## THE PENNSYLVANIA STATE UNIVERSITY DEPARTMENT OF ENERGY AND MINERAL ENGINEERING ENVSE 408 CONTAMINANT HYDROLOGY

Mid-term Examination – Tuesday March 1<sup>st</sup>, 2022 – 75 minutes Answer all three questions.

For water (in contact with air):  $\sigma = 7.3 \times 10^{-2} N/m$ ;  $\mu = 1.12 \times 10^{-3} N.s/m^2$ 

Name:

## **Question 1**

QuestionPointsScore110021003100Total300

Define the following terms, and identify the units [MLT] of the quantity, where relevant. Be as specific and as exhaustive in your definitions as possible.

1. Advective velocity,  $v_a$ .

2. Irreducible saturation of the wetting phase,  $S_{w_0}$ .

3. Leverett J-function.

4. Van Genuchten relations.

5. Laboratory measurement of  $p_c - vs - S_w$ .

6. Relative permeability,  $k_r(S_w)$ .

7. Estimating capillary behavior from field measured permeability.

8. Pendular saturation.

9. Hydrodynamic dispersion,  $D_L = D^* + \alpha_L v^a{}_L$ .

10. Fick's first law,  $F = -D \frac{\partial c}{\partial x}$ 

## Question 2

Given the attached curve for hydraulic conductivity (K) versus volumetric water content ( $\theta$ ) relation for a core originally saturated with water and subject to drying:



1. Determine the relative permeability at a water saturation of 80%.

2. If this is the measured field saturation, evaluate the maximum infiltration flux possible at this saturation. Recall that during infiltration, the only agent driving flow is gravity, *i.e.*  $\partial h / \partial z = 1$ .

3. These data are for Topopah Springs Tuff. Evaluate the maximum infiltration (per square meter of plan area) per year. Again, only gravity drives the flow.

## Question 3

A two-component DNAPL cocktail has been spilled through the vadose zone in a sand aquifer and has reached and penetrated the saturated zone. Soil samples are taken from the saturated zone within (an arbitrary) part of the aquifer where a dissolved plume is presumed to have developed. The sample is centrifuged to remove the pore fluids, and the fluid assayed to determine aqueous concentrations,  $c_a$ . Components are desorbed from the solid grains to define the presumed equilibrium sorbed concentrations,  $c_s$ . The porosity of the sand aquifer is n=25%, the bulk density is  $\rho_b=1200 \text{ kg/m}^3$ , and the mean volumetric moisture content in the vadose zone is  $\theta=5\%$ . The mean soil temperature is  $20^{\circ}C$ . Aqueous solubility of each of the components approximately triple with an increase in temperature from  $20^{\circ}$  to  $60^{\circ}C$ .

| Component             | c <sub>a</sub><br>mg/l | cs<br>mg/kg | Mole fraction, $X_i$ |
|-----------------------|------------------------|-------------|----------------------|
| Trichloroethane (TCA) | $0.13 \times 10^{3}$   | 325         | 60                   |
| Methyl Chloride       | $0.6 \times 10^4$      | 600         | 40                   |

| Component             | Aqueous Conc. $c_a$ (60°C)<br>mg/l |
|-----------------------|------------------------------------|
| Trichloroethane (TCA) |                                    |
| Methyl Chloride       |                                    |

1. Complete the missing entries in the table above.

2. Approximately 10,000 *l* of the cocktail is to be removed from the system. Evaluate the time taken to remove this material from the aquifer if the system is flushed with water at  $20^{\circ}C$ , at a rate of 40  $m^{3}/day$ . Assume that mole fraction approximates mass fraction, and that mean density of the NAPL is 1400 kg/m<sup>3</sup>.

3. What is the time taken to remove the material if warm water is used.