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Improved evaluation and characterization of the geologic subsurface are necessary precursors o
enthancing our ability to recover desirable resources and puard against undesirable contaminants,
Mathemuatical models are increasingly used to assesy the effects of these activities when the fidelity
of material parameters describing the system control the reliability of the resulting prediction. Inverse
maodels provide a formal means of space, or history, mateling observed data to determine the unknown
spatial distribution of the required parameters. The finite element method is one of the most popular
nremerical methods and iy used in this stndy for transmissiviey identification in steady groundwater
flow. To optimize parameter identification, a comparison of different elements is carried ont. It is well
known thar high-order elements usnally result in improved aceuracy in forvard solution of engineering
problems. However, this foct might not be true in the inverse solution. The stuedy in this paper uses
different element orders for Taylor's series analvsis and in coding a finite element program. The
analvsis indicates that strong variation of transmissiviey results in o larger residual ervor jor high-
order elements than for low-order elements. An example with an analvtical solution is used for nu-
merical comparison, The compuied resilts show that low-order elements, rather than high-order
elements, vield better resulis in parameter extimation, When the variarion of unknown parameters is
large, the error within the high-order elements is large. It is recomniended that low-order finite elements
or constant elements be nused for an inverse solution. The comparison @lso illustrates that any nin-
imization procedure may he nsed to minimize the residual error and to limir numerical difficulties in
inverse solution. A two-dimensional example shows that the relative errors are very small when a

constant element is used but that ervvors increase ay the measired head distribation flattens.
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Intreduction

Parameter identification is a very important activity in
engineering fields when direct measurement is difficult
or impossible. History matching of in sitn observa-
ttons, through use of numerical models, provides an
important method for parameter estimation.

The finite element method has been an important
numerical method in this area since the 1970s. Many
kinds of finite elements are available for the solution
of field problems. In most engineering fields in which
the finite element method is used, high-order elements
are usually favored, although they are more complex.
First, they give a high solution accuracy. Second, they
better simulate the variation of the unknown in each
element. However, from the viewpoint of accuracy it
is necessary to determine whether higher-order ele-
ments give better results in an inverse solution.

Considerable effort has been expended throughout
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the past two decades to develop and improve param-
eter estimation procedures.'~ Yeh® reports a compre-
hensive review of parameter identification procedures
of groundwater hydrology. He examines the compu-
tational techniques that have been developed to solve
the inverse problem and classifies them according to
the error criterion used in the formulation. Frind and
Pinder’ applied a Galerkin finite element approach to
an inhomogeneous isotropic aquifer for which steady-
state piezometric head was known but transmissivity
was unknown. To satisfy the uniqueness requirement,
they used discharge magnitudes instead of transmis-
sivity on the boundary (which may be difficult to ob-
tain). Yeh, Yoon, and Lee® presented a new parameter
identification method for a two-dimensional unsteady-
state groundwater flow model. The accuracy of results
depended on the representation of the finite elements.
Weir’ showed that in addition to ill-posedness the in-
verse problem may be undetermined if recharge is treated
as a spatially and temporally variable distribution pa-
rameter. The consideration of generic errors showed
that if the estimate for some derivative of head contains
a significant error on one element for all time, then
significant estimation errors are possible for all nodes
and for all reservoir parameters. However. all these
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studies ignored the element order, which may have a
significant effect on the inverse solutions.

When the order of the finite element is low, the
parameter identification problem becomes an over-
determined problem. The solution may therefore ex-
hibit improved accuracy. To prove this, elements with
three different orders were used in the Taylor’s series
analysis and in coding a finite element program. Be-
cause many subroutines are available in the IBM Li-
brary,' it greatly simplified the complicated finite ele-
ment solution. The analysis and computed results
indicate that high-order finite elements cannot give high
accuracy to the inverse solution, since implicit under-
determination is included in the representation of the
high-order element. The computed results also indicate
that the direct inverse solution usually exhibits a large
residual error caused by finite element discretization,
especially when the differences between observations
are very small in an element. The last squares proce-
dure minimizes this error. To demonstrate the effi-
ciency of constant elements in & two-dimensional prob-
lem, a two-dimensional groundwater flow system is
used. The comparison shows that the computed results
are quite close to the real values and that no numerical
difficulty occurs during the computation, even though
the head gradient in some areas is small.

The conclusions of this work may be applied to pa-
rameter identification and inverse problems in all en-
gineering fields, although they were drawn specifically
for a groundwater flow model. It is recommended that
a constant element, rather than a high-order element,
be used in parameter identification to ensure high qual-
ity in solution.

Governing differential equation

Basic assumptions for the one- or two-dimensional
problems of groundwater flow considered in the fol-
lowing are that the aquifer is horizontal. inhomoge-
neous from point to peint, and continuous in the region.
Only confined problems are considered in which the
transmissivity is directionally isotropic. Since the pur-
pose of this paper is to find the best finite element for
inverse solution. one may assume that all heads at
mesh points are available so that the direct method of
inverse solution can be used.

The governing equation for a groundwater flow sys-
tem, under the above constraints can be written as

d al ol
5; (Ta:‘_-‘) A E Q..-(I)H(S(.\; - -lu'i’ + S_(-J-; (l)

where § can be 1, 2, or 3 for one-, two-, or three-

dx ax ay

dimensional cases, respectively, and the solution of a
two-dimensional equation must satisfy the following
conditions:

fi{x, ¥, 0) = fp(x) xinR
ll(..\', ¥, f) = h[(.\',‘, [) X in dR;
il .
Tfm{ = fiylx, 1) xindRy
dan

where i{x, v, t) is head at point (x, y);

T(x. y) is transmissivity at (x, y);

§ is the storage coefficient;

Q.. is the source-sink term;

X, ¥ are coordinates in two-dimensional space;

tis time;

R is the flow region;

dR is the boundary of the aquifer (dR; U
dR;; = (,R):

ho, Ay, By are specified functions.

8(x) is the Dirac delta function and 8(x) = =
for x == 0 8(x) = 0 for x # 0;

X, are the coordinates of a well.

Inverse solution by the finite element methed

Governing equation

Consider a steady problem (that is, the derivative
ali/ar = 0 in equation (1}) where the piezometric heads
are known at a finite number of points within the region
R but the transmissivity T(x, ¥) is unknown. The dif-
ferential equation can be written as

4 [T(:c, . ah(x-,y}] + 4 I:T(.\‘_._v) ah(.\'.y)]

ax X ay ay

=3 Qublx — 5,8y — w.) 2

The boundary condition is
dry =T, (3)
or alternatively, using Frind and Pinder's” procedure,

— 4o

HdR) = ahion

(4)
where ¢, 15 the discharge or recharge on the boundary.
The transmissivity T(x. ¥} can be expressed as

T(x, v) = T, v) = il 0T, (5

where o (x, v} is the shape function over the element
with transmissivity T(x, v) and T, are the values at the
nodes. Substituting equation (3) into equation (2) and
mtegrating the whole equation on the region R with a
weighting function w;, one has the following equation:

w

f {’a‘ [T(-\‘._\’) ﬂ%\*ﬂ + '51 [f'(.\'. \)W}} w;dR = f > 0.80x — x,)8(y — v dR {6)
(- L
n - R

This equation can be integrated by applying Green’s thecrem to obtain

- 0h dew;

- f P T
ax dx A

R - By

L R il Al
paaw] f [w,-('r%—’m L
ay ay

) f!R;[} = EQH'('\"HW .‘-”N') (7)
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Since the flow boundary condition can be expressed
as

il il
T:n, + T(_I I, = h]; {8;
ay ay

where f1;; is defined as before, equation (7) can be
rewritten as

—f [Ta—“i + Ta—haﬁ] dR
A ox ox dy dy

e f Lr);h;[ CIR“ = 2 Q..-(.\'.,., }’“.) (9)

Rn

The first derivative of head, A, is generally not avail-
able; therefore a shape function is chosen within the
element that is continuousiy differentiable as @,

Ti(x, v) = hix, v) = Py (10)

where the function ®; is not necessarily identical to
;. A simple form for ®,(x, v} may be selected and.
substituting equation (9} into (8), yields

0 dw; 0 da;
E T — (D h —"'i' — (A, Pt o
. }[[db g [H.Y(IA ) ox (']y( Duf) v ]:l dR

x_%gmww+2f

C Ry

&J,‘h[] (]Ri'; (1 l)

wherei = 1,2, 3,...,mj=12,3.....mk=
1.2,3,...,n,, T;comprises the transmissivity vector,
and the total functional R and dR is replaced by TR
and ZdR*. In this, # is the number of nodes in the
problem, n, is number of elements in the problem, and
m is number of nodes in an element. This equation can
be written as

HT=0, +g (12)

where Q.. is the inflow vector {(from wells);
T is the transmissivity vector (unknown);
g is the outflow vector (on the boundary) and

mﬁZf

Y Ry

(B;]I];([Ri’[ (i:”

H is the coefficient matrix

3D, oy
H.=S I f |
7= 2 J [d”[ ax ax

J=12,3, ..., (14)

a(bk aw,-
i v |1 RE
dy ay ] }

i=1,2,3,...,n,

where 1 and n, are the numbers of nodes where head
and transmissivity, respectively, are defined.

Element coefficient matrix

Coefficient matrices may be defined for elements of
increasing functional variation. Using complementary
terminology, these may be defined for constant, linear,
and quadratic variations of the dependent variable,
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Constant element

Consider the unknown parameler, transmissivity, as
a constant in each element. For a two-node element
with length 2L, as shown in Figure I,

T, =1 {15)
b =1 {16)
The shape function ¢, can be chosen as
(I),'m; = ([ - «\‘/L)f'z
@, = (1 + x/L)2 {7
where the coordinate system is centered in the ele-
ment.
Using weighting function w; = ®; and substituting

equation (16) into (14) yield the following element coef-
ficient matrix (2%1);

Ny = I1; i
H"‘T{—i} {18

where fi;..; and h; are heads at both ends of a pipe
element, as shown in Figure 1.

Linear element

Assuming transmissivity to be linearly distributed
in a two-node one-dimensional element of length 21,
as shown in Figure 2, one obtains shape functions ¢;
for transmissivity identical to those for heads. The same

Figure 1. Schematic of nodes and coordinate configuration for
a constant element

h,, h,

Figure 2. Schematic of nodes and coordinate configuration for
a linear element
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weighting function as equations {16} may be used, and
the following equation is chosen:
()b,' w= (I); =k (]9)

If we substitute equations (16) and (19) into (14), the
element coefficient matrix is

h‘:v|_h,' ] I
HL.-—TL—[_E __[:l (20}

where /i;_, and /; have the same definition as above.

Quadratic element

The quadratic element may better represent the vari-
ation of transmissivity than a linear element when
transmissivity is not linearly distributed over an ele-
ment. For a three-node element of length 2L, as shown
in Figure 3, one can use the following shape functions:

D, =30 = xR
®; =1 - L (21}
(D,',;ﬂ; = (IzJILz + .\'/L)/.Z

If we use equations (19) and (21) and substitute into
equation (14), the element coefficient matrix must have
the following form:

i

CUC M 4C 28K O 8k ]
30 2 15 3 W 6
2 20 8C 2, 2
Ho=1"7%57"73 15 5773
€, A €28k 1IC_ Ak
| 30 6 15 3 30 2]
2
where

C= Ui';ml - 2!1,- + /f,‘,k[)/L
Al = (’11_1 - h,-.,,,)/z

f;—, and h;., are the heads at both ends of a one-
dimensional element, and /A, is the head at the midpoint.

Error analysis by Taylor’s series

The rate of convergence of the solution within an ele-
ment can be demonstrated through Taylor’s series
analysis. Since any element of dimension L with a
complete solution expansion of order r can represent
solution variations up to that order exactly in the for-
ward solution, the local error in an arbitrary solution
with a uniform mesh is estimated to be O(L"* "), where
O{ ) represents the order of error. However, in the
inverse solution, one may not obtain solution varia-
tions up te order r. To determine the accuracy of an
inverse solution, it is necessary to determine the error
expressions. Usually, there are two kinds of error. The
first error is the residual error caused by discretizing
differential equation using the finite element method.
The second error is the error caused by measured error

or noise in observations. The following sections will
determine the magnitudes of these two errors for dif-
ferent finite elements.

Residual error

The three elements discussed previously are eval-
uated for residual error. All analyses are based on a
three-node line element. Comparison is made in pa-
rameters determined at the center node {, as shown in
Figure 4, assuming that the values of 1 and T at the
appropriate nodes are correct.

Error of constant element. Considering conserva-
tion of mass at node [ and assuming that the residual
error for equation (1) is Error|, then from equation (18),
one has (referring to Figure 4)

{_(h,‘“.l - ]If)T; + ([1,- - h,‘,;, ])T]]}JI(?.L)
= - ¢; + Error, (23)
Ty and Ty are the transmissivities of elements [ and

I1, respectively. Using Taylor’'s series at the midpoints
of elements I and 11, one has

h=T-T,+T{2-T"6+ ... (24}
Taw=T,+T;,+T/2+T"6+ ... (25}

where primes denole successive orders of differentia-
tion with respect to x as 7} = aT/dx. Assuming that
g; = {0 and substituting equations (24) and (25} into

le . ol - o]

hi'l h, hi+§

Figure 3. Schematic of nodes and coordinate configuration for
a guadratic element

Ts-l Ti Ti+1

h,, h, h..,

Figure 4. Schematic of nodes and coordinate configuration for
a three-node pipe for error analysis
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equation (23), one has
Error, = ~DTJ/QLY + AhT; — DT/L/4
+ AR TPLM6 + O(TVLYY  (26)
where T1V is the fourth derivative and O{ ) denotes
“‘error in order of.”’

According to Figures | and 4, and for L = 1, one
has

1 }
Error; = -—;;DT,- + ART] ~ ZDT}’

+ -é»Ah T+ Ty (27

where
Al = (hr’—l - h,‘,;,;)flz
D= (hf_m] - 21’1,' -+ ]IH, ;}

Error of linear element. As is shown in Figure 2. at
point / the continuity equation can be written as (from
equation (20))

Error. = {7,y + )T, — DT,
= Dy )T /40 + ¢ (28)
Using Taylor's series at nodes i — {and i + {in
Figure 4 yields
T =T — T{2L) + TI2LY2
— TPQRLY6 + O(TIV2LY) (29)
Ty =T+ TA2LY + T72L)2
+ TVQLP6 4 O(TIV2LY) (30)
Substituting equations (29) and (30) into {28} and
assuming that ¢; = 0 yields
Error. = —DT/QLY + A T] - DT{LI2
+ 2LAT7AR + O(TIVLY) (31
for L = I; then one has

1 {
Error, = —;DT,— + ART] — :;DT}’

2
+ -;—Ah 7+ O(rlYy (32)

Error of quadratic element. By using equation (22)
and Figures 3 and 4, the following equation for residual
error of the quadratic element may be determined from
conservation of mass at node i

Errory = [(— 12A ~ 20AM7T;., — 16AT;
+ (=124 + 20007 00) — g (33)
Substituting equations (29} and (30) into (33} for
g; = 0 yields

1
Error; = 3 [ —40AT; + A0ARTL — 12ATIL?

3
+ 1391311 L + O(T}"L*)jl (34)
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Since A = DIL,

4 4 , A
Error; = _EDTI + gAh TiL~ gDT,-L

2
+ ;Ah L 4+ O(TY) (35)

For the quadratic element, L = 2, and equation (35)
may be defined as
8

2 4
Error; = —-3*DT,- + gAh T - EDT:-’

+ 19913]: T! + O(TY) (36)

If we compare equations (27), (32}, and (36), it is
apparent that the residual error increases with the ele-
ment order, from constant to quadratic. When the vari-
ation of T is very large or the high-order derivatives
are not close to zero, the residual error will be ex-
tended, and high-order elements will not give a satis-
factory solution. To demonstrate this more clearly,
recall that the exact differential equation for the region

(i— 1,7+ 1yin Figure 4 1s
‘ H
9 (T—‘_—’) =g=0 37)
ax ix

or

dx ax ax-
By using finite differences the following approxi-

mate equation may be defined at node i (see Figure 4).
For L = 12,

Ty =20+l )= = Ti0y— — liy) (39)

0 (38)

or
DT, = =2ART] (40)

Substituting equation (40) into equations (27), (32},
and (36) yields respective appropriate error magni-
tudes of

1 1
Error, = AR T] ~ zDT}’ + gAh TY + O(TVLY
(41

1 2
Error: = 2A40 T — ;DT;’ + gAh TV + O(TVLY
{42)

4 16
Errors = 4 AR T — gDT}’ + gAh TV + O(TVLY

(43)

If we compare equations {41)~{(43)}, it is apparent
that each term in equation (41) is smaller than the cor-
responding terms in equations (42) and {(43) with the
exception of the first term in equation (41). Equations
{41)-(43) show that each term representing residual
error in the low-order element is smaller than that in
successively higher-order elements. When the high-
order derivatives are very small, the residual error in
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the linear element is close to that of the constant ele-
ment, but the residual error in the quadratic elements
is double that in linear elements. When the high-order
derivatives are large, the error in the high-order ele-
ment is much larger. Although equation (40} is only an
approximation of equation (35). it shows the parallel
trend of error increase with order of element increase.
Numerical results, to be documented later, corroborate
this finding:

Measurement error
In general, the error caused by measurement can be
expressed as

T*=T+er (44)
H*=H+ (7] {45’

where T* and H* are respectively vectors and matrices
of measured transmissivities and heads incorporating
measurement errors e and ey, respectively. In equa-
tion (45),

H = H{H) and

where ¢, is the measurement error vector.
If the error caused by head error is considered alone,
then equation (12) can be written as

H*T* = Q (46)
or

eyl + Hep + epey = 0 47
Since the product vector eyer is very small, it may be

considered to approach zero. The remaining error is
therefore

er = —{H) 'eyT (48)
This equation illustrates that the error in transmis-
sivity depends on the error in head, matrix H, and
vector T. Because the elements in H depend on the
head difference in each finite element. e; will be very
large when the head difference is very small. To de-
termine these differences, the three elements evaluated
in the preceding are considered to determine the influ-
ence of observation errors.

€y = Hie)

Constant element. Assuming the error in head dis-
tributions to be ¢,, the head vector incorporating mea-

I
€r. = [(_Eh,-_l -+ Eh,')(j‘i - T: + ;T:, - 6

or, simplifying,

o g L1
€y, = _2[) T + D T ”4DEI)T.' +6DEMT:‘

(56a)

surement noise can be expressed as #* = I + €,. The
corresponding transmissivity vector T* can be ex-
pressed as T* = T + er, where 7 is the parameter
error caused by head observation errors. From equa-
tion (20). assuming that discharge remains constant
along the element.

[(=hioy + BT + (en_, + €)TF

1
+ (b = I DT + A€y, &, M TRl 57 =g (49)

L

Ignoring the small, high-order errors leaves
[(=Foy + )Ty + =Ny + ey,

=€, T e)T + Uy — I )Ty

1
A (A s er, + (e, — €, )Tl :’—L- =gq; (50)

where g, is the head error at nede [ and ey, is the
transmissivity error in element 1.
If we use equation (23) for ¢; = 0 and assume a zero
residual error.,
[{(—his + Ider, + (—€p,_, + €T,
+ (ll,- - h,'.}. |_}T“ + (h,' - II;.;, I)ET;[
I

+ (Eh, - . |)Tl!l_’_[_‘ =0 (51)

or, gathering terms,
[0 Ry + hdey, + (= By den,]
= —[(~¢, , + )T +{e, — e, JTul (52
According to equations {40} and (41),

1
i{(_h,'v; -+ h,-)é‘]'l -+ (]I,' - h','.;.])f-r“]

D A
= [-— Dey, — " €7, + —B—E’-}f,.] (53)

If we ignore the high-order terms in equation (33}, then
eguation (52) can be written as

—2Dey, = —{(—s,_, + &7,
+ {ey, — &, MTul + Olery)  (34)

which may be expanded by Taylor’s series with L =
1 to leave

I - ' E n I 1} l it
_T:'" + - ') + (Eh,-_ E;,”')<7,' + T; + ET, -+ _T,' + . ')} E -+ O(e?‘,)

6
(3%
where
€p = (€1 — 26 + €.4.1)
{56b)
€xn = (€1 — &41)

This represents the final description of error in eval-
vated transmissivity due to measurement errors.
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Linear element. As a result of errors in head ob-
servations, the error in the resulting fransmissivity de-
termination may be evaluated from equation (29). Then,
assuming that the residual ervor is zero,

(=l + IITE + (e, , + &)TE
= DT} —~ epTF + (i — b )TV
1

+ (€4 €, )TE 1}”&1‘“ =gq; (37

or using equation (28) for the zero residual error case
enables equation (57) to be rewritten as

[(_’Ii-] + h;)E‘:__] — DET{—l + (h,- — /1','4. [}6,‘.;,]
= ey, , + )i — epT; + (€, — €, 3114 1]
(38)
According to equation {32}, if we use equation {40)
and ignore the high-order terms of the error €}, then

ffrioy + hieioy — Der_ + (i — By )eis

= —4DLes. + Ole}) (59)
Substituting equation (49) into equation (48) yields
er, =1(—&, ,+e)li-y—eT;

+ (Eh.. i I}T;,;‘ 1] + O(E;‘;; (60}

4D

[(~ 124 — 20A ey, — 16Aes, + (— 124 + 20AMer, ]

This may be expanded by Taylor's series for the
terms 7;.., and T;,; about T; as given in equations (29)
and (30} to yield

€p €an

i L i
spL it p li Tapeeli

€T, = —

-

2L
+3p T + Oler) (61}

For the specific case of L = 1, equation (61) reduces
1o

€n €Al 1 "
_—_m]__{__'___e I
L 207 Db B

N

+ == e, T? + O(er) (62

3D Al ( T; ( )

to give the final error in transmissivity as a result of

naise in the measurement of head.

Quadratic element. In a procedure similar to the

previous, equation (33) can be rewritten as
[(—12A% — 20A0%)TF | — 16ATF
+ (=~ 124% + 20A00TE )30 = —¢; (63)

where A" = A + ¢€,, Ah* = Al + €4, and €4 =
ea/L. For ¢; = 0 this equation can be reduced to

=[(— 1264 — 20e4))T; -, — 166, T; + (— 126, + 20e0)T; 11} (64)

According to equation (36), if we ignore high-order
derivatives and use equation (40},

i
““21)57', == _3_0[(— 12e4 — 20e3,)Tioy — 16, T;
{12y + 20€8,3T 1]
4e, 4 R "
= T‘Tf - TEAhT:‘ + ’S_EA Ty

207
— ——€a 17 + Oler)

SD {65)

Since €, = ep/L and from Figure 4. L = 2 fora
quadratic element,

4 2
€y, = _2 T+ —eandi — EEDT:"

8
+ ‘9“5 Exp T:-” + O(E);',) (66)

Equations (53), (62), and (66) representing trans-
missivity errors for the three element types indicate
their complex dependence on head differentials, trans-
missivity constrasts, and derivatives of these con-
strasts, For a given error in head the resulting error in
the higher-order element is always larger than that in
the lower-order element. However, when transmissiv-
ity is constant, the error in the higher-order element

262 Appl. Math. Modelling, 1891, Vol. 15, May

may be less. When high-order derivatives of transmis-
sivity cannot be ignored, this error in the guadratic
element is larger than that in both constant and linear
elements.

Comparison of different finite elements

Minimization of residual error

As was mentioned above, in the inverse solution for
transmissivity there are two types of errors. These are
the computational error caused by noise in the mea-
sured head and the residual error resulting from dis-
cretizing a continuous equation by a piecewise ap-
proximation. For errors of the first type, time series
data may be used to limit the solution error in trans-
missivity when the problem involves the nonsteady
state.!! In this problem, equation (12) with transient
terms added for the unknown parameters may be solved
directly, once the matrices H, Q,,, and g are assembled
for all elements and the boundary condition of trans-
missivity is invoked.

For the latter case, residual errors exist in equation
(11) and may be rewritten as

Hr-@Q,-g=¢ (67)

and the least squares method is used to minimize the
error. Solution requires that €”¢ is minimized such that
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ale’e)/aT = ( and simultaneously the second derivative
defines a minimum. Solution for transmissivity by the
method of least squares can be obtained from the pre-
ceding as

HTHT = H'(Q.. + ¢ (68)

Since H is not a full-rank matrix, the transmissivity
boundary condition has to be invoked. This procedure
will require increased computational efforts but may
give an improved solution. The following examples are
developed to illustrate this.

Examples

Unidirectional flow in an inhomogeneous aquifer is
used as an example. The width of the aquifer is uni-
form. Three cases are considered.

Case 1: Constant transmissivity, The constraints are
h, =0, Iy, = 2.5
T,=T,= 1.0

The theoretical solution is

h o= 0.41666667y
r=1

Case 2: Linear transmissivity. The constraints are

h, = 1.0, Ji, = 3.0
g. = 0.224, g, = —0.224
T, =1, T,=2.0

The theoretical solution is

=288 In{x/6 + 1)+ |
T=x/6+1

Case 3: Quadratic transmissivity. The constraints
are

h,=2.0, fiy, =3
G, = ~0.35085, g, = 0.35085
T;l = Iv Tb = 3

The theoretical solution is

fro=0.4362182 In [{x + 1.34846923)+( —966.99896587/8)]

¢, = ~0.481, g, = 0.481
T = —0.055335562"* + 0.66666666x + |

where hi, and h, are the heads, T, and T, are trans-
missivities, ¢, and g, are discharges at both ends of
the aquifer, x is the longitudinal coordinate, and B =
X - 13.34846923,

Comparisons based on a one-dimensional example

Examples using the three finite element types were
run both with and without the least squares procedure.
All required heads are given using the above-men-
tioned analytical solutions. The Gauss-Newton method
is used for inverse solution. For the constant element
the least squares procedure (1..8.) had to be used, since
the coefficient matrix H in equation (12} is not square
{overdetermined). All computations were run on an
IBM 3090. The sum of the square errors are shown in
Table 1.

By comparing the resulis in Table 1 it is apparent
that the constant element gives the best results among
the three elements and that the linear element has in-
sufficient accuracy. The quadratic element gives the

largest error in all three cases. According to error
expressions {41} and (42). for a constant element or
linearly distributed transmissivity, the results obtained
for the linear element and the constant element should
be the same. However, the results in Table | show the
constant element to exhibit less error. In fact, the con-
stant element performs better for a flatier head distri-
bution when the Gauss-Elimination method s used.
This is because the diagonal elements in Matrix H for
linear, quadratic or higher-order elements depend on
the second derivative of head. A flatter head distri-
bution will result in small diagonal elements in the
matrix H. This usually causes large numerical error.
Conversely, the elements in matrix H for the constant
element depend only on the gradient of head {or the
first derivative). In this example, the minimum second
derivative value is 0.02 and the minimum first deriv-
ative value is 0.24, resulting in differences in the in-
verse solutions. This confirms that the high-order ele-
ment cannot give reasonable results for parameter
identification. In fact, an implicit underdetermination

Table 1. The sum of squares errors for different cases and elements

Linear element

Constant element

Quadratic eiement

Transmissivity With L.S. No L.S. With L.5, No [.S. With L.S.
Constant 0.1 x 10-1 0.33332 7.4 = 10" 1.0263 58 x 10-1
Linear 7.18 x 107 8.45 x 105 8.43 x 108 1.281 x 10-7 1.243 x 10-?
Quadratic 1.31 x 1673 175 x 10-? 1.49 x 14°% 5.045 0.216
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exists in high-order elements. since the parameter can
have a nonlinear variation.

It is apparent that the diagonal terms in the element
matrix approach zero for linear and guadratic elements
when hydraulic head is linearly distributed as shown
in equations (18) and {20). This case promotes consid-
erable numerical difficulties and may result in large
errors, The values of Table I without the least sguares
procedure and for constant transmissivity illustrate this
point. In this instance the least squares procedure must
be used to avoid serious error. The values of Table |
obtained by the least squares procedure indicate that
the solutions were greatly improved. Other values of
Table I also show that the least squares procedure
yields improved solutions, although it requires more
CPU time to evaluate the matrix computations.

Two-dimensional example

As was mentioned above, the constant element vields
the best solution among the three elements. This state-
ment is true not only for one-dimensional problems.
but also for two- or three-dimensional problems. To
demonsirate the efficiency of constant elements. a two-
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= L/
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i e
Prescribed head (100 m)
aj
50 15 5
(73 (8} {9
150 50 15
{4} ) (&)
150 150 50
(1) () (3)
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Figure 5. Aguifer configuration. {a) Boundary conditions {in-
flow rate in m¥/day}. {b} Transmissivity values for each zone
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dimensional groundwater flow system is used that is
similar in geometry to that of Carrera and Neuman®
except that no areal recharge is accommodated, The
aquifer comfiguration, the boundaries, and the trans-
missivity value for each zone are iilustrated in Figures
Sta) and 5(8), where all recharge is defined in cubic
meters per day. The boundaries are considered to be
impermeable except for the inflow and constant head
boundaries. No pumping well is considered.

A 6 x 6 mesh is used to obtain the head distribution.
In the inverse solution, only a 3 % 3 mesh is used. A
four-node constant element is used for the finite ele-
ment sotution in both forward and inverse modes. The
resulting distribution of heads is shown in Figure 6.
According to this distribution and the applied boundary
conditions, the inverted parameters are obtained by
using the least squares method and the Gauss method,
The value of transmissivity in each zone and error
percentages between the real and inverted transmis-
sivities are shown in Table 2. The total square error is
85.72 m¥day?, and the standard deviation is 4. 14 m¥/day?
for all computed zones. Table 2 also shows that the
refative errars in zones 4 and 7 are very small and that
the errors in zones 6 and 9 are larger. From Figure 6
it is apparent that the variation of head gradients (#*1/ax%)

Y (=} 3.0 1

'™
w

1060

0.0 T T T T
0.0 1.5 3,0 A3 6,0
X (k=)

Figure 6. Distribution of heads for the two-dimensional ex-
ample {with 3 6 x 6 mesh)

Table 2. The computed transmissivity distribution and
relative error in each zone

Zong
number Real value  Computed value  Relative error (%}
4 150 153.1345 2.09
5 56 56.1199 12.24
8 15 11.1096 - 25.94
7 50 47.1844 -5.81
8 15 11.2757 ~24.83
o 5 3.7493 -25.01
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in those zones is correspondingly very small, The rea-
son for this correspondence between increasing error
magnitude and decreasing gradient is apparent in equa-
tion {56). For a given head distribution the error of the
estimated parameter for lower values of the second
derivative of measured head (#*/1/4x*) should be larger.
In addition, if linear elements or quadratic elements
are used, the estimation of transmissivity will be ex-
acerbated because this error may be increased and the
equations may become singular {owing to small diag-
onal elements in matrix H). However, if constant ele-
ments are used. no such difticulty occurs.

Conclusions

A study of parameter identification in groundwater flow
systems was conducted. To determine the effects of
different finite elements on the fidelity of parameter
identification, three different finite elements were ana-
lyzed by using Taylor's series expansions. Examples
were computed by the finite element method both with
and without using the {east squares procedure. The
results illustrate the following:

I. In a numerical solution of the inverse problem the
errors of estimated parameters result from both the
residual error caused by discretization by the finite
element method and from errors in observation
{noise).

. The residual error in transmissivity depends on both
the absolute magnitude of transmissivity and the
higher-order derivatives of this distribution. A strong
variation of transmissivity will result in a large error
in parameter estimates.

3. Low-order elements, rather than high-order ele-
ments, give the best accuracy for the inverse so-
lution, according to the Taylor’s series analyses and
the results obtained by different elements. The con-
stant element performs best among the three ele-
ments.

4. When observations of heads are linearly distributed
over the field, linear or quadratic elements may cause
some numerical difficuity as a result of singular
coefficient matrices. This requires implementation
of a special minimization procedure to overcome
the problem.

5. The least squares procedure is very important (o
reduce the residual error and limit numerical diffi-
culties for a direct solution.

6. A two-dimensional example shows that constant
elements may also be applied to realistic problems
for parameter estimation and yield high accuracy.
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Nomenciature

I, Iy Head and head at node k
h,. hy Heads at both ends of aguifer in ex-
ampie problems

Specified function

Vector of head

H Matrix representing the distribution
hydraulic head difference within
the domain

[P T 1

L Length of element

n,n. Numbers of nodes and elements

G o Recharge at both ends of the aquifer
in example problems

. T, Transmissivity and transmissivity on
boundary

Ty, Ty Transmissivity of element 1, I

Tioy. Tio Tioy Transmissivity of node i — 1, i,
i+ 1

T Fourth derivative of transmissivity to
coordinate direction

T* Transmissivity vector with noise

T Matrix representing the geometric
transmissivity of the domain

T Vector of transmissivity for the
steady state

o Recharge on the boundary

q Recharge vector

Q. Discharge vector of wells

0o Discharge and recharge vector

Xy ¥y X Ve Coordinates and coordinates at wells

R Flow region

dR Boundary of the aquifer

dR,, dR) Specified head boundary and dis-
charge prescribed boundary, re-
spectively

€. €7, Error of head, error of transmissivity
at node |

€. Ep Error of vector head and transmissiv-
ity, respectively

€51 Error Matrix

€ Error vector

b, B, Shape functions

; Weighting function
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