Alternate Renewable Energy Sources in New Zealand Solar, Bioenergy, and Marine

Austin Hull

EGEE 497

Overview: Electricity Production in NZ (2021)

Renewable Sources

35,528.4 GWh (82.1%)

- Hydroelectric: 55.5%
- Geothermal: 18.4%
- Wind: 6.0%

Non-renewable Sources

7,738.6 GWh (17.9%)

• Natural Gas: 10.7%

• Coal: 7.0%

Total Electricity Produced:

43,267 GWh

Introduction to Solar Power

- Photovoltaics (PV)
 - Converts sunlight (photons) into electricity
- Several types of PV cells
 - Silicon
 - Thin-Film
 - III-V
 - Next-Generation
 - Additional heat energy can be harnessed

Solar Power Potential in NZ

- North Island receives ~3.4-3.8 kWh/kWp a day
 - Between 1200-1400 kWh/kWp per year
- South Island more variable:
 - ~4.2 kWh/kWp per day (~1500 per day) in island center
 - ~2.6 kWh/kWp per day (>1000/day) along high-elevations

Development of Solar in NZ

- Price of 3 kW system
 - \$40,000 NZD in 2008
 - \$8,500 NZD in 2019
- Installed capacity
 - 8.57 MW 2013
 - 114.618 MW 2019
- Electricity generation
 - 3 GWh 2007
 - 127 GWh 2021

Sources: EMI, MBIE, and My Solar Quotes

Current Solar Power in NZ

- 0.5% electricity generation (2022)
 - 0.2% energy consumption
- 265.23 MW Capacity (Feb 2023)
- 205 GWh Generation (2021)

South Auckland Forging Engineering Ltd. (S.A.F.E. Ltd.) Solar Plant opened in Drury, 2012 360 PV Cells, 68kW (~476 kWh)

Sources: MBIE, EMI, DEMM Engineering & Manufacturing

Introduction to Bioenergy

- Biomass, Biofuel (Solid/Liquid), Biogas
- Organic materials act as biomass/biofuel
 - Crops, trees, agricultural residue, organic waste, etc.
- Some GHG emissions, less than fossil fuels
- Requires dedicated land, plants

Development of Bioenergy in NZ

- Biomass Capacity:
 - 26.62 MW 2013
 - 114.64 MW 2021
- Biogas Generation:
 - 25 GWh 1990
 - 203 GWh 2021
- Solid Biofuel Supply:
 - 43.04 PJ 1990
 - 50.03 PJ 2021

Data from: EMI, MBIE

Development: Biogas/Biofuel Supply Breakdown

- Biogas Supply:
 - 1.78 PJ 1990
 - 3.59 PJ 2021
- Sludge Biogas Supply:
 - 1.46 PJ 1990
 - 0.99 PJ 2021
- Landfill Biogas Supply:
 - 0.32 PJ 1990
 - 2.6 PJ 2021
- Liquid Biofuels Supply:
 - 0.05 PJ 2007
 - 0.25 PJ 2021

Modern (and Future) Bioenergy Use

- Solid Biofuels most prominent
 - Mostly wood
- 9-10% total energy production
- Up to 27% energy needs by 2050
 - 15% GHG emission reductions from 2017
- 114.74 MW Biomass Capacity 2023
 - Only 0.10 MW increase from 2021

Introduction to Marine Power

- Energy from seawater
 - Waves, tides, currents, etc.
- Uses kinetic and thermal energy
 - Electricity and heating
- Still in early development stage
- Needs large tidal range
 - At least 10 feet (3 meters)

Types of Tidal Energy

• Tidal Barrages

- Tidal basin, control water levels and flow rates
- Fill on high tide, empty on low

• Tidal Turbines

- Heavier, sturdier wind turbines
- More expensive, produces more energy
- Tidal Fences
 - Vertical axis turbines on fence/row
 - Water pushes through turbines

Future Marine Energy Projects in NZ?

- Aotearoa Wave and tidal Energy Association
 - Formed in 2006
- Local Projects:
 - AzuraWave Wave energy device
 - Aotea Buoy Smart wave energy device (University of Auckland)
 - Smart polymer for energy harvesting (Auckland Bioengineering Institute, PowerOn)

Tidal Power Potential: The Cook Strait

- Huge potential for tidal power
- Modeled array: 95 tidal turbines
 - Possible to deliver 90 MW output
- Estimated 15,000 MW potential energy regularly
 - Unique tidal patterns, large size
- Only some locations viable
 - Cape Terawhiti (Southern tip of North Island)
 - Tidal flows above 2 m/s
- Costs need to fall 25% to make viable

Conclusions

Great potential for all renewables

- Production potential and falling costs of solar
- Supply and reduced GHG of bioenergy sources
- High potential for tidal, with some issues
- Overall, could be effective to move away from fossil fuels

Sources

- MBIE Energy Dashboard
- MBIE Renewable Statistics (NZ)
- MBIE Electricity Statistics (NZ)
- MBIE Energy in New Zealand 2022 Report
- NREL Solar Photovoltaic Technology Basics
- EMI Solar Total Capacity
- SolarGIS Solar Potential NZ Map
- My Solar Quotes Solar in NZ 2013-2019
- My Solar Quotes Price of a Solar Power System

- NZ Bioenergy Association
- <u>United Nations Renewable Energy</u>
- EMI Bio-mass Total Capacity
- National Geographic Tidal Energy
- EIA Tidal Power
- <u>AWATEA About Us</u>
- <u>AWATEA Projects</u>
- Renew Economy Cook Strait Article
- MFE Tides Around New Zealand