.61
18 [47.79 147.80 147.60
20 133.26 133.24 152.99
2 157,34 157.53 15743
24 157.62 158.19 157.97
26 152.94 153.86 153.56
28 142,37 143,54 143.24
(Y Afier three cyeles of mesh refinenent

i0 123.26 122.96 122.92
i2 126.89 126.35 [26.52
i4 133.04 132.66 [32.647
16 140.00 139.63 [39.52
18 147.95 147.63 146.52
20 153.39 [53.04 15291
2 157.64 [57.39 157.31
24 158,67 158.02 157.91
26 133.50 153,66 153,50
28 143.03 143.36 143.17

obtained in this formulation depends on the local load
minimum (o), the behavior of the specimen-platen
interface, and the Poisson ratio {v) of the test material.

Figure 6 illustrates the influence of slip at the speci-
men—platen interface on the K| vs a curves obtained in
an applied force formulation. All K, values are reported
after three cycles of mesh refinement. Although K, is
initially greater under slip-allowed conditions, Ky, in
the no-slip case exceeds K, for the slip-allowed case,
and K, is achieved at longer critical crack lengths
under no-slip conditions. These variations in K|, and
a. result from differences in the initial distribution of g,,
along the y-axis of the specimen as depicted in Fig. 7.
Initial K, values are greater under slip-allowed con-
ditions because the maximum tensile stress near the
edge of the specimen hole is greater for this situation.

Table 2. Effects of mesh refinement and method of calculation on the

mode [ stress intensity factor determined under constant displacement

and slip-allowed boundary conditions for a modified ring specimen

with normalized dimensions: r;/r, = 0.1307 and L/r, =0.3992. In this

medel, Young's modulus =9 GPa, Poisson ratio=0.32 and axial

displacement = — 0.1 mm. Numbers in boid are the peak stress inten-
sity factors (i.e. K.) encountered during crack growth

Crack Length, «

test under either an applied force or an applied displace-
ment formulation depends on several model input
parameters.

Applied force solution

To date, the numerical modeling portion of the MR
test has been solved using an applied force formulation
assuming 1o slip between the specimen and the loading
platens {e.g. 2]. To determine the fracture toughness of
a specimen under these conditions, one simply takes the
value of the local load minimum recorded during a
laboratory test (#,.), applies an equivalent uniform stress
to a sample in & numerical simulation, and calculates the
K, vs a curve corresponding to that specimen geometry
and stress. The K|, in the resulting curve is the fracture
toughness of the tested material. The solution for X,

{mm) £ (DC) K, (MCC) K )
{a} For the original, unrefined mesh

HY 815.56 839.74 §77.69
i2 817.92 837.69 B74.69
i4 827.72 845.60 883.86
i6 834.52 855.40 893.82
18 840.54 831.60 895.08
20 810.96 83342 869.47
22 760.37 788.19 825.83
24 688.27 714.68 749.46
26 575.54 610.48 636.42
28 439.56 475.29 493.79
(b} After one cyele of mesh refinement

19 832.47 835.32 833.42
12 830.57 830.89 829.78
14 839,11 840.53 829.31
i6 845.91 847.49 B44.80
8 847.81 840.86 848.12
20 823,14 827.88 825.04
22 780.45 785.51 783.77
24 703.13 712.62 710.25
26 593.40 606.37 604.15
28 457.58 472.13 470.23
{¢) After rwo cyeles of mesh refinement

10 833.73 835.00 833.73
12 829.94 830.73 829.94
14 839.43 839.43 838.64
16 845.91 846.07 844.80
18 847.81 849.23 847.96
20 §25.04 826.02 825.04
22 781.87 874.88 T84.25
24 T06.93 7i1.99 710.72
26 599.25 605.89 604.47
28 464,70 471.97 470,55
(d) After three cycles of mesh refinement

i0 835,63 834.05 833.58
12 831.52 829.78 829.46
i4 835,11 838.32 838.17
i6 846,70 844.96 844.33
i 849.39 848.28 847.49
0 826.46 825.35 824.72
n 784,23 784.25 783.61
24 710.29 711.04 710.40
% 602.89 605.10 604.15
28 468.49 471.34 470.55
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However, with increasing crack length, K is increasingly compression extends farther into the sample and
affected by the zone of crack-normal compression near  crack-normal compressive stresses are greater in the slip-
the specimen loading surfaces. Because this zone of allowed case, 4, is shorter and K, is less in this case.
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Table 3. Critisal crack lengths (2.} and maximum mode I stress intensities {K...)
determined for MRS specimens with normalized dimensions r/fr,=0.1307 and
Lfr,=0.3992 under slip and no-slip boundary conditions and various Poisson ratios,
Results obtzined for an appiied constant stress (s, ) of 2.238 MPa in models where crack
growth was in 2 mm increments starting from an initial crack length (o) of 10 mm

No slip allowed Slip allowed

Poissor ratio (v) a, (mm) K (KPa-m'2) a, (mm) Kipae (KPa-m*?)
.10 28 197.50 24 157.92
0.15 28 190.94 24 157.94
0.20 26 183.68 24 157.97
0.25 26 178.21 24 158.00
(.30 26 171.96 24 158.02
0.35 24 166.21 24 158.03
0.40 24 T161.21 24 158,08

The numerical results summarized in Tables 3 and 4
demonstrate that the difference in K, and a, observed
for the slip and no-slip cases varies dramatically with
the Poisson ratio (v} of the test material. Although
critical crack lengths and K,,,, are essentially constant
for all v in the slip-allowed case, . and K,
both increase with decreasing v under no-slip conditions.
Consequently, accurate constraint on the behavior of
the specimen—platen interface is highly important in
the reduction of data from MR tests, especially for
materials with lower Poisson ratios. For v < ~0.20,
the diflerence in X, between the slip and no-slip
cases can be as great as 25%. Therefore, MR tests on
materials with v in this range will yield guestionable
fracture toughness results unless both v and the behavior
of the specimen-~platen interface are accurately estab-
lished.

Applied displacement solution

Obtaining a solution for K. in an applied displace-
ment formulation initially appears more labor intensive
than obtaining a solution in an applied force formu-
lation because in the former problem, K|, depends not
only on the vertical displacement of the specimen load-
ing surfaces (v} and v, but also on the Young's modulus
{EY of the test material. However, as shown below, in
the displacement formulation there exists a relation-
ship between material elastic properties, v and K.,
that allows determination of the fracture toughness of
a MR specimen directly from the load vs time
curve recorded during any laboratory experiment;

knowiedge of the elastic properties and displacement is
not reguired.

In our displacement formulation of the MR test, a
uniform vertical displacement (p) is applied to one
loading surface and the other surface is fixed [Fig. 4(b)l.
Although any arbitrary values of v, v, and £ can be
chosen for the model, we chose values representative of
granular, freshwater ice 7h because our experiments were
conducted to determine K,, of this material (see [23]).
After each increment of crack propagation in the model,
we calculate X, the distribution of normal stress (a,,)
along the specimen loading surfaces, and the *“equivalent
uniform stress” {¢) on the specimen loading surfaces.
Under a uniforrn displacement boundary condition,
normal-to-the-boundary stress (g,,) along the specimen
loading surfaces is non-uniform and exhibits a concave
upwards profile like that shown in Fig. 8(b). To relate
this non-uniform stress distribution to the time-varying
stress (in a reality a foree) recorded in the lab, we first
integrate the area under the o, distribution, and then
calculate an equivalent uniform stress, ¢: a uniform
siress with the same integrated stress as the actual g,
distribution [Fig. 8(c)]. The normal stress ¢ is assumed
to represent the time-varying stress recorded in the lab.
Fischer [24] demonstrated the validity of this assumption
by applying a uniform stress to a model loading surface,
calculating the o,, distribution, and then determining the
equivalent uniform stress along the surface. For the
specific case tested, his results show that the equivalent
uniform stress is within 0.4% of the designated applied
stress.

Table 4. Critical crack Iengths (.} and maximum mode I stress intensities (K ..}
determined for MRF specimens with normalized dimensions r/r,=0.1709 and
Ljr,=0.3077 under siip and no-siip boundary conditions and various Peisson ratios.
Results abtained for an applied constant stress (¢,.) of 1.053 MPa in models where crack
growth was in 3 mm increments starting from an initial crack length () of 20 mm

No slip allowed Slip allowed

Poisson ratio (v} a, (mm) Kimax (kPa-m¥?) a, (mm) Kimex (kKPa-m'?)
0.10 53 133,16 44 i09.41
Q.15 50 129.04 44 16941
0.20 50 126.06 44 i09.41
0.25 50 122,70 44 i039.41
0.30 50 118.84 44 i09.41
0.35 47 115.25 44 i09.43
0.40 44 112.31 44 109.43
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Figures 911 depict the variation in X, the normal-te-
the-boundary stress (g,,} distribution along the loading
surface, and equivalent uniform stress (o) observed
during incremental crack growth in a MRS specimen
with different elastic parameters or applied displace~
ment. These three models are presented to establish a
relationship between E, v, and K, observed in MR
tests conducted under uniform applied displacement
boundary conditions, equivalent to loading by rigid
platens. Comparison of the model results reveals that
although the absolute magnitudes of K, and ¢ vary
between each model after each increment of crack
growth, the ratic of equivalent uniform stress at
the critical crack length to maximum stress intensity
factor observed in the finite element model {0,/ Kinae ) 18
a constant independent of E and v. This suggests the
ratio o,. /K., may be used to determine the fracture
toughness of an identical test specimen using the re-

lationship:
a, a,
=1 ={=]. (1
(Klmux )mndci (ch )Iub )
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The fracture toughness of a given specimen subjected to
uniform displacement boundary conditions is deter-
mined simply by dividing the stress at iime ¢, (Fig. 2) by
the ratio of g, to K., determined from the finite
element model. The ratio ¢,./Ky.. has units of
(length)~ ', and is essentially a shape factor characteriz-
ing the geometry of the particular MR specimen ana-
lyzed in the finite element model. This MR shape factor
can be used to calculate the fracture toughness of any
specimen with the same normalized dimensions as the
model specimen (i.e. rifr.. Lir).

Tables 5 and 6 present values of g,./Kjn,, determined
for different Poisson ratios for the MRS and MRF
specimen geometries examined in this study. These
results indicate that for a given specimen geometry, the
variation in o, /K., with v is slight and nonsystematic,
demonstrating that 6,/ K. IS also a constant essentially
independent of v. In addition, although 4, increases with
decreasing v for the no-slip case, the average value of
e/ Kimss in this case is only slightly lower than that
determined for the slip-ailowed case. The differences in
K, determined for the slip and no-slip cases are thus
expected to be less than 5% for the MRS and less than
2% for the MRF specimen geometries. These vaiues are
not affected by the mesh geometry or the crack tip
positions chosen in our numerical models as demon-
strated by the numerical results in Table 7. In this table
we show 6, /K. ratios calculated for MRF specimens
in which each crack growth increment is 3 mm, but the
initial crack length is 1.5 mm longer than in Table 6. This
approach yields ¢, /K., values at crack lengths that fall
haifway between the crack lengths in the model con-
ducted for Table 6. Comparison of Tables 6 and 7
indicates that our particular modeling procedure (i.e.
initial crack length, crack tip positions, mesh geometry,
etc.) does not bias the numerical results,

DISCUSSION

Figure 12 summarizes the effects of Poisson ratio,
finite element numerical formulation and speci-
men-platen interaction on the fracture toughness values
determined from our MRS and MRF specimens. The
results show several significant characteristics. For an
applied force formulation, we note the following trends:
(1) when slip is not allowed, K, increases strongly with
decreasing Poisson ratio of the test material; (2) when
slip is allowed, X, is independent of v; and (3} the
difference in K|, calculated for slip and no-slip conditions
increases with decreasing v. For an applied displacement
formulation, we note that: (1) K. is essentially indepen-
dent of v under both slip and no-slip conditions; and (2}
the variation in X, as a function of slip at the speci-
men-—platen interface is less than 5% for the two speci-
men geometries we examined, These results demonstrate
that K, values determined from the MR test vary with
the assumed mode of load application, and depending
on the formulation method used, the results further
demonstrate that X, may vary dramatically with speci-
men-—platen interaction and the Poisson ratio of the test
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Fig. 9. Variation in K| (a), horizontal distribution of normal stress, o,,, (b) and equivalent uniform stress, o {c} during crack
growth in a MRS specimen compressed by 0.1 mm, and with material properties of £ = 9 GPa, and v = 0.32 under slip-allowed
conditions. Crack propagates in 2 mm increments from an initial crack length, g, = 10 mm. Horizontal distribution of normat
stress calculated for a =0 for comparison. Note that ¢ does not increase after a,. as shown in Fig. 3 because the model is
sitbjected to a constant displacement, and the increase in stress recorded in the lab is related to the continuously increasing
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Table 5. Ratios of 0,./Kj.,, determined for MRS specimens with
normalized dimensions r/r, = 0.1307 and L/r, = 0.3992 under slip and
no-slip boundary conditions and various Poisson ratios. These values
determined from K, vs a curves where crack growth was in 2 mm
increments starting from an initial crack length {g,) of 10 mm

No stip allowed Stip allowed
Poaisson ratio a, oo f K . I o—
{¥) {mm) (m~"") (mm)  {(m™"%)
.10 20 15.2482 8 15.7228
015 20 15,2877 18 15.8822
0.20 8 15.6492 18 15.7402
0.25 i8 15.6167 18 15,8988
0.30 i3 15.5798 I8 15,7301
0.35 i8 15.5453 8 15.8738
0.40 18 15.4986 i3 15.6679
Mean 15.4894 15.7880
sD 0.1592 0.0938

Table 6. Critical crack lengths {a,) and ratios of /K, determined

for MRF specimens with snormalized dimensions r;/r = 0.170% and

L{r.=0.3077 under stip and no-slip boundary conditions and various

Poisson ratios. These values determined from K vs a curves where

crack growth was in 3 mm increments starting {from an initial crack
length {a;} of 20 mm

Ne siip allowed Shp allowed

ac Gnc/ K Imaa a. Uac/ K[m.*.x
Poisson ratio (v)  (mm}) (m~"%y {mm) {m~'")
0.10 38 9.5337 iz 9.8204
.15 38 9451t 32 2.8317
0.20 38 9.3665 32 5.8330
0.25 38 92814 32 9.8313
0.30 38 9.1885 32 9.8258
0.35 32 9.5982 32 9.7972
0.40 32 3.4451 32 9.7453
Mean 9.4092 98121
sD 0.1421 (L0320

Table 7. Ratios of o../K;,.,, determined for MRF specimens with
normalized dimensions r,/r, = 0.1709 and L/r, = 0.3077 under slip and
no-slip boundary conditions and various Poisson ratios, These values
determined from K; vs g curves where crack growth was in 3mm
increments starting from an initial crack length (g;) of 2L mm

No slip allowed Slip allowed
a, Tac /Klmax dc Tae J’Klmax
Poisson ratio (v)  {mm) {m~"*} (mm) (m~%)
0.10 »s 9.3978 33.5 9,7088
0.15 36.5 9.6194 33.5 90,7158
0.20 36.5 9.5149 335 97222
0.25 36,5 9.4014 33.5 9.7207
0.30 36.5 9.2891 335 5.7108
. 0.35 36.5 9.1730 33.5 9.6894
0.40 3135 9.3143 33.5 9.6346
Mean 9.3871 9.7003
sD 0.1480 0.0310

material. In light of the potential 10-40% variation in
K, values determined from the MR test, one would like
to know which modeling procedure provides the most
accurate results. To asses the accuracy of each of the
four modeling procedures depicted in Fig. 12, we now
discuss some aspects of the observed and expected
specimen behavior.

Though often used in finite element simulations of
the MR test {e.g. 2], application of a uniform force
along the specimen loading surfaces results in a non-

MODE 1 FRACTURE TOUGHNESS

uniform distribution of displacement (v} along each
specimen loading surface (Fig. 13). This non-uniform
displacement distribution occurs because the hole in
the center of the specimen reduces the effective stiffness
in the central portion of the specimen, resulting in
greater displacements along the center of the loading
surfaces. The variation in displacement along the speci-
men loading surfaces is slight, but the effect is real.
Although such behavior may occur for specimens in
which the Young’s moduius is of the same order of
magnitude as that of the loading platens, it is not
likely to occur in laboratory tests on rock or ice,
where the Young’s modulus of the steel loading
platens is one to two orders of magnitude greater
than that of a test specimen. Because uniform displace-
ment of the specimen loading surfaces appears to be the
most realistic representation of actual specimen defor-
mation, fracture toughness values obtained from
numerical simulations not incorporating a uniform
displacement of specimen loading surfaces may be
suspect.

As noted by Jaeger and Cook [25], a no-slip
boundary condition is generally assumed for rock mech-
anics experiments because large compressive normal
stresses and friction on the specimen Joading surfaces
inhibit lateral expansion of the specimen. With varying
degrees of success, numerous techniques including the
use of lubricants [e.g. 26], special specimen geometries
[e.e. 27], platen geometries [e.g. 28], and matched
specimen end pieces [e.g. 29] are used to reduce the
effects of friction at the specimen—platen interface.
As shown in Fig. 12, slip at the specimen~platen inter-
face does not significantly affect K, values determined
from MR tests conducted with our displacement
formulation, regardiess of the Poisson ratio of the
test material. However, in an applied force formulation,
slip at the specimen—platen interface not only affects
the K, value determined for a given material, but it
also determines the functional relationship between K
and .

In the traditional no-slip, applied force modeling
procedure, K, decreases with increasing v, because the
no-slip boundary condition prevents lateral motion of
the specimen loading surfaces. Under these conditions,
crack—normal compressive stress near the specimen load-
ing surfaces (e.g. Fig. 2) increases and extends further
into the specimen with increasing v, because the tendency
for lateral deformation of a specimen is naturally greater
in materials with larger v. As demonstrated by the
numerical resuits in Tables 3 and 4, the presence of a
tensile to compressive stress transition at deeper levels
within the MR specimen causes critical crack lengths to
decrease with increasing v. This decrease in critical
crack length is responsible for the relationship between
K. and v observed in no-slip, applied force simulations.
When slip is allowed at the specimen—platen interface,
lateral expansion of the specimen is not inhibited, and
critical crack length is always independent of v in both
an applied force and displacement formulation (see
Tables 3-7).
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Fig. 12. Effects of Poisson ratio, solution method and specimen-platen interaction on fracture toughness values determined

from the modified ring test: (a) fracture toughness values determined from MRS specimens when o, = 2.238 MPa; (b) fracture

toughness values determined from MRF specimens when o, = [.053 MPa. These ¢, values are typical of those observed

by Fischer [23] for granular, polycrystalline ice and firn, respectively. Results for the applied force formulation are given

in Tables 3 and 4, whereas results for the applied displacement formulation are calculated using the ¢,./K),, ratios in
Tables 5 and 6.

The dependence of K, on v observed in no-slip,
applied force simulations represents the response of the
unique MR specimen geometry to a given set of bound-
ary conditions; it does not reflect the real influence of
v on K;.. In nature, we expect only a slight influence of
v on K, for the following reason. Work by Gross erf al.
{35] and Whittaker et al. {13] comparing experimental
data on the elastic moduli [e.g. 30-32] and fracture
toughness of rocks fe.g. 33,341, suggests that rock frac-
ture toughness typically increases with increasing
Young’s modulus. The general relationship observed
between X, and E is such that for an order of magnitnde
increase in E, K, increases by a factor of 2-5. For a
constant shear modulus (G), the linear elastic relation
between v, E and G, supgests F increases by a factor of
1/3 over the whole range of v. These two relationships

RMMS 33/i-B

suggest that K. should increase by <5% as v increases
from 0 to 0.5, Data presented by Whittaker er al. [13]
show no strong correlation between Poisson ratio and
fracture toughness, but may be interpreted to support
the idea that K|, increases slightly with v.

Our discovery of a relationship between K, and v in
the applied force, no-slip modeling procedure that is the
inverse of the expected natural relationship between K,
and v, leads to further questions about the validity of K,
values determined under applied force, no-slip con-
ditions. Although these contradictions may be attributed
to the unique geometry of the MR specimen, we are
suspicious why K|, should be so strongly dependent on
v for only this particular modeling procedure. It is
possible that the MR test is uniquely dependent on v
because of the specimen geometry. The majority of plane






