CO₂ Capture, Utilization and Sequestration

Bander Al Ghamdi Kyungsoo Kim Seyhan Emre Gorucu Yogesh Bansal

Outline

- Team Statement
- Results
- Approach
 - Capturing
 - Sequestration
 - Utilization
- Conclusion

Team Statement

Reduce CO₂ emission by efficiently capture it, utilize it for EOR purposes, and/ or sequester it, while considering technical and economical analysis.

Capture, Sequestration, and Utilization

1.067E09 lbs of CO₂/year (**38.24%**) FXhausteo Saline Aquifer 1.68E09 lbs of 2.76E09 lbs of CO₂/Year CO₂/year (**60.76%**) 2.97E07 lbs of CO₂/year (1%)

Economical Balance

Electricity Production Cost

Oriskany Saline Aquifer, Seward, Pennsylvania

Depth Map

Porosity Map

CO₂ capture

- Capture method
 - Post-combustion
 - Chemical absorption
 - Membrane
 - Pre-combustion
 - Oxy-fuel

Data Source :

Rao A, Rubin E, A technical, economic, and environmental assessment of Amine-based CO2 capture technology for power plant greenhouse gas control in Environ1

Assumptions

- Reduce 1% of PA's annual CO₂ emission from the power industry and keep the emission amount the same for ten years
- Values for power plant efficiency and capital cost are the same as those of similar power plants
- No capital cost for power plant, the capital cost for power plant starts to be paid from the first running point of the capture process

<Economic analysis assumptions>

Project life (years)	10
Operating hours (hour/year)	6000
Operation and maintenance cost (% of capital cost)	3
Spent solvent making up (\$/ton CO ₂ captured)	4
Interest rate (%)	5
Coal price (\$/ton)	48
SO NO in flue gas (nom)	70

Economical analysis

► CO₂ capture with MEA

Capital cost(million USD)	957	Net power production(MW)	
Reference plant Construction	690	Reference plant	600
Chemical absorption unit	182	Power plant with CO2 capture	568
CO2 compressor	25		
Interest during construction and land site	59	Specific CO2 emission (lb/kWh)	
		Reference plant	1.8
Annualized cost(million USD/year) 162		Power plant with CO2 capture	1.1
Capital charges for reference plant	49	Electricity production cost(cent/kWh)	
Capital charges for CO2 capture components	19	Reference plant	3.7
Coal feedstock	63	Dower plant with CO2 conture	E 4
Operation and maintenance cost for reference plant	22	Power plant with CO2 capture	5.4
Operation and maintenance cost for CO2 capture process	9	CO2 capture cost (\$/ton CO2)	48.6

Further analysis

CO₂ for EOR

Oil Recovery Volumes

Why EOR?

- Field production is a strong function of (P and T)
 - Lithology of the reservoir
 - Properties of oil
- Oil could be at a high viscosity that prevents it from flowing, or it could be strongly attached to the grains inside the pore spaces where it is unreachable.
- A mechanism has to take place to make oil more soluble and be pushed to the production zones.

Swelling vs. Concentration

- As the CO₂ comes in contact with oil, it dissolves in the droplets of oil and occupies some volume allowing the oil to swell
- Oil droplets will merge together to unite in one body of fluid flow more easier to reach the production zones

Displacement of CO₂

Production Scenario

Cycling CO₂

Exhausted oil/gas reservoir

Layer	# of Active reservoir blocks	Δx	Δу	h	φ	Pore Volume (ft ³)
1	972	300	300	16	0.1373	1.922*10 ⁸
3	972	300	300	12	0.1622	$1.703^{*}10^{8}$
5	972	300	300	6	0.075	0.394*10 ⁸
7	972	300	300	6	0.075	0.394*10 ⁸
					Total	4.413*10 ⁸ ft ³

Pore volume calculations

- Formation volume factor for CO₂ as 0.0048
- 9.194*10¹⁰ft³ CO₂ can be sequestered in the reservoir
- Two possibilities
 - Entire amount sequestered in the reservoir for nearly 4 years
 - Eraction of the captured amount

- When entire amount of CO₂ is sequestered
 - Using all five wells
 - Pressure crossed 7000 psia at the wells
 - Formation fracture risks

- A study was designed to inject CO₂ for a period of 10 years
- 38.24% of the captured amount (1.067 lbs/year)

- CO₂ movement in the reservoir at various times
- Locations of the wells taken from literature

Leakage effects

- One of the wells was assumed as an abandoned well and a pressure difference of 20 psia was assumed
 - 5.43*10⁻³ percent of the total amount of CO₂ sequestered in the reservoir

Global Mole Fraction(CO2) (with leackage)

 Properties are assumed to be homogeneous in a layer

 CO₂ movement should be identical

 Leakage dampens the movement profile and low pressure were observed in the region

Economical analysis

- Site was assumed at a distance of 500 km
- Average permeability was calculated to find the overall capital cost
 - Average permeability is 111 mD
 - 100 mD curve was used
- Initial cost is \$290 millions

- No leasing costs were assumed
 - Exhausted oil field
- No Royalty cost
 - No production
- Operating cost is assumed to 10% of the cash flow
- Rate of return is assumed as 5% annually (0.0137% daily)

$$\frac{P}{A} = \frac{[(1+i)^n - 1]}{i(1+i)^n}$$

- Daily cash flow is found to be \$90526
- Cost for sequestration
 - \$0.4976/MSCF (or \$7.714/ton of CO₂)

CO2 Sequestration In Saline Aquifers

Solubility Trapping Capacity at 114 years

-Compression Cost -Transportation Cost -Cost of Wells

Questions?