THE PENNSYLVANIA STATE UNIVERSITY DEPARTMENT OF ENERGY AND MINERAL ENGINEERING ENVSE 408 CONTAMINANT HYDROLOGY

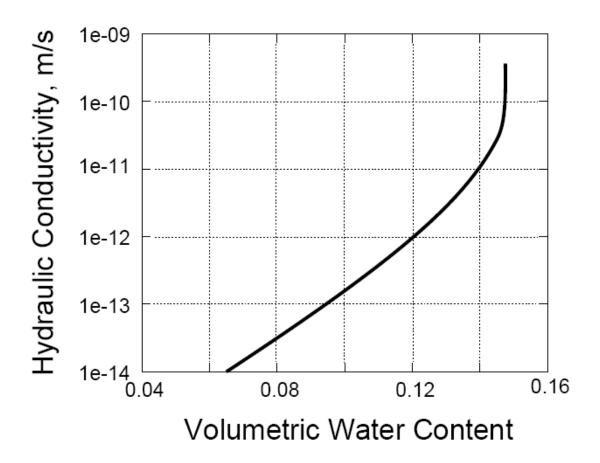
$\label{eq:mid-term} \begin{array}{c} \mbox{Mid-term Examination} - \mbox{Tuesday March $3^{\rm rd}$, $2020-75$ minutes} \\ \mbox{Answer all three questions.} \end{array}$

For water (in contact with air): $\sigma = 7.3 \times 10^{-2} \text{ N/m}$; $\mu = 1.12 \times 10^{-3} \text{ N.s/m}^2$

Name:				
	<u> </u>	Question	Points	Score
		1	100	
Question 1 Define the following terms, and identify the units [MLT] of the quantity, where relevant. Be as specific and as exhaustive in your definitions as possible.		2	100	
		3	100	
		Total	300	
				
1.	Dispersivities, α_L , α_T .			
2.	Bubbling pressure, p_{c0}			
2.	But of high pressure, p_{c0}			
2				
3.	Advective velocity, v_a .			
4.	Irreducible saturation of the wetting phase, S_{w_0} .			

5. Darcy's law defined in terms of heads.

6. Recoverable floating product volume of LNAPL.


7. Fick's first law, $F = -D \frac{\partial c}{\partial x}$

8. Retardation coefficient, $R = (1 + \frac{\rho_{\scriptscriptstyle d} K_{\scriptscriptstyle d}}{\theta})$

9. Equivalent contaminant mass within plume, $M_T = c_a nVR_a$.

10. Pendular through funicular saturations.

Question 2 Given the attached curve for hydraulic conductivity (K) versus volumetric water content (θ) relation for a core originally saturated with water and subject to drying:

1. Determine the relative permeability at a water saturation of 80%.

2. If this is the measured field saturation, evaluate the maximum infiltration flux possible at this saturation. Recall that during infiltration, the only agent driving flow is gravity, i.e. $\partial h/\partial z = 1$.

3. These data are for Topopah Springs Tuff. Evaluate the maximum infiltration (per square meter of plan area) per year. Again, only gravity drives the flow.

Question 3

A two-component DNAPL cocktail has been spilled through the vadose zone in a sand aquifer and has reached and penetrated the saturated zone. Soil samples are taken from the saturated zone within (an arbitrary) part of the aquifer where a dissolved plume is presumed to have developed. The sample is centrifuged to remove the pore fluids, and the fluid assayed to determine aqueous concentrations, c_a . Components are desorbed from the solid grains to define the presumed equilibrium sorbed concentrations, c_s . The porosity of the sand aquifer is n=25%, the bulk density is $\rho_b=1200 \text{ kg/m}^3$, and the mean volumetric moisture content in the vadose zone is $\theta=5\%$. The mean soil temperature is $20^{\circ}C$. Aqueous solubility of each of the components approximately triple with an increase in temperature from 20° to $60^{\circ}C$.

Component	c_a mg/l	c _s mg/kg	Mole fraction, X_i %
Trichloroethane (TCA)	0.13×10^3	325	60
Methyl Chloride	0.6×10^4	600	40

Component	Aqueous Conc. c_a (60°C) mg/l
Trichloroethane (TCA)	
Methyl Chloride	

1. Complete the missing entries in the table above.

2.	Approximately 10,000 l of the cocktail is to be removed from the system. Evaluate the time taken to remove this material from the aquifer if the system is flushed with water at $20^{\circ}C$, at a rate of $40 \text{ m}^{3}/\text{day}$. Assume that mole fraction approximates mass fraction, and that mean density of the NAPL is 1400 kg/m^{3} .

3. What is the time taken to remove the material if warm water is used.