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Abstraci—A concepiual model is presented to describe thermal recovery from an infinite geological body
through an arbitrary number of spherical production zones. The dimensionless parameters of volume
averaged fuid recovery temperature {Tp), fuid cireulation rate (Qp). thermal poresity (b ) and
geometry uniquely define response within dimensionless time {1, ). Dimensionless circulation rate (Qp ) is
directly proportional to fluid circulation rate and iaversely proportional o the radii of the stimulated
zonces. Histories of thermal recovery are specifically presented for colincar arrays of stimulated zones
produced at uniform fluid circulation rates. In the steady condition, mean recovery temperatare {750 is
defined purely in terms of dimensioness circulation rates (Ug ) and the relative production geometry. In
steady production, the mean output temperature (T, ) reduces with an increase in the number of zones as
a naiural consequence of thermal interference. In the transicnt casc also, production temperature (T, ) for
multiple zones reduces as both the number of zones and their mutual proximity increases. These
consequences arc, significantly, apparent for intermediate valucs of circulation rate {Qyy) only.

NOMENCLATURE
Generai (All quantities in 5§ units)
a; radius of zone {, m
a;lsy dimensioniess separation: between influencing zonc; and influenced zone {
Ay components of the thermal conductance matrix, $° K/kg m*
Ay influence cocfficient, dimensioniess
B; thermal extraction rate of zone 1, kg m¥/s® K
Ci volumetric thermat capacity of zone i, kg m%s” K
k total number of production zones, integer dimensionless
Kn thermal conductivity of the rock containing the production zenes, kg mist K
¢ block dimension, m
" summation parameter, integer dimensionless
n current time step of interest, integer dimensionless
gr, fiuid circulation rate within zonc §, m¥s
qr, thermat flux at zone 7, kg m¥s”
o dimensionless throughput
oy modified dimensionless throughput, @' = 4a/Q),
r radius of interest from origin, m
S separation between the centers of zones fand j, m
Sa, separation between influencing zone § and any point on the spherical surface of influenced zone i, m
1 time, s
il time to 95% thermat equilibration of rock blocks, s
1, current time level of interest, s
Iy dimeasionless time
T, temperature at radius r, K
To, dimensionless temperature of zone
To mean dimensionless zone femperature
T fluid injection temperature for zone i, K

fluid outlet temperature for zone i, K

* Formerly at Waterloo Centse for Groundwater Research, University of Waterloo, Waterloo, Ontario, N2L 3G1.
Canada.
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T in-sifu yock temperature, K

A finite differential operator with respect to tme, dimensionicss

4 thermal diffusivity of intact rock. m™/s

o secondary porosity within zone i, dimensionless

Sy dimensionless secondary poresity of zone i, ‘l),, i p\c.,/p,ec”

PECE, thermal capicity of flukl circulating in zone £, kg/m s° K

PRCR thermal capacity of in-sifu rock, kg/m 5™ K

P50, aggregated thermal capacitics of unuldmry fluid and rock within zone i, kg/ms K
T surrogate time used in Duhamel's integral. s

Matrices

A matrix of thermal conductance terms at componuu time level 7,,,, §°* K/kg m*
B matrix of thermal extraction rates, kg m¥s* K

C matrix of volumetric thermal capacitics. kg m™¥s° K

I identity matrix, dimensiontess .

Uy, vector of thermal Suxes at component time level ¢, kg ms*

T, vector of fluid inlet temperatures, K

{Tan, vector of Huid outiet temperatures at time 1, K

Tr vector of initial in-yind rock temperatures, K

INTRODUCTION

Feasibility and longevity calculations for hot dry rock (HDR) geothermal energy schemes
have historically been developed through the iterative process of mathematical conjecture and
supporting physical verification. Original concepts for thermal recovery within single (Lauwer-
ier, 1955; Carslaw and Jaeger, 1959; Harlow and Pracht, 1972; Abé et al., 1979) and multiple
fractured systems (Gringarten and Witherspoon, 1973; Gringarten ef al. 1973 Bodvarsson and
Tsang. 1982) have been supplemented by the results of field studies, most notably in the U.K.
and the U.S. (e.g. Smith, 1975; Murphy, 1982). Current field evidence, gathered most
conclusively {rom the passive seismic record {Pine and Batchelor, 1984; Baria ef al., 1987;
Fehler, 1987). suggests that reservoir stimulation produces a distinct production zone rather
than a single discrete hydraulic fracture. The presence of remnant jointing at depth, together
with unfavorably aligned residual shear stresses, are cited as the main factors controlling the
development of a distinct stimulated zone.

e

Stimuiated zone, [

radius g \

Fig. 1. Schematic of HDR extraction with multiple production zones.
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The development of a volumetric zone through downward shearing and penetrated by
multiple tortuous flow paths supports the use of thermal recovery mechanisms that are
conceptually different from those mentioned above. One such theory has been presented for the
withdrawal of thermal energy from a single, spherically stimulated HDR reservoir {Elsworth,
1989a) embedded within a half space. Although use of a single stimulated zone is reasonable in
representing the geometries of current experimental HDR schemes, economic viability may
reasonably require the development of a multiple stimulated configuration (e.g. Murphy er al.,
1985). One potential arrangement may comprise a series of stimulated zones having parallel
fiow paths as illustrated in Fig. 1. Individual zones may be hydraulically connected or remain
unconnected, as conditions dictate, and may be produced at different rates. Assumptions and
constraints germane to the conceptual model are presented in the following.

CONCEPTUAL MODEL

Thermal energy is withdrawn from the system through circulation of fluid within a total of &
spherical and hydraulically closed stimulated zones of individual radii a;. The secondary porosity
of this artificially stimulated zone is finite with the surrounding medium retaining zero secondary
porosity. Fluid is circulated within individual zones at constant volumetric flow rate g, with a
prescribed injection temperature Ty, and initially unknown outlet temperature Tg,. Further
assumptions are made that:

1. Fluid losses associated with temporal pressure changes and void volume increases are
assumed negligible over the reservoir lifetime and are neglected. The radii of individual
stimulated zones remain static with production. Fluid expansion and buoyancy flow effects
are neglected.

2. The temperature of the circulating fluid is raised. immediately upon injection. to the
outlet magnitude. T, . This requirement necessarily ignores any spatial dependence of fluid
temperature within the permeable zone and therefore negates the development of any
asymmetric component to the thermal drawdown in the surrounding medium for the case of
a single production zone, This assumption is warranted under circumstances where the
thermal equilibration of individual rock blocks comprising the permeable zone is rapid,
relative to the transit time of the circulating fluid. Where primary interest is the gross
(aggregated) magnitude of thermal energy production. rather than point determination of
temperature distribution, the assumption is considered reasonable.

3. Thermal equilibrium between the percolating fluid and host rock is maintained at all
times within the stimulated zones together with full mixing between the wells. The edge
dimensions of individual rock blocks, delineated by active flow paths, are assumed
sufficiently small that rapid equilibration will occur. The validity of this assumption may be
tested with knowledge of %, the time to 95% equilibration following a change in surface
temperature to any of the individual rock blocks, A spherical idealization of a cubic block.
of edge dimension £, vields 1> = 5.9 x 1077 € “/x where « is the thermal diffusivity of the
rock (Elsworth, 1987) denoted « = Kg/pgrcp with Ky = thermal conductivity and
prer = specific heat capacity of the rock.

4. Thermal transport within the stimulated zones is purely advective. Pure conduction 1s
the transport mechanism within the external medium.

5. The thermal capacities of the external rock preg, heat exchanging fluid prep, and the
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saturated stimulated zones pgeg,, together with the thermal conductivity of the external
rock Ky, remain constant with time.

6. The influence of the natural geothermal gradient over the height of the stimulated zone is
assumed negligible. This factor has been iilustrated, in previous investigations, to be
apparent only at small dimensionless times and is negligible for a realistic range of physical
parameters (Gringarten erf al., 1973).

7. The domain containing the spherical production zones is infinite,

8. The heat capacity of individual stimulated zones is defined as pgses, = (1 — ¢)prer +
@:prcE, where ¢, is the secondary porosity of zone i.

MATHEMATICAL DEVELOPMENT

Consider a total of k spherical production zones within an infinite medium of radii 4; through
which fluid is internally circulated at rates ¢ and at inlet and outlet fluid temperatures 77 and
To,. respectively. The global thermal energy balance for the system may be documented as a
total of k equations of the form

g1, = qrpece(To — Ty); + dai pses, BZ;D' (1)
where g, is the total thermal flux recovered per unit time from zone i, Equation (1) balances the
influent thermal flux with the components extracted through the heat exchanging fluid and the
thermal inertia of the centrally stimulated zone.

The radial temperature distribution T, within an infinite medium, of initial uniform tempera-
ture Ty, into which a spherical source of constant strength g+, and radius g; is initiated at time
t = 0" is recovered as (Carslaw and Jaeger, 1959, p. 248)

i 4

o) -eo[5) 2l 21

where 7 is the radius of interest and « is the thermal diffusivity of the surrounding solid rock.
From this basis, expressions for both the self influence and reciprocal infiuence of spherical
sources may be developed directly.

Self-influence
The uniform temperature change induced at the surface periphery of a spherical source { may
be obtained directly from equation (2). Substituting r = ¢; and setting T{r) = T (1) gives

T = Tok = — 4, 3
< R O)r 4erRaj it (J)
where
A;=1-exp (a )erfc {K!) (4
I i

where (Ty — To); represents the area averaged temperature differential at zone i. For self-
influence, symmetry dictates that the temperature differential is uniform.
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Infinite

Fig. 2. Relative geometry of spherical production zones within an infinite medium.

Reciprocal influence

The reciprocal influence of a spherical source g, upon the temperature distribution over a
spherical surface of radius a;centered a distance 5; distant is illustrated in Fig. 2. The connecting
separation s,, subtended at any angle «; within the influenced sphere is given by

a; 2a; i -
S, = 8y I+i—~]—i~|cos Uy : (3)
Sij Sij

The areally averaged temperature over the surface of sphere i is, therefore,

1 A 1T .
(Tp — Tl = i ETCGFJ (T — Tis,,)] sin o dy; (6)
i 0

where T,(s,,) is the temperature at connecting radius, s,,. Substitution of equation (2) into (6)
yields the reciprocal influence of a source centered at j on the averaged temperature distribution
atias

qr, 4
T = Tok=——A4; 7
< R O)z 4RKRH]- if ( )
where no summation is implied and
A= %F A {erfc ('——Hg”” — al) —exp ('—9“” G —’f—i)
a;
i

2 fu S, 2wty a5

— g }
X erfc [(M) -+ (K—t):i} sin £ da,",'. (8)

2kt) a;

Where i = j, as is the case for self-influence, equation (7) collapses to equation (3).

GLOBAL EQUATIONS

From the principle of linear superposition, the temperature change occasioned at location i
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from a total of k sources distributed throughout an infinite medium is given by

qT, T
T - T P = : A," 9
{Tr o) 47Kga; " ®

where A; and Aij are as previously defined and the normal summation convention hoids with
j=1, k. Equation (9), as written, is for thermal fluxes g, that remain constant with time.
Duhamel’s theorem may be applied to replace the constant fluxes with a condition of linear
superposition in time. Equation (9) may be represented in matrix form as

(Tr — To) = Aqr (10)

where qtis a vector of thermal discharges, (T, — To) is a vector of temperature differentials and
the coefficients of matrix A follow directly from equation (9). Duhamel’s theorem allows the
thermal ftux qr, at current time 1, to be determined as

by
CET,,,:] EA Ty =~ To)dr (11)
0

where the coefficients comprising A are modified from the previous by replacing ¢ with (1 — 7).
The continuous differential may be replaced in discrete form as

qr, = ~ Z AL ATo), (12)

m=1l.n

for constant Ti. The component terms of A, are represented at the time level 7, as,

1 I | S, — S, dr 1, —T
Ay= ——‘“J J wme lerfe =Sk — exp | ety - )
8K Al o Su, 2(k{1, — O)F a; a;

Tm-1 I i
- a — )
- erfc[ Sap 74y (el = 7)) H sin a;; day; dr (13)
2wl(r, — 1)) a;
for i # j, where
Arm =lhp — e (143)
ATod, = (Toh, — (Toh,.., (14b)
and for i = j may be determined separately as
L (ltn =) _ o (lty = D)) 5
ff T e— 1 b L L 5 f n d . 13
" 4aKgpa; At f - { exp a; erte a; ¢ {13)

In matrix notation, the energy balance relationship of equation (1) may be differenced to yield,
at current time level 7,

1

=BTy —Tp, +
g, (To 1, Al

CA(Toy, (16)

where the component diagonal matrixes B and C are invariant with time and are given as
Bii = qrpecE,; By=0(i+]) (17a)
Ci=4malpscs;  Cy=0(#])). (17b)
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Substituting equation (12) into (16) and rearranging gives the incremental energy balance at
time 1,, as

; 1 .
{A,ﬂ‘ +B g }(TO),R - - Z | AZY MTob,
m=1.n0—-
+ |Ar + 3¢ @0, + BT a8)
(M

which may be solved directly for outlet temperatures (Tg),, at the current time. Of the
component matrices, only A, is onerous to evaluate, containing an integral in both time and
space. The temporal and spatial integrals are evaluated using three and eight point quadrature,
respectively. The computational burden is eased somewhat by noting that, for constant time
increments (A, ). A7} at time level 1,,.., is equivalent to A[ ! at time level 7.

The dimension of the fully populated interaction matrix A increases in direct proportion to
the nrumber of active stimulated zones. The computational effort required to evaluate outlet
temperatures at any given time level is, therefore, dependent on both the number of active zones
k and the number of preceding temporal iterations n. Exclusive of evaluating the integrals
comprising A, . the right hand side of equation (18) requires of the order of nk® + K’
multiplications at each time level. For a large number of iterations, this effort quickly exceeds
that of $k* + k* necessary in reducing equation (18) for a known right hand side. If computatio-
nal advantage is taken of recording the entries of both previously evaluated A matrices and fluid
output temperatures (Tp). storage requirements are (k* + 1)n. Of crucial importance, there-
fore. in determining both computational effort and computational storage requirements are the
desired number of time steps.

Dimensionless parameters

Similar to the case for a single stimulated zone. the global equations may be expressed
uniquely in terms of a set of dimensionless variables. For k zones. a total of 5k dimensionless
parameters uniquely describe the performance of the system. Dimensionless output tempera-
tures are regulated by the relationship

(To~ Tty _ ~(qrprcr. Kr | psCs @
- F ) ‘1 y T (19)
(Tr ~ T Krat;  PrOR® PRCR S

where j = 1, k and no summation is implied. In shorthand these quantities are

To, = F(QD,; ip,; Op,; f’— . (20)

i

Physically, these dimensionless groups may be described as dimensionless output temperature
(Tp,), dimensionless reservoir throughput (QOp, }. dimensionless time (), dimensionless heat
capacity or secondary porosity (®p ) and dimensionless zone separation (a;/s;).

Dimensional similitude guarantees that systems exhibiting both identical thermal extraction
geometries and dimensionless parameter magnitudes Qp, and ®p will return identical pro-
duction temperature histories Tp when viewed relative to dimensionless time 1, Since a unigue
thermal history is recovered for every individual permutation of production geometry, generic
graphical representation of thermal histories is infeasible in all but the most simple and
geometrically regular instances. In response to this constraint, further discussions are restricted
to consideration of a colinear array of production zones.
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PARAMETRIC EVALUATIONS AND DISCUSSION

Thermal response to a variety of production scenarios may be conveniently represented in
dimensionless form. These provide an extremely powerful method by which reservoir longevity
and output may be determined. Predictions may be both qualitative and quantitative. In all
instances, a colinear arrangement of producing zones is chosen although, clearly, this is not a
limiting facet of the conceptual model. In all cases, dimensionless throughputs (Qp) and
dimensionless time (7p) are defined with respect to the behavior of one of the component zones.
Total system throughput may be recovered as the product of component throughput and the
number of zones being produced at that rate.

Steady behavior
In the long term as (d7q,/4t) — 0 the energy balance equation may be expressed in matrix
format as a direct derivative of equation {18)

(Tg — To) = AB(Tg — Ty) (21)
The terms comprising the matrices are determined from equation (8) as 1 — @« as
1
Aﬁ = 22
dxKra; @2
1 L™ a; 1 a;
A= ——-2| —Lsingzday=——- - [ 7§ 23
! 4«"TKRH; 2 L) Se, SIn iy Gty 4HKRCI, S (I j) ( )
and
Bii = qrprce (24)
B;=0. (i=]) (23)

The global energy balance relationship of equation {21) may be rearranged to yield
(Tr) + AB(T) = [I + ABKTo) (26)

where 1 is the identity matrix. In terms of outlet temperatures from each of the stimulated zones,
equation (26) may be reordered as

(To =Ty =[1+ AB]"YTx ~ Ty (27)

In the case representing a local geothermal gradient of zero where (Ty — T)) is constant with
depth and equal to (Tx — T}), the steady relation above aliows the dimensionless output
temperature (T — T)(Tx ~ T)) of the component zones (i = 1,k) to be recovered from the
sum of terms comprising the /th row of [[ + AB]™.

Steady discharge temperatures are controlled by the distribution of dimensionless throughput
magnitudes Qp, and the relative production geometry as evidenced through dimensionless
separations a;/s;. For linear arrangements of production zones, the most likely format in
practice, the steady dimensionless output temperatures may be simply evaluated. For constant
dimensionless throughput magnitudes Qp, constant zone dimension q; and symmetrically
uniform separation between centers s; the output temperatures are, for:

twin zones

TD,=Q'[1+Q'+1Jwl (28)

S
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triple zones

T 2q] 1+Q’+s£_
rol=efrosjarer-2] 20 (9)
D- $12 512 1+0Q - ﬁ-.+i
Sz 13
and quadruple zones
a
1+0"'—-——
Tp, a a a a 1! ¢ S13
=g [1+Q" +—||1+ Q" +—|-j—+— (30}
To, S14 Sp2 S12 53 1+ 8% _a.a

where subscripts 1 and 2 attached to the dimensionless temperatures refer to outermost and
central zones in the linear arrangement, respectively and Q' = 47/Qp. Zones are numbered
sequentially 1 through & along the colinear arrangement beginning at one outermost tip.
Dimensionless output temperatures may similarly be determined for larger numbers of
stimulated zones, For a linear arrangement of contacting equidimensional zones produced at
constant rate, the steady dimensionless temperatures are illustrated in Fig. 3.

It is apparent that the average output temperature T, decreases as the number of producing
zones increases. The average steady production temperature is a function of geometry and
dimensionless throughput Qp, only. Thus, for a ten-fold increase in total throughput, evidenced
by transiting either from 1 to 10 zones or from 10 to 100 zones, the steady return of thermal
energy is increased less than ten-fold for intermediate values of dimensionless throughput, Qp.
The most favorable energy extraction conditions are for low dimensionless throughput rates
representing either low fluid circulation rates or high thermal conductivities of the surrounding
rock. Although steady thermal yields at high dimensionless throughputs (Qp > 107) increase
near proportionately to the increase in number of producing zones, this behavior is clearly far
from optimum in all practicality due to the low specific recovery temperature,

As the number of zones in linear arrangement increases, the spread of production tempera-
tures away from the mean value also increases. Production temperatures in the central region of

Qr PFCr,
Kn O

QD=

Fig. 3. Average steady state preduction temperatures { T ) for a colinear, array of equidimensional zones produced at
uniform rate. Vertical bar indicates the range of the maximum production temperature span between the central (upper
limit) and outermost (lower limit) zones.
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the linear arrangement are always the lowest. with the highest temperatures recorded at the
extremities. The spread of these production temperatures is available from equations (2%) and
(30) for triple and quadruple zones and for 10 and 100 zones as evidenced by the spread bar in
Fig. 3. With the addition of more zones, the mean output temperature is predominantly
influenced by the centrally located production zones.

In the limit as a/s;— 0, the results for steady output temperature reduce to

Tp=Q+Q7" G

representing the behavior of a single stimulated zone within an infinite body. This behavior
presents an upper bound to potential steady production temperatures as evidenced in Fig, 3.

Transient behavior

Solution of equation (18) allows the transient behavior of any muitiple stimulated configur-
ation to be determined. For large separations between stimulated zones (a;/5;— 0), the thermal
output of the system may be determined exactly from the sum of the components. The broad
spacing of the stimulated zones, relative to their radii, precludes mutual interference and
thermal histories may be recovered from single production zone solutions as presented
elsewhere [Elsworth, 1989a).

The influence of the dimensionless secondary porosity @, in the reasonable range 1.0~1.1 has
been illustrated to be insignificant when gauged against the other controlling variables
[Elsworth, 1989a]. Results for a single zone, produced at a range of dimensionless throughputs,
are illustrated in Fig. 4. Evident from the figure is the presence of bounding behaviors at the
extreme values of dimensionless throughput, Qp. For very large throughputs (Qp > 10%).
output temperatures are fixed in dimensionless time (¢, Q). This represents the case of minimal
thermal replenishment from the surrounding medium and gauges the response of an insulated
spherical inclusion only. Small throughputs (Qp < 10™!) precipitate minimal disturbance of the
thermal regime surrounding the production zone and thermal output from the system remains
near constant with time.

For multiple extraction cases, the results will be most different from the single zone case as
als;— 1/2 for equal sized zones. Results for a linear arrangement are illustrated in Fig. 5. Mean
temperatures represented in the figure are obtained by volume averaging outputs from
individual zones. Similar to the case of a single zone, threshold behaviors are evident for
bounding values of dimensionless throughput, Qp. For Qp, > 10" a limiting thermal history in

o Qp = Kpt . O Prle
OrCn2  Kno

Fig. 4. Variation in dimensionless output temperature { 7)) with dimensionless time (¢p) for a single stimulated zone.
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Fig. 5. Variation in the volume averaged dimensionless output temperature (T, ) with dimensionless time (1 ) for a five
component, colinear array of producing zones,

dimensionless time is apparent and for Qp < 107!, mean output temperatures remain near
constant with time.

For intermediate dimensionless throughputs, 107! = O, = 10*, the mean output tempera-
tures are degraded, over the single case, at dimensionless times tp > 10, This is similar to the
behavior predicted in the steady case as illustrated in Fig. 3. With an increase in throughput, the
degradation occurs at progressively later dimensionless times (tpQp) or earlier real times {f).
The significance of this degradation, in reality, is therefore conditioned by anticipated useful
lifetime of the system. The magnitude of the degradation appears greatest for intermediate
magnitudes of dimensionless throughput, Qp = 10,

Doubling the number of producing zones to ten further degrades relative mean thermal
output from the system. Transient results for this case, illustrated in Fig. 6, indicate that the
magnitude of degradation is only slightly accentuated over that for five colinear zones. Similar to
the previous, this effect is only important for intermediate values of dimensionless throughput
(107! < Qp < 10%). Also illustrated is the spread of fluid temperatares produced from both the

O — 5

i 05 = 10 zones
—| == | #o-iC

toQp = —fal . GrPrCe
b Ca0Z | Kpo
Prlr R

Fig. 6. Variation in the volume averaged dimensionless output temperature {Tp) with dimensionless time {1, ) for aten
component, colinear array of producing zones,
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mnermost and outermost zones in the colinear arrangement. The distinction between the
innermost and outermost positions is significant only for the previously designated intermediate
range of fluid throughputs. The lowest temperatures of the distribution are returned at the
central locations and the highest at the outermost zones. Similar to the single zone case at
dimensionless times greater than 10° the discrepancy between central and outermost pro-
duction temperatures is only significant following this time for multiple arrangements of
producing zones. With increasing dimensionless throughput the splitting of temperature
histories occurs progressively later.

THERMAL EQUILIBRIUM

The assumption that both rock and percolating fluid remain in thermal equilibrium within the
stimulated zone is the most demanding of the model requirements although, beyond radius a,
conductive gradients remain permissible. The conditions of this assumption will be approached
as fluid throughput rates {gg¢) are reduced sufficiently that thermal gradients within the rock
comprising the stimulated zone become insignificant. The maximum admissible magnitude of ¢¢
that may be tolerated before the equilibrium assumption is violated may be evaluated by using a
thermal drawdown model that accounts for disequilibrium. The parallel fracture model
[Gringarten et al., 1975] may be recast using the dimensionless parameters T, Op., Ip where the
scaling length of reservoir radius, a, is replaced by reservoir volume, v, through v = 374>, Thus,
the equivalent dimensionless parameters become [Elsworth, 1989b]

-Cp (4|13
Op = 2F2EE (‘5,7) (32)
ES

KR[ (‘E__—J_T)EIB
PRER A3V

(33)

with the additional reservoir “shape” factor of xp/v'” where 2x is the separation between
p £ E P

adjacent parallel flow channels. In this manner the results of the parallel fracture model,
accounting for thermal gradients within the stimulated zone but ignoring heat supply from the
external geologic host, may be directly compared with the proposed model.

The individual stimulated volumes of the Los Alamos Fenton Hill reservoir and the
Camborne Geothermal Energy Project are of the order of 4 x 10°m?®. Assuming a worst case
diffusion length, xz, separating adjacent flow paths to be of the order of 10m returns a
dimensionless shape factor, x/vi? of 6.2 x 1072 Thermal drawdown for the parallel fracture
model is represented in the same semi-log space as the spherical reservoir model for
¥/v¥®=10"%in Fig, 7. For small magnitudes of Qp, the parallel fracture model duplicates the
assumption of thermal equilibrium between rock and the circulating fluid but does not allow for
full mixing. The resuits for the spherical reservoir model with no external heat supply are also
shown. For circulating rates {(Qp) lower than 1.6 x 10* the spherical reservoir model is in
reasonable agreement with the parallel fracture model where behavior is bounded as Op— 0.
The inability of the spherical model to fit the data for all Op =1.6 X 10* results from the
assumption of full mixing within the stimulated zone being unable to represent the propagation
of & thermal wave. However, from the results of Fig. 7, reasonable bounds may be placed on the
importance of this inadequacy.

For the chosen magnitude of xz/v!” = 1072, the assumption of thermal equilibrium would
appear reasonable for Op = 1.6 x 10*. Since previous large-scale circulation tests at the Los
Alamos reservoir have returned circulation rate magnitudes of the order Qp = 107 [Elsworth,
1989a], the threshold O, allows for a two order of magnitude increase in circulation rate before
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Fig. 7. Variation in dimensionless output temperature (7y) with dimensionless time (1) for the parallel fracture model
of geothermal energy extraction.

the assumption of thermal equilibrium is violated. It is suggested, therefore, that the proposed
model is broadly applicable to practical problems of HDR geothermal energy recovery.

CONCLUSIONS

For a multiple arrangement of colinear zones, relative thermal output is degraded over the
case of a single producing zone. The degradation is apparent only in the sense that doubling the
number of zonas will less than double the recovery of thermal energy. As the number of zones
increases, so does the magnitude of the decrease over the single production case. While this is
demonstrated in the previous examples for a contacting colinear arrangement of zones, the
effect will become less evident with increased separation. Even for contacting zones, the
degraded production is only significant for intermediate magnitudes of dimensionless through-
put (107! < Qp < 10%).

The efficiency with which thermal energy may be transformed into electrical energy is
generally related to fluid temperature in a nonlinear manner, The response curves for transient
thermal behavior may therefore only approximately be related to scaled electrical output.
Efficiency usually increases with the absolute magnitude of the fluid production temperature
and consequently the desire to maintain high temperatures, over time, may be crucial. The
requirement of retaining production temperatures above a defined threshold suggests the desire
to close off cooler zones with time. The feasibility of this option is controlled both by the surface-
to-subsurface pumping arrangements and the hydraulically closed or interconnected nature of
adjacent zones. For a colinear arrangement., however, the greatest thermal rebound is
occasioned by halting circulation within the innermost zones. The proposed conceptual model
offers the facility of optimizing power recovery subject to both economic and operational
constraints applied to a realistic system.

The influence of the number of producing zones upon recovery temperature is apparent for
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intermediate values of fluid throughput only. For dimensionless throughput values {Og) greater
than 10~ and less than 10° the effect is noticeable at large dimensionless times in the transient
thermal record and, by inference, is retained in the steady case.

For optimal long term recovery it is desirable to retain dimensionless throughputs below 107!,
The possibility of minimizing thermal depletion by reducing throughput, irrespective of the
foregoing analysis, would appear an intuitive requirement in maintaining high effluent tempera-
tures from the system. It is apparent that, for multiple production geometries, the relative
thermal recovery is degraded with an increased number of zones. The relative recovery for one
hundred zones is certainly degraded over that for ten, and a similar adjustment is anticipated
with an increase in zone density above one hundred. This behavioral pattern is corroborated in
the results for steady temperature outputs although, for dimensionless throughputs Qp outside
the range 107! < Qp, < 10%, the influence of the number of zones appears insignificant.
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