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An adaptive characteristics method is presented for the solution of advective-diffusive groundwater
transport problems. The method decomposes the transport processes into advective and diffusive
transport components, Advective flows are defined by nsing a streamtube increnenting provedure,
based on the method of characteristics, to define the position of the advective front. Diffusive transport
orthogonal to the front is represented by an array of propagating streamtube elements, with dimension
determined from analvtical solution of the one-dimensional diffusion equation. Adaptive time scaling
is nsed to moderate the dimensions and aspect ratios of the advective and diffusive streaminbe elements
as appropriate 1o the dominant transport mechanism. Finite differences are used to solve for transport
ahead of the advancing front. The distribution of streamiibes are predetermined from a direet boundary
element algorithim. Comparison with analytical results for a one-dimensional transport geometry in-
dicares agreement for Peclet numbers between zero and infinity. Solution for transport in two-dimen-
sional domains illustrates excellent agreement for Peclet numbers from zero to 23.
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Introduction

A variety of numerical methods have been proposed
to aliow effective solution of advective-diffusive trans-
port phenomena. Of particular concern is the behavior
of Eulerian-based methods in which advective {lows
dominate and the governing equations become hyper-
bolic. Related problems of oscillatory behavior and
overshoot surrounding steep concentration gradients
may be accommodated by using upwind techniques:'
however, numerical diffusion of unknown magnitude
is introduced as a natural consequence. The method
of characteristics® is a powerful technique when ap-
plied to differential equations exhibiting significant first-
order derivatives and has been applied to the solution
of density-dependent® and density-independent’-
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transport problems. Adaptive methods incorporating
mixed Eulerian-Lagrangian techniques®™” have been used
to retain the most effective attributes of the respective
methods in representing a broad range of both advec-
tion-dominated and diffusion-dominated flows.

The proposed method is an extension of the coupled
finite element and characteristics schemes employed
in the solution of the full Navier-Stokes equations.
Their common form requires that the advective term
dplat + v-Vp, representing conservation of mass along
a streamline, is treated as a total derivative Dp/Dr and
solved by using the method of characteristics. In an
analogous manner, mass concentration may be sub-
stituted for density, p, used in the Navier-Stokes prob-
lem to parallel the mass transport of a single species.
In the methods introduced by Bengue et al.* and de-
veloped by others®™'!, diffusive transport is repre-
sented by finite difference or Galerkin finite element
methods in which stability of the solution is guaran-
teed. The robustness and attractive stability charac-
teristics of these operator-splitting techniques have
consequently attained wide appeal. Qur method differs
from previous ones in the application of an analytical
kernel to represent progression in the dispersive flux
via a migrating Lagrangian element assemblage.
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An adaptive characteristics method is presented in
the following for solution of a broad category of ad-
vection- and diffusion-dominated transport problems
utilizing a streamtube element. The streamline method
reduces problems of mesh tangling inherent within La-
grangian methods, allowing general and flexible appli-
cation to a wide variety of problem types involving
straightforward coupling of flow and transport behav-
ior. A boundary element method is used to solve for
streamtube geometries within the flow domain. and a
method of adaptive characteristics solves the advec-
tion-diffusion equation. As a consequence of the prop-
erty of constant discharge within a single streamtube,
the advective component of the steep concentration
front is tracked forward with the aid of a moving
streamline-element. In advance of the front, the size
of the element is determined by a new criterion allow-
ing effective element sizing and time step sequencing
in one- and two-dimensional transient transport prob-
lems.

Theory

The appropriate partial differential equation that gov-
erns the transport of a conservative substance in a two-
dimensional flow field can be written in the form

£=-—‘}~( J§)~ ,.% =12 (n
af ox; EJ,\'J- ox;
where C = concentration of the dissolved chemical
species, M/L?
v; = seepage velocity in the direction of x;,
LT
t = time variable. T
Dy = hydrodynamic dispersion tensor. L*/T

Initial data specify the concentration everywhere in
the solution region, (1. as illustrated in Figure [ as

Colxy, ¥ = Clxy, X2, to) al t=1t, onl (2)

Two boundary conditions are applied to (1) to specify
the concentration on a part of the boundary, I, (the
Dirichiet condition),

C; = Clyxe, 0 onl, (3)

and to specify the normal gradient of the concentration
on the remainder of the boundary, ['5, shown in Figure
! (the Neumann condition},

q= PVCan-yCn

Cy = Cx, xpt)

Figure 1. Soiution domain with boundary and initial conditions

g=DVCn—vCna onl, {4)

where V is the gradient operator (8/ax, a/dv). v is the
seepage velocity vector, D is the diffusion tensor, and
n is outward unit normal to the boundary. Anadditional
mixed condition represents a combination of {3) and
{4). The approach taken by the method of character-
istics is not to solve equation (1} directly, but rather
to solve an equivalent system of ordinary differential
equations.

In the general case the dispersion coefficient Dy,
comprising the components of D in (4), may be related
to the velocity of groundwater flow and to the nature
of the aquifer using Scheidegger’s'* equation:

Uely =
Dy = ayer— J
i 113 |V| 5)
where oy, = dispersivity of the aquifer, L
ve and p; = components of velocity in the &
and {-directions, respectively,
LT
v = magnitude of velocity, L/T

Where consideration is restricted to the longitudinal
and transverse directions of flow, the dispersivity ten-
sor may be recorded in principal form, using the lon-
gitudinal and transverse dispersivities of the aquifer.
Where subscripts s and n refer to the streamline and
normal to streamline directions, respectively. the lon-
gitudinal and transverse dispersion coeflicients are given

by
D, =D, = a;|v {6)
D, = Doy = arip| (7)
D=0 foris=J (®)

where v, = velocity of flow direction, L/T
o, = longitudinal dispersivity of the aquifer, L
ay = transverse dispersivity of the aquifer, L

Along an individual streamline, equation (1) may be
rewritten as

oC 0 aC J aC aC aC
T D.v.v + Drm - U — Uy
ot dy dy an dn as on

(9}

Representative fluid particles and streamline ele-
ments may be defined that are advected with the flow-
ing groundwater. Transient changes in the properties
of the fluid. such as concentration, may be described
either for fixed points within a stationary coordinate
system as successive fluid particles pass the reference
points or for reference fluid particles as they move
aleng their respective paths past fixed points in space.
Associated with these two descriptions are two deriv-
atives with respect to time. The rate of change of con-
centration as observed from a fixed point is defined as
aClar, whereas the material derivative,'? dC/dr, is the
rate of change as observed when moving with the fluid
particie.
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The material derivative of concentration may be de-
fined as

dC  oC  aCds  aCdn
— e e e e e (i
de & asdr andt

Comparing (10) with (9) yields
& _ L Ia)
a- " dr " tta

and since, by definition, no flow can cross a streamline,
the velocity v, normal to the flow direction must be
zero. Iin the cartesian coordinate system,

ox dy

7 =D, & =, (11b)

and (9) therefore possesses a single characteristic, along
which (9) reduces to

1C i aC il 3]
= =L(D.mw‘ +2(p, XL (12)
dt as ds i an

and solutions to the system of equations comprising
(11) may be given as

s=5{t} n=constant and C=CU (13

Solution to the system of equations (11)—(12) is de-
veloped through application of an adaptive streamline
element.

A streamline is everywhere tangent to the seepage
velocity vector (or the specific discharge vector), v,
with adjacent streamlines comprising individual
streamtubes. Since, by definition, no flow can cross a
streamline, the flow rate along a streamtube is con-
stant, provided that steady conditions prevail and that
no distributed sources and sinks exist in the flow do-
main. By the above definition the equation of a stream-
line is

vXds=10 (14a)

where X denotes a cross product and ds is the element
vector along the streamline as ilustrated in Figure 2(a).
In cartesian coordinates, (14} may be written as

vydx ~ oy =0 {14b)

We can now define a stream function. or Lagrange
stream function, ¥ = W(x, y) that is constant along a
streamline, and hence

s o
dW = E:}*;d.r + S{-j—;—dy =0 (15)
1A y

By comparing (14) in component form with (15) we
find that

v W
D, = —— Uy, = 1
; a Gl (16)
The physical interpretation of ¥ may be obtained by
considering the integral of ¥ between two points on
the adjacent streamlines. say a and b in Figure 2(b).
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(b)

Figure 2. Cartesian space containing {a) streamlines and (b)
streamtubes

If we consider the two integrals in Figure 2(b),

g »

jwdn = fwc[n (17)

” )

then (17) holds for steady incompressible flow in the
absence of sources and sinks. The integral of (17) is
path-independent, and accordingly, we may choose any
path between points a and b. Since the differential of
¥, — W, depends only on the endpoints of the inte-
gration, the total flow through the streamtube AQ,,, is
given by

b

I3
AQ., = f v-dn = f (vydy — ydy)

b
)11! '}\}I
- (—d_\' AN
Jy ax

i

4]

- f AW =W, — ¥, (18)

o

It

Hence the total discharge {in terms of volume per
unit width normal to the xy-plane per unif time) be-
tween two streamlines is equal to the difference in the
stream functions corresponding to these lines. If points
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a and b are on the same streamline, AQ,, = 0, dV¥ =
0, and ¢ = constant.

As a special example, let us consider the rectangular
cdfe (see Figure 2(b)) between the two adjacent stream-
lines. Because the paths ce and df are on the stream-
lines, the integrals on these segments are equal to zero.
Therefore the eventual integral becomes

o I

vidn = | vedn 19
van=]

& v

namely, the total discharge through any section in the
same streamtube is constant. We can now define a
streamline element. As illustrated in Figure 3{a), we
assume that there are some tracking points correspond-
ing to the streamlines at time level £ - 1 (for example,
points a, b, ¢, d, e, and f}, and they are distributed
by the separation

AS.‘::I = Ug,_‘-Af AS(U = Uti.&‘At (20)

where As,, and As,y are the distances between points
b, dand d, f, respectively, along the streamlines; An,,
and An,; are the span between appropriate points on
the adjacent streamlines; v, and o, are velocities in
the flow direction (i.e., specific discharges) at points
b and d; and At is the time increment. The rectangular
domains abdc and cdfe are defined as streamline ele-
ments and exhibit two specific properties. First, the

(b) =ty F At

Figure 3. Streamline elements and grids at successive time
ievels iflustrating migration

areas of all the streamline elements are identical for a
constant time increment Ars such that

[ o

Awac = At [vdn= a1 [vdn=Are @1

4 [

where A4 and A, are the areas of the streamline
elements (L*). Second, as shown in Figure 3(b). the
streamline elements are controlled by the migration of
tracking particles attached directly to the streamlines.
The advective distance travelled in the time increment
At for each of the streamline elements is the length of
a streamline element. For example, the element cdfe
in Figure 3(b) was advected to a new position at time
level k. Hence the replacement element abdc migrates
to the previous location of element cdfe at time level
k — 1. The solute concentration in each of the elements
is therefore constant in transport caused by advection
alone. As a resuli, the computational burden in eval-
uating {ransien! concentration changes is eased over
general particle tracking methods' without loss in pre-
cision.

Numerical method

The proposed numerical procedure involves the de-
composition of the transport process into the two com-
ponent parts: advection and diffusion.”® The solution
of the transport equation thus reduces to solving the
system of equations represented by (11} and (12). In
the general case, three main steps will be adopted in
each time step of the numerical computation. The first
step is to generate a streamline element caused by
advective transport alone; the second step is to gen-
erate a streamline element caused by diffusive trans-
port alone; and the final step utilizes finite difference
approximations {o calculate the concentration change
represented in ([2).

Advective transport

Equations (1) are solved by first placing a number
of particles or points along the boundary of the con-
centration sources, for example, particles ay, &, and
¢y and then tracking the movement of these particles
as illustrated in Figure 4. A uniformly spaced stream
of particles is maintained by generating a new particle
at the same relative position because particle move-
ment is governed by equation (11). Point a, at 1 = 1,
(Figure 4(a)) was advected to a new position (Figure
4(b)}after time increment Az. Because transport is caused
by advection alone. the concentration is equal to C,
behind the front. The replacement point a, is placed
at the location of point a, at 1 = 1,. Because each of
the particles migrates along a streamline, we may use
this information and the properties of a streamline to
calcuiate the change in concentration. The first stream-
line element in streamtube / can be defined by four
adjacent points, forexample, a,, ay, by, and b, in Figure
4(by. At time #, we have L streamline elements gen-
erated by pure convection in the ith streamtube as
illustrated in Figure 4{c).
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(@ t=1

streamtube i

22IN0S JEBUTIE [}j()':)

20INOS TBUTIREINO?

©) t=g+kAr=y

EXPLANATION
—#- particle generated by convection
o node of finite-difference grid

Figure 4. Particle tracking method applied along streamlines

The four sides of any streamline element are parallel
to the axes of the tocal (s — n) coordinate system. The
finite difference grid for (12) therefore coincides with
the sides of streamline elements, the nodes of the grid
representing the center points of streamiine elements.
The difference between the nodes and the center points
is that the nodes of a finite difference grid are fixed,
whereas the center points of streamline elements will
move with time. In numerical computations the con-
centration distribution in the domain of interest will be
known at any time level £ because of the properties of
the streamline elements. For convenience the numer-
ical computation at time level & will be completed only
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in the area directly ahead of the concentration front.
Note that in Figure 4 we use notation (i,) to indicate
the node of the finite difference grid, where { represents
the ith streamtube and j represents the jth node of the
finite difference grid, At any time level &k the concen-
tration in the element (7,7} may be denoted as C; .,
also representing the concentration in an appropriate
whole streamline element. When 7 = 1,, the first row
of streamline elements is generated, and the contam-
inant concentration at the node (i, 1} or in the appro-
priate element is simply given as C;;, = Cy because
of purely advective transport (see Figure 4(b)). Under
similar reasoning, the second row of streamline ele-
ments (f, 2) with concentration C, is generated at time
t- and occupies the same position in which the first
elements were at time ;. Under pure advection the
concentration in all the elements is given by Ci;; =
Co when + = 1. As a result, the interface ay, by, ¢ In
Figure 4 is abrupt.

For each time step, every particle is moved a dis-
tance proportional to the product of the time increment
and the velocity at the location of the particle. The
new position of a particle is thus computed with the
finite difference forms of (11) as

-Yp.k - -"p.k—-l + Axp (7'))
= Xpk- + Ar Usip.b)xtp kit
and

Yok = Vpuoy T AY, (23)
= .vp.k-l + At U}'E.l‘{,ﬂ.k)h\'(ﬂ,k)]

where p is the index number for particle identification
and Ax, and Ay, are the distances moved in the x- and
y-directions, respectively. The x and y velocities at the
position of any particle p. indicated as vy u.x.ptp.0s fOT
the time level & are calculated through use of a direct
boundary element method*® with a streamline tracking
facility. The locations of all streamline elements are
known following the incrementing procedure identified
previously. In the general case of mixed advective-
diffusive transport the concentration at each node or
streamline element is denoted as Cf;,; at time level £
prior to modification for diffusive spreading. The time
index is distinguished with an asterisk, since the tem-
porary concentration at time level & is defined only
with respect to advective transport. Because of the
properties of a streamline element, it follows directly
that

Cf;.k = Cf.j«l.kﬂ (24)

In pure advection the interface ay, by, ¢y of Figure
4 advances in time with the area ahead of the front
retaining & null concentration. This demarcation ne-
gates the meshing of streamline elements in the zZone
ahead of the concentration front.

Dispersive transport

Dispersion causes both longitudinal and transverse
spreading, the latter propagating beyond the stream-
tube boundaries. The length 1o which longitudinal
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spreading occurs ahead of the sharp advective front is
conditioned by the time increment A7 as illustrated in
Figure 3{a). Considering a single streamtube compris-
ing the domain, £}, as illustrated in Figure 5(b), a
streamtube element representing dispersive transport
must be generated. When dispersion is neglected, an
abrupt transition exists between the two zones where
concentration levels are C = Cf;, at node (/. and
C = 0 ahead of this location. Based on the solution
for constant hydraulic flux in the +s-direction, the
concentration distribution ahead of the front is given'®
as

_ C?:j._t\— AS(; “
ClAs,, Al > erfc [(4D_‘._‘.Al)“-5] (25)
where As; = longitudinal spreading length
Ar = time increment
C#,, = temporary concentration at node (i, )
before longitudinal spreading due to
dispersion at time level &

7 k-
erfc(8) = | - erf(8) = #fe"”zdﬁ
(i o

g = A.S'd
(4D, AN

If weset A = V2 and w = \/iﬁ, then dw = \/fdﬁ,
and (25} reduces to

CiaV2 |
Va J

A
—2Ct |1 - —= [ e do
CAn RS _\/;)""7‘:‘_

=2C# [ — prob(Z = A)] (26)

which describes a normal distribution perpendicular
to the interface of Fignre 5(b). In (26) the function
prob {Z = A) is the normal probability function. If we
prescribe the concentration at some distance ahead of
the dispersive front to be zero. then

ClAsy, A =201 — prob(Z=21)] =0 7

Although C(As,, At} becomes zero only when A be-
comes infinite, computational expedience requires that
a specific value of A be chosen merely to meet precision
requirements. Accordingly, if A = 3.0, then prob (£ =
3.0) = 0.998630, or if A = 4.0, prob (Z = 4.0) =
0.99996833. Effectively, therefore, for A = 3.0 the mag-
nitude of C(As,, Ar} is approximately equal to zero.
Later results indicate that the factor A has little influ-
ence on the numerical calculation. From the above
discussion we obtain

AsE = AV2D AL (28)

where A is the prescribed value of 8V/2 and As} is the
longitudinal size of a streamline element caused by
dispersion only. When the time increment Af is pre-
scribed, the magnitude of As) is known, and thus a

e"-m:f: dew

C(Asd, Af) =

transition zone

the front of
dispersion

(a)

the front of
s Sy dispersion
9k c!"

e

® t=t1,,t01

EXPLANATION

—+— particle generated by convection or diffusion

e node of finite-difference grid

Figure 5. Advective and dispersive transport mechanisms shown
{a) schematically and {b} for dispersive streamline elements

streamline element resulting from diffusion alone is
generated. New particles p’ {(and ¢') are created at p
(and q) of Figure 5 and are moved ahead by a migration
length As%. The migration increment is evaluated from
the finite difference form of (11) as

Spk = Sp.k + AS,} = S,,.,q + AV2D AL (29}

Particle p' is moved from position s, to position s, ;
in the time increment, and the streamline element at
node (i, j + 1), caused by dispersion alone, is de-
termined by the particles S, 546 Sp, and s, . at
time level k. The concentration in the element of node
{i, j + 1) remains zero and will be calculated by the
formula in the following section.

From (6} and (28} the lengths of the elements rep-
resenting diffusive (As}) and advective (As,}) transport
are related as

Ast = AV2D At = AV2p At
= AV2AAX + AyD) = AV24As, (30)

or
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#32
Bsd) _\\3 31)
As,

where As. is the longitudinal size of the element caused
by advective transport only. In {(30) and (31} the re-
lationship between As¥ and As, is quadratic. If the time
increment At is chosen a priori, the sizes of these two
kinds of elements (As¥ and As,) are fixed. To avoid
problems of numerical diffusion resulting from inap-
propriate size ratios within the streamline elements
generated by both advection and diffusion, the travel
distance increments As) and As, {i.e., streamline ele-
ment length) in these two equations are given an iden-
tical value, As. From {6} and (30) we have

As (As)

Y ” Aty 2AD..

with the result that the time increment used in the
computation 1s conditioned by the dominant transport
mode. Accordingly,

Ar = Ar, ifAL > Al
Ar= Aty if AL < At

and the time step used to represent the dominant trans-
port mechanism may have to be subdivided into a num-
ber of smaller time increments in comparison to the
characteristic time for the weaker transport mode.

Computational procedure

The computational procedure is explained in the
flowchart in Fignure 6. Based on decomposition of the
transport process into pure advection and pure diffu-
sion, the proposed method consists of two steps re-

UILD DYNAMICAL
TION STORACGE

¥ MOVE PARTICLES TO FORM A ROW OF
D NEW STREAME INE ELEMENT, ONLY BUE
m m&m TO CONVECTION IN A GIVEN TIME STEP
POSITIONS OF PARTELES
i i
READ IN GRID LENOTH (As) IN CACULATE CONCHNTRATION CHANGE
LONGITUDRIAL DIRECTION OHNLY DUE TO CONVECTION
TN THE GRID LENOTH, COMPUTE l
CONVECTION TEME INCREMENT: COMPUTE OROUNDWATER VELOCITIES IN
AL = ASY THE NEW POSTFION OF PARTICLES AFTER
. mBSIVy CONVECTION
AND DIFFUSION TIME INCREMENT:
Aty = Asta?D,)

DETERMINE

NO
1< MAIN THE STEP BASED ON
At > At 7
Yes
IF CONVECTION IS STRONGER ,
CACULATS THE PARAMETERS !
GENERATE STREAMLINE ELEMENTS IN
FOR SURLOOP: FRONT ONLY DUE TO DISPERSION POR
NDXT = INTIAL JALY REAL TOTAL TIME
NCXTaw1
NT w (TOTAL TIMEVAL, Lewom{ ENTER DIFUSION SUBLOOE )
IF DIFFUSION IS STRONGER,
CACULATE THE PARAMETERS o ICOMPUTE THE CONCENTRATION
FOR SUBLOOP LIKE THIS: -+ ANGE ONLY DUE TO DISPERSION
NCXT = INT(AL /AL )
NOXT e} ABIUST CONCENTRATION OF
NT = (TOTAL TIMEYAL EACH STREAMLINE ELEMENT

ENTER CONYECTION SUBLOOP

?

Figure 6. Flowchart illustrating the computational method

688 Appl. Math. Modelling, 1889, Vol. 13, December

NO

NUMERICAL
TOTAL TIME LESS THAN REAL’
TOTAL TIMB

YES

ADD SEVERAL APPROPRIATE TRAE
STEPS TO MAKE NUMERICAL TOTAL
TIME 7O BQUAL TO REAL TOTAL
TIME AND CACULATE THE
CONCENTRATION CHANGE DUE TO
CONVECTEIN AND DISPERSION

T CONCENTRATION OF
CH ELEMENT

| SUMMERIZE AND PRINT RESULTS ]




Adaptive characteristics method: Q. Zhihua and D. Elsworth

quiring the generation of a streamline element. I we
assume, for clarity, that Ar, = Ay, the procedure in-
volves (1) first generating and moving particles caused
by pure advection in the time increment At and defining

" A}s' >
o

(@) t=t+Ar=t

animos BTN

2k-1 A . 7
elements caused  elements qaused
by convection by dispersion
alone alone

(b) t=ty+kAt=y

EXPLANATION
-é— particle generated by convecton alone
-¢- particle generated by dispersion alone
° node of finite-difference grid

Figure 7. The development of advective and dispersive stream-
line elements

5
1§ | Ll
-] L. o
ij ij+l
° ° « strearnlines

EXPLANATION
« node of finite-difference grid

Figure B, Finite difference grid

the streamline element by four adjacent characteristic
particles and (2} then, ahead of the advective element,
generating another streamline element caused by pure
diffusion in the same time increment Ar.

By using (29) the location of particles aa, b1, and ¢,
of Figure 7(a) may be defined and the appropriate
streamline elements resulting from dispersion may also
be identified. As illustrated in Figure 7{a), there are
two streamline elements generated it a streamtube from
fy 1o 7;, for example, the element a,a,b,b, generated
by pure advection and the element ayaabob penerated
by pure diffusion beyond the front under considera-
tion. In Figure 7(b), even numbers and odd numbers
are used to indicate the elements and particles caused
by advection and diffusion, respectively. When A7, =
At two kinds of streamline elements are generated
alternately with time to be symmetrical about the cen-
ter line ﬂ(;b(](!n.

The finite difference grid adopted in the procedure
corresponds to that defined locally by the streamlines.
The size and location of the cells in the grid vary in
direct proportion to the sizes of the streamline ele-
ments. The total change in concentration in an aquifer
is computed by solving (11) and (12}. Equation (11),
which is related to changes in concentration caused by
advective transport alone, is solved by the movement
of streamline elements as described previously. The
changes in concentration caused by hydrodynamic dis-
persion, fluid sources, divergence of velocity, and
changes in saturated thickness are calculated by using
an explicit finite difference approximation {12), which

can be expressed as
{) C
+ r_(Dm: a_)] (33)
an on

i aC
ACIJ.L - A[[;};(Dn f}S)
As illustrated in Figure 8, the finite difference approx-
imation of the longitudinal derivative may be expressed

as
ki D 8C\ _ | DugejernfCijor — Ci)
dy Hﬂs sY".j,;,; = S
. Dysiijm1alCiy = Ci o ;)] (34)
Sij = Sii-

A finite difference approximation for the derivative
in the n direction for equation (33} is developed for
node (7,j) in an analogous manner as

dJ ( ac) — Dnn[i&l/:‘j](ci+ 1 Ci,j)

an\ "an Mgy — M

_ Dnn[a‘—- l/l.j]{Ci.j - Cr’w l.j)

Hij— Mi1y

(35)

Equation (33) is solved explicitly, and the element
concentrations at the end of time increment & are com-
puted as

Ciju=Clis + ACi = Cijoru—r + ACi ;i (36)
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Stability criteria
The explicit numerical solution of the diffusive
transport equation requires that solution time steps do
not violate the criteria of conditional stability.
For an explicit solution.”
DAL DA T
ot e R
(Asy  (Amy 2
Substituting the second relationship of (32) into (37)
yields

As . D, 1/2 . a 12
E?’Eﬁ[“‘ - 1)5;] = [(;\ - nm_] (38)

If &; = 0, then As/Ar = =, and the explicit finite
difference solution of (33} is stable for any As in lon-
gitudinal dispersion. Substitution of (32) into (37) gives

.CE ASCEL {l
[As * (An)3] T2 39

and represents appropriate grid dimensions condi-
tioned by stability constraints.

37

Validation

Analytical seolutions 1o one- and two-dimensional
transport geometries are used to compare the effec-
tiveness of the adaptive model under Peclet numbers
{Pe) ranging from zero to infinity. The results are re-
ported in the following.

One-dimensional semi-infinite example

Transport is governed by the one-dimensional form
of equation (1) under unidirectional flow in the x; di-
rection. The initial and boundary conditions are given
by

C()ﬂ(} t =10
C0.n =1 >0 {40)
Clw=1) =0 >0

and the solution is well known as"
l x — ot
Clx. 1) = E{El’fc [W]

vy X+ ot
+ exp ["}5—] erfc [W]} (4n

The numerical calculations are completed for a finite
domain of length L. = 10 and height # = 2. illustrated
in Figure 9. To compare transport behavior for differ-
ent computational mesh sizes, the local Peclet number
is defined as

Pe = (42)

DS
DJ.\‘
to indicate solution sensitivity to the relative impor-
tance of advective and dispersive transport. Four
different Peclet numbers are used to represent the
respective cases of dispersion dominant transport
(Pe = (.01), dispersive-advective transport (Pe = 1.0},
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advection dominant transport (Pe = 10}, and pure ad-
vection (Pe = o). The length L and solution time 1 at
which the results are displayed are chosen such that
at all times between 0 and ¢ the boundary condition
given in (40) of C{w=, 1} is reasonably satisfied at x = L.

The numerical and analytical solutions are pre-
sented in Figures 10-13. The numerical solutions re-
produce the analytical results for all four cases without
either oscillation close to the advective froat or any
apparent tendency for overshoot. This is particularly
encouraging when compared with the results of Eu-
lerian methods, which commonly exhibit poor corre-
spondence for Pe > 10. Of particular note is the ability
of the method to reproduce the analytical resuits ex-
actly at Pe = =,

Comparison of three different grid sizes and three
values of A are compieted for this one-dimensional
transport example, as illustrated in Figures 14 and [5.

Concentration, C
k]
2
1

0.2 -

0.0

02 4 T M T T T
0.0 2.0 4.0 6.0 8.0

Figure 10. Concentration profile for one-dimensional semi-
infinite example (Pe = 0.01)
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Figure 11. Concentration profile for one-dimensional semi-
infinite example {Pe = 1.0)
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Figure 12, Concentration profile for one-dimensional semi-
infinite example (Pe = 10}
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Figure 13. Concentration profile for one-dimensional semi-
infinite example (Pe = =}

Concantration, C
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Figure 14. Grid dependence of the sofution for the one-dimen-
sional semi-infinite example

Concentration, C

0.2 T

Figure 16. Scolution dependence on the magnitude of A for the
one-dimensional semi-infinite example

Figure 16. Concentration profile for two-dimensional semi-
infinite example {Pe = 0.05)
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Figure 17. Concentration profile for two-dimensional semi-
infinite example (Pe = 1.0)

Concentration, €

Figure 18. Concentration profile for two-dimensional semi-
infinite example (Pe = 25)

Results indicate the absence of numerical diffusion in
these cases provided that the domain grid meets the
stability criteria of (38)-(39) and the value of A is ap-
propriately chosen in (27) to yield satisfactory numer-
ical precision. Numerical precision may be enhanced
by reducing grid size and simultaneously using a large
magnitude of A. However, a considerable computa-
tional penalty is engendered in this choice.

Two-dimensional semi-infinite example

Solution for advective-dispersive transport resulting
from a finite source in a one-dimensional velocity field
with longitudinal and transverse dispersion'® is used to
validate the solution for the two-dimensional case, The
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boundary conditions are given by
Clh. v,y = 1.0
Clh,y,0=0

All simulations are completed for a 10 x 5 aquifer
whose lower half is shown in Figwre 9, utilizing the
inherent symmetry of the domain (L = 10, H = 2.5).
In this example the three transport cases of dispersion-
dominated transport (Pe = 0.03), dispersive-advective
transport (Pe = 1.0}, and advection-dominated trans-
port (Pe = 23) are examined.

The numerical and analytical solutions are pre-
sented along the axis y = 2.875 in Figures 16 through
18. The results illustrate strong correspondence with
the analytical results even for the high Peclet numbers
reported in Figure 18.

2=y=3

2>y>3

Conclusions

An adaptive characteristics method is presented that
is capable of effectively representing mixed diffusive-
advective transport processes in porous media, Resulis
remain satisfactory over a broad range of Peclet num-
bers, including those representing strongly advective
flows. Spurious undershoot, overshoot. and oscilla-
tions around the advective front are not evident, and
the absence of numerical diffusion is also encouraging
in comparison with results traditionally obtained from
Eulerian methods.
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