COMPUTATIONAL GEOMECHANICS (GeoEE 557)

Instructor: Derek Elsworth - 231 Hosler elsworth@psu.edu
Shugang Wang - 230A Hosler szw138@psu.edu

Content: Modeling deformation, flow and transport using finite element, finite difference, and boundary element methods. Coupled processes of flow, deformation, and heat, mass and reactive transport.

Objectives: To gain an appreciation of numerical methods through exposure to finite element, finite difference, and boundary element codes. The course is designed for potential users and developers of domain and integral numerical methods that are ubiquitously applied in hydrology and atmospheric sciences; mining, civil, mechanical and petroleum engineering; and the geologic and materials sciences.

Prerequisites: Matrix algebra, elementary calculus, elementary programming in MatLab

Location: T-Th 4:40-5:55; 218 Hosler (3 credits)

1. Overview of Coupled Processes
 1.1. Uncoupled systems
 1.2. Coupled processes – Thermo-Hydro-Mechanical-Chemical (T-H-M-C)
 1.3. Balances of Mass, Momentum and Energy
 1.4. Interaction and Onsager Processes
 1.5. Building representative systems – incorporating couplings
 1.6. Preliminary examples of THM processes
 1.7. Key couplings
 1.8. Dependent variables – their selection and modes of coupling

2. Mechanical Behavior (M) Deformation
 2.1. Conservation of momentum and Hooke’s law
 2.1.1. Principle of virtual work
 2.2. Finite element representation
 2.2.1. 1-dimensional elements
 2.2.2. 2-dimensional behavior
 2.2.2.1. CST elements
 2.2.2.2. Isoparametric elements
 2.3. Variational procedures

3. Hydraulic Behavior (H) Flow
 3.1. Conservation of mass and Darcy’s law
 3.2. Steady behavior
 3.2.1. 1-dimensional elements
 3.2.2. 2-dimensional behavior – 2-D triangular, and 2-D isoparametric elements
 3.3. Transient behavior
 3.3.1. Time stepping methods
 3.4. Dual porosity flows

4. Hydro-Mechanical Coupling (H-M)
 4.1. Stiffness and conductance terms
 4.2. Coupling terms and symmetry
 4.3. Time stepping
4.4. 1-dimensional examples
4.5. Dual porosity behavior

5. Mass (Chemical) Transport (C)
 5.1. Conservation of mass and Fick’s law
 5.2. Steady behavior
 5.3. Transient behavior
 5.4. Considerations of local equilibrium

6. Hydro-Mechanical-Chemical Coupling (H-M-C)
 6.1. Stiffness, conductance and advective terms
 6.2. Coupling terms and symmetries

7. Thermal Transport (T)
 7.1. Conservation of Energy and Fourier’s law
 7.2. Steady behavior
 7.3. Transient behavior

8. Thermo-Hydro-Mechanical Coupling (T-H-M)
 8.1. Stiffness, conductance and advective terms
 8.2. Coupling terms and symmetry
 8.3. Time stepping
 8.4. 1-dimensional examples

9. Thermo-Hydro-Mechanical-Chemical Coupling (T-H-M-C)
 9.1. Stiffness, conductance and advective terms
 9.2. Coupling terms and symmetries

10. Summary Behaviors

11. Boundary Element Methods – Introduction
 11.1. Indirect method – General principles
 11.1.1. Groundwater mechanics
 11.1.2. Elasticity
 11.2. Direct Method – General principles
 11.2.1. Groundwater mechanics
 11.2.2. Elasticity
 11.3. Coupled FEM-BEM analysis

12. Overview and Summary

 Selected texts on reserve in the EMS library.
 Lecture Overheads and Course Notes available online.

 Grading:
 20% Participation
 80% Final project
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ACTIVITY</th>
<th>DELIVERABLE</th>
<th>%</th>
<th>DUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tentative Topic</td>
<td>Assign/Select Problem</td>
<td>Oral report</td>
<td>-</td>
<td>J 21</td>
</tr>
<tr>
<td>1. Introduction & 6. References</td>
<td>Research topic and complete and report literature review</td>
<td>One page narrative and at least 20 references</td>
<td>10%</td>
<td>J 29</td>
</tr>
<tr>
<td>2.1 Governing Equations</td>
<td>Define conservation equations, constitutive relations, and boundary and initial conditions</td>
<td>One page max plus figures</td>
<td>10%</td>
<td>F 12</td>
</tr>
<tr>
<td>2.2 Formulation</td>
<td>Formulate model</td>
<td>One page max plus figures</td>
<td>10%</td>
<td>F 26</td>
</tr>
<tr>
<td>2.3 Solution</td>
<td>Solve using model</td>
<td>One page max plus figures</td>
<td>10%</td>
<td>M 19</td>
</tr>
<tr>
<td>3. Validation</td>
<td>Validate</td>
<td>One page max plus figures</td>
<td>10%</td>
<td>A 2</td>
</tr>
<tr>
<td>4. Parametric Study</td>
<td>Complete parametric study</td>
<td>One page max plus figures</td>
<td>10%</td>
<td>A 9</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>Distill significant results</td>
<td>One page max plus figures</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>0. Abstract and 10 min Presentation</td>
<td>Complete paper and present results</td>
<td>10 minute presentation with one slide for each of 1; 2.1; 2.2; 2.3; 3; 4; 5 (seven slides)</td>
<td>30%</td>
<td>A 22</td>
</tr>
</tbody>
</table>

Academic Conduct: Penn State’s policy on academic integrity applies to all aspects of course deliverables. Students are encouraged to work together, in groups, but to submit independent work. Further details are available at: http://www.ems.psu.edu/students/integrity/index.html