CCS IN OIL AND GAS RESERVOIR WITH ENVIRONMENTAL HEALTH & SAFETY ANALYSIS

Kanin Bodipat Luoyi Hua Dhiraj Dhiraj Toby McCabe Evan Frye

INTRODUCTION

• Problem Statement:

> Examining the implementation of retrofitting and sequestration technologies on a 572MW coal plant in Shawville, PA for Carbon Capture and Storage (CCS) and Enhanced Oil Recovery (EOR) to make the project viable while reducing associated costs.

> Motivations/Focus:

- Investigate the practicality of the stated problem statement
- We want to see if retrofitting an existing plant is more practical and whether it provides greater incentives?
- Shorter implementation time retrofitting vs. new plant
- Regional power plant/sequestration/utilization sites
- Legislations/policies
- Moving beyond conceptualization towards local application
- A comprehensive economic analysis will this work?

The Beginning of Regulations

- In 2007, the Supreme Court ruled that EPA must regulate greenhouse gas emissions, including CO2
- Case was decided 5-4
- EPA claimed that it lacked authority under the Clean Air Act to regulate carbon dioxide and other greenhouse gases (GHGs) for climate change purposes

ne Court ruled late missions,

Supreme Court of the United States

Argued November 29, 2006 Decided April 2, 2007

Full case name	Massachusetts, et al., Petitioners v. Environmental Protection Agency, et al.
Docket nos.	05-1120 🗗
Citations	549 U.S. 497; 127 S. Ct. 1438
Prior history	On writ of certiorari to the United States Court of Appeals for the District of Columbia Circuit

Holding

Greenhouse gases are air pollutants, and the United States Environmental Protection Agency may regulate their emission

The American Clean Energy and Security Act

- The American Clean Energy and Security Act(H.R. 2454), a cap-and-trade bill, was passed on June 26, 2009, in the House of Representatives by a vote of 219-212. The bill originated in the House Energy and Commerce Committee and was introduced by Rep. Henry A. Waxman and Rep. Edward J. Markey
- Bill currently under review in the Senate

Year	Required GHG Emission Reduction
2012	3.0%
2020	17.0%
2030	42.0%
2050	83.0%

http://en.wikipedia.org/wiki/American_Clean_Energy_and_Security_Act#cite_note-0

Cap and Trade

- Cap and Trade, also known as Emissions Trading is:
 - an administrative approach used to control pollution by providing economic incentives for achieving reductions in the emissions of pollutants.
- Government sets a national limit (CAP) for emission amounts then distributes to companies the rights (allowances) to emit gases (mainly CO2). Companies are then free to buy and sell (TRADE) these allowances. Entities that emit more will have to pay more, thus providing them financial incentive to reduce emission.

http://en.wikipedia.org/wiki/Emissions_trading#cite_note-0

Energy Sector in PA

Why bother with CCS?

- > Largest source of GHG in PA
- In the year 2000, this sector produced 116.2 MMtCO2 (equivalent), which is 37% of the state's emission

Climate Change Action Plan

- States where Climate Change Action Plan are initiated
- Pennsylvania contributes 1% of the world's CO2 emission and 4% of the USA's

Pennsylvania Legislation on CCS

On July 9, 2008, Governor Rendell signed the Pennsylvania Climate Change Act (Act 70). This act requires the Department of Environmental Protection (DEP) to prepare a Climate Change Action Plan

On October 15, 2008, House Bill 2200 was signed into law by Governor Rendell. It requires the Department of Conservation and Natural Resources (DCNR) to conduct studies of carbon capture and sequestration, and present its findings to the Governor and the General Assembly by mid-to-late 2009.

House Bill 80

Climate Change Action Plan states that implementation of the Carbon Capture and Sequestration (CCS) would be supported via passage of House Bill 80.

HB 80 is currently under consideration and will involve CO2 indemnification funds, providing sequestration and transport pipeline facilities amongst

Governor Edward G. Rendell

http://www.legis.state.pa.us/cfdocs/billinfo/bill_history.cfm?syear=2009&sind=0&body=H&type=B&bn=8

PA's Climate Change Action Plan

• 52 recommendations to mitigate GHGs

PA's Climate Change Action Plan

Electricity 5. Carbon Capture and Sequestration in 2014

- > Retrofitting existing coal plants using entail anime scrubbing
- > Stimulus funds for CCS amounting to \$3.5 billion
- > Combining with federal funds results in at least \$8 billion
- Loan guarantees for early-stage developments of CCS facilities and infrastructures
- > Funding for technical assessments of CCS potential in the state
- > Investment tax credits to cover up-front capital costs
- > Production tax credits over a specified period of generation
- Direct cost sharing of project development costs through appropriations
- Streamlined permitting for generation and associated transmission

Dilemma of the Cap-and-Trade

• Looking at both sides of the situation:

Pros	Cons
Reduce CO2 emissions	Higher electricity bills
Viewed as "greener"	Higher gas prices
Cleaner Air and Environment	Little impact on climate change
Create jobs	Damage to economy
	India/China might not follow through

POLICIES

Dingell-Boucher – discussion draft

- > Promising cap-and-trade program
 - CCS Projects are responsible for leakages
 - Certified projects allocated bonus allowances from 2012 to 2025
 - Equation goes like this:

(Tonnes of CO₂ emissions avoided²³) (bonus allowance value) (Average value of an emission allowance during the preceding year.)

- \$90 per ton for early projects, eventually dropping to \$50 per ton
- Available for the first 10 yrs of operation

http://www.ccsreg.org/working_papers.html

POLICIES

× Stake Holders:

U.S. Department of Energy Office of Fossil Energy

National Energy Technology Laboratory

StatoilHydro SUNCOR

🔞 U.S. D.o.E. 🙌 Norges forskningsråd

Shawville Power Plant Specs.

	mass flow rate					
	kg/hr	ton/yr				
IN						
Coal	154,131	1,414,000				
Air	2,210,698	21,302,290				
Total:	2,364,829	22,716,290				
OUT						
Ash	19,125	166,000				
Flue Gas	2,345,704	22,550,290				
Total:	2,364,829	22,716,290				

By assuming a steady state system, the flue gas composition is determined •2 – 125 MW PC Boilers
•2 – 188 MW PC Boilers

Input: 33.9E12 Btu/yr
Output: 3.2E6 MWh
η = 32.2%

Flue Gas Composition

	mass fl	mass	
	kg/hr	ton/yr	percentage
CO_2	392,132	3,403,902	15.1%
SO _x	5,413	46,976	0.2%
NOx	793	6,885	0.0%
H ₂ O	222,000	2,176,548	9.7%
N_2	1,581,262	15,503,132	68.7%
O ₂	144,105	1,412,847	6.3%

MEA: Monoethanolamine

Source: IEA-Clean Coal Centre

CAP: Chilled Ammonia Process

Carbon Capture Comparison

	Base Plant	MEA w/ FGD	CAP
Energy Input (MW)	1259	1259	1259
Energy Output (MW)	405	258	335
Energy Penalty	-	11.7%	5.6%
n _{th} (% HH∨)	32.2%	20.5%	26.6%
Capital Costs (MM \$)	-	446.6	65.1
0 & M Cost (MM \$)	-	96.7	227.5
Avoided Cost, f	-	57.06	77.97
Price (¢/kWh)	6.5	14.99	15.44
Price Increase		57.3%	58.5%

Assumptions: •90% CO2 capture rate (by weight) = 3.06 mm ton/yr •Capital charge factor = 0.175 (DOE/NETL) •Annual Operating Time is 7888 hr/yr (90% capacity factor)

Storage and Transportation with cost estimation

Geological CO₂ Sequestration Opportunities in the MRCSP

Carbon Storage Site Selection---Rose Run

) Transportation---Pipeline

Models of CO2 Transportation and Storage Cost

Future Work

>Hydraulic Parameters

The Rose Run Sandstone has a low seismic hazard risk rating, and injection is unlikely to cause seismic activity unless injection occurs in a faulted interval. No extensive faulting or fracturing is present in the study area.
 The containment unit of the Rose Run is approximately 1,200 ft thick and primarily shale with very low permeability and porosity. Also, containment layers are diverse and extensive. This suggests an excellent setting for long-term storage of CO2.

v Dep		Depth ^(a) (ft) ⁴³ Thickness ^{(a)43}	Permeability(<u>mD</u>)+		Porosity(%)₽		Pressure Gradient	Formation Fluid
	Depth ^(a) (ft)+ ³		Regional ^(b)	Site ^(c) 4	Regional ^(b) @	Site ^(c) ₄ 7	(psia/ft)₽	lemperature (1°F/100ft)₽
Rose Run Sandstone*	2,500-11,000+	50-200 ¢	0.01-1984	N/A?	2-25₽	N/A₽	0.41-0.460	1-1.2 ¢
Underlying Shawville, Clearfield, PA	7,550¢	75-150¢	N/A#	13-86+2	N/A₽	8- <u>1</u> 4₽	0.43-0.460	1¢

(a)---Approximation values based on nearby deep well.

(b)---Approximation values based on regional summary data

(c)---Approximation values based on nearby deep wells or gas fields

Source: Ohio River Valley CO2 Storage Project Preliminary Geologic Assessment Report

Rose Run Formation

Estimates on reservoir capacity were calculated to provide some guidance on the amount of fluid that may be injected in the target formations. These capacities are approximate involving many assumptions, and more detailed modeling is required to assess injection capacities. However, the methods are suitable for initial investigations.

• $\mathbf{Q} = \mathbf{V}_{p} \mathbf{h}_{st} \rho_{CO2}$

- $V_p = V_b (Net:Gross) \varphi$,
- V_b = bulk aquifer volume (km3),
- Net:Gross = percentage of porous, permeable rock,
- φ = formation porosity (%),
- h_{st} = storage efficiency (i.e., fraction of pore volume that can be filled with CO2 [%]),
- ρ_{CO2} = density of CO2 (700 kg/m3) and,
- Q = storage capacity (Mt).

Source: Ohio River Valley CO2 Storage Project Preliminary Geologic Assessment Report

3 Transportation---Pipeline

1. Pipeline:

- 1. Scenarios for CO2 pipeline
- 2. Special design consideration for CO2 transmission system
- 3. Pipeline Transmission Cost Factors
- 4. Operating Experience with CO2 Pipelines
- 5. Pipeline Right's of Way Considerations

2. Basic Assumption

At this stage, we consider one-to-one source-sink matching only, that is , we look at transportation CO2 from one emission source or node to exactly one injection site.

Calculation of Compressor & Pump Power requirements

To calculate the pumping power requirement for boosting the CO₂ pressure from $P_{\text{cut-off}}$ (7.38 MPa) to P_{final} (15 MPa), the following equation has been adapted from [1]:

$$W_p = \left(\frac{1000*10}{24*36}\right) \left[\frac{m\left(P_{final} - P_{cut-off}\right)}{\rho\eta_p}\right]$$

Wp=1.63E+03 (KW)

Source: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

Capital,O&M,Levelized---Compression & Pump

Scenario One-40km

- > Ccomp=\$**8.39E+06** /comp
- > Cpump =\$1.88E+06
- > Cannual=(Ccomp+Cpump) *0.15=1.54E+06 ---<u>CRF=0.15/year</u>
- > Clev=0.5034

Scenario Two-400km

- > Ccomp=\$**2.52E+07**
- > Cpump =\$1.88E+06
- Cannual=(Ccomp+Cpump)
 *0.15=1.54E+06 -- CRF=0.15/year
- > Clev=**1.3261**

0.5

 \cap

1.5

Recompression is often needed for pipelines over 150 km (90 miles) in length.

O&M Factor=0.04

Same trend for E_lev,O&M_lev

Source: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Capital,O&M,Levelized Costs for CO2 Transportation -----CMU Correlation

- LCC and O&M
 - > LCC= $\beta^* D^{1.035*} L^{0.853*} z$
 - > B=\$42404
 - > D=Diameter in inch
 - > L=Length in miles
 - > z=regional weights (Midwest=1.516)
 - > O&M =5000/miles
 - > CRF=0.15/year
 - > Annualized=LCC*CRF+O&Mcost;
 - > Levelized=Annualized/myear;

Source: 1.McCoy,Sean.2006. Pipeline Transportation of CO2 – Model Documentation and Illustrative Results, Carnegie Mellon University Manuscript . 2. Heddle, Gemma,Howard Herzog & Michael Kleet.2003. The Economics of CO2 Storage

Capital, O&M, Levelized Costs for CO2 Transportation -----CMU Correlation Transportation Cost as a Function of CO2 Pipeline Length

Pipeline Length (miles)

Capital,O&M,Levelized Costs for CO2 Transportation -----CMU Correlation

Transportation Cost as a Function of CO2 Pipeline Length

Total Annual CO2 Cost---Power Consumption+Transporatation

Total Annnual Cost as a Function of CO2 Pipeline Length

Storage and Transportation with cost estimation

Geological CO2 Sequestration Opportunities in the MRCSP

Carbon Storage Site Selection---Rose Run

) Transportation---Pipeline

Models of CO2 Transportation and Storage Cost

Future Work

>Hydraulic Parameters

➤The Rose Run Sandstone has a low seismic hazard risk rating, and injection is unlikely to cause seismic activity unless injection occurs in a faulted interval. No extensive faulting or fracturing is present in the study area.

➤The containment unit of the Rose Run is approximately 1,200 ft thick and primarily shale with very low permeability and porosity. Also, containment layers are diverse and extensive. This suggests an excellent setting for long-term storage of CO2.

+∂ Dept	n at block	Depth ^(a) (ft) ω Thickness ^{(a)ω}	Permeability(mD)		Porosity(%)+		Pressure Gradient	Formation Fluid
	Debtu _A itt)6		Regional ^(b) a	Site ^(c) _¢	Regional ^(b) o	Site ^(c) ₄ 2	(psia/ft)₽	(1°F/100ft)₽
Rose Run Sandstone↔	2,500-11,000¢	50-200 <i>e</i>	0.01-198¢	N/Ap	2-25¢	N/A₽	0.41-0.46+	1-1.2 <i>P</i>
Underlying Shawville, Clearfield, PAP	7,5500	75-150 <i>0</i>	N/A@	13-86+	N/AP	<mark>8-14</mark> 0	0.43-0.460	10

(a)---Approximation values based on nearby deep well.

(b)---Approximation values based on regional summary data

(c)---Approximation values based on nearby deep wells or gas fields

Source: Ohio River Valley CO2 Storage Project Preliminary Geologic Assessment Report
2.Carbon Storage Site Selection---Rose Run

Rose Run Formation

2.Carbon Storage Site Selection---Rose Run

Estimates on reservoir capacity were calculated to provide some guidance on the amount of fluid that may be injected in the target formations. These capacities are approximate involving many assumptions, and more detailed modeling is required to assess injection capacities. However, the methods are suitable for initial investigations.

• $\mathbf{Q} = \mathbf{V}_{p} \mathbf{h}_{st} \rho_{CO2}$

- $V_p = V_b (Net:Gross) \phi$,
- $V_b = bulk aquifer volume (km3),$
- Net:Gross = percentage of porous, permeable rock,
- $\phi = \text{formation porosity (%)},$
- h_{st} = storage efficiency (i.e., fraction of pore volume that can be filled with CO2 [%]),
- ρ_{CO2} = density of CO2 (700 kg/m3) and,
- Q = storage capacity (Mt).

Source: Ohio River Valley CO2 Storage Project Preliminary Geologic Assessment Report

2.Carbon Storage Site Selection---Rose Run

3 Transportation---Pipeline

1. Pipeline:

- 1. Scenarios for CO2 pipeline
- 2. Special design consideration for CO2 transmission system
- 3. Pipeline Rights of Way Considerations

2. Basic Assumption

At this stage, we consider one-to-one source-sink matching only, that is , we look at transportation CO2 from one emission source or node to exactly one injection site.

Calculation of Compressor & Pump Power requirements

To calculate the pumping power requirement for boosting the CO₂ pressure from $P_{\text{cut-off}}$ (7.38 MPa) to P_{final} (15 MPa), the following equation has been adapted from [1]:

$$W_p = \left(\frac{1000*10}{24*36}\right) \left[\frac{m\left(P_{final} - P_{cut-off}\right)}{\rho\eta_p}\right]$$

Source: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage &Correlations for Estimating Carbon Dioxide Density and Viscosity

Capital,O&M,Levelized---Compression & Pump

Scenario One-132000ft

- > Ccomp=\$**8.39E+06** /comp
- > Cpump =\$1.88E+06
- > Cannual=(Ccomp+Cpump) *0.15=1.54E+06 ---<u>CRF=0.15/year</u>
- > Clev=**0.5034**

- Scenario Two-1320000ft
 - > Ccomp=\$**2.52E+07**
 - > Cpump =\$1.88E+06
 - Cannual=(Ccomp+Cpump)
 *0.15=4.06E+06 -- CRF=0.15/year
 - > Clev=**1.3261**

Recompression is often needed for pipelines over 475200ft (90 miles) in length.

Same trend for E_lev,O&M_lev

Calculation for Pipeline Cost -- Diameter for Transportation Pave=2/3(Poutlet+Pinlet-Poutlet*Pinlet/(Poutlet+Pinlet) Find Pipeline Diameter Viscosity=1.06E-4=0.106cp; Density=930.56 km/m³ D(in) D = 10**Diameter** Initial guess of pipeline diameter Re=(4*1000/24/3600/0.0254)*m/ **Reynold's** (pi*v*D) Number Ff Re Fanning $F_{f} = = \frac{1}{4 \left[-1.8 \log_{10} \left\{ \frac{6.91}{\text{Re}} + \left(\frac{12(\varepsilon/D)}{3.7} \right)^{1.11} \right\} \right]^2}$ Friction

Diameter for 132000 ft is 10in.

factor

Diameter for 1320000 is 16in.

Source: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide **Density and Viscosity**

Capital,O&M,Levelized Costs for CO2 Transportation -----CMU Correlation

- LCC and O&M
 - > LCC= $\beta^* D^{1.035*} L^{0.853*} z$
 - > B=\$42404
 - > D=Diameter in inch
 - > L=Length in miles
 - > z=regional weights (Midwest=1.516)
 - > O&M =5000/miles
 - > CRF=0.15/year
 - > Annualized=LCC*CRF+O&Mcost;
 - > Levelized=Annualized/myear;

Source: 1.McCoy,Sean.2006. Pipeline Transportation of CO2 – Model Documentation and Illustrative Results, Carnegie Mellon University Manuscript . 2. Heddle, Gemma,Howard Herzog & Michael Kleet.2003. The Economics of CO2 Storage

Capital,O&M,Levelized Costs for CO2 Transportation -----CMU Correlation

Transportation Cost as a Function of CO2 Pipeline Length

Capital,O&M,Levelized Costs for CO2 Transportation---CMU Correlation Transportation Cost as a Function of CO2 Pipeline Length

Total Annual CO2 Cost---Power Consumption+Transporatation

Total Annnual Cost as a Function of CO2 Pipeline Length

CCS IN ROSE RUN(with EOR IN COALFEX FIELD)

TRAPPING MECHANISM

- > Hydrodynamic Trappling
- > Residual CO2 Trapping
- Solubility Trapping
- > Mineral Trapping

REACTIONS INVOLVED IN MINERAL TRAPPING:

- > CO₂(gaseous)
- > $CO_2(aqueous) + H_2O$
- Solubility trapping
 - H₂CO₃(aqueous) + OH⁻
 IONIC TRAPPING
 - > HCO_3^- (aqueous) +OH-
 - > $CO_3^{2^-}$ (aqueous) + Ca^{2^+}
 - > CO_3^{2-} (aqueous) + Mg^{2+}
- MINERAL TRAPPING

 CO_2 (aqueous) H₂CO₃(aqueous)

 HCO_3^- (aqueous) + H_2O

 CO_32^- (aqueous) + H_2O ; Ca CO_3 (solid) Mg CO_3 (solid)

Differences between various CO2 trapping mechanisms in geological media: (a) operating timeframe, and (b) contribution to storage security

SOURCE: CO2 storage in geological media: Role, means, status and barriers to deployment, Stefan Bachu

Relation between pressure behavior and operational phases, dominance of CO2 Trapping Mechanisms, monitoring frequency and resolution, and liability at a CO2 storage site.

FORCED MINERAL TRAPPING

SOURCE: CO2 storage in geological media: Role, means, status and barriers to deployment, Stefan Bachu

$CO_2 - EOR$

- Why EOR:
 - Only 30-40% recovery is done by primary recovery (recovery due to reservoir pressure), 15-25 % more oil can be recovered by EOR
- POTENTIAL OF EOR IN USA:
 - > CO2-EOR projects accounted for 3.1% of total crude oil produced in USA in 1998
 - > In 2005, oil production from CO2 -EOR was approximately 237,000 bbls/day.

• MAKING CCS VIABLE:

> CCS with in EOR makes Carbon sequestration economically feasible.

TYPICAL CO2 EOR FIELD OPERATION

SOURCE: ENHANCED OIL RECOVERY SCOPING STUDY, TR 113836, FINAL REPORT

Wag(water alternating gas)

CARBON DIOXIDE FLOODING

Coalfex Field(ROSE RUN SANDSTONE) Reservoir Model

Assumptions

- > Black oil reservoir
- > Uniform & homogeneous
- No new wells are drilled (wells previously drilled are reworked).
- Miscible displacement of oil by CO2 takes place
- Field is considered as abandoned(so no lease cost is included)

Reservoir well models for CCS & CO2-EOR

RESERVOIR WELL MODEL FOR CCS PROCESS W/O EOR

RESERVOIR WELL PROFILE FOR CO2-EOR PROCESS

CO2 Injection in CCS

CO2 Injection profiles IN EOR

dhiraj580.irf

CO2 PRODUCTION FROM PRODUCTION WELLS

Production of Oil

Water Production Profile

Pressure Changes in The Reservoir

CO2 injection over 30 years period

Results and ultimate recovery

- CO2 emission from from the plant-
 - > 3.34MMton= Total emission
 - > Captured CO2 3.06MMton=54599.58MMscf/year
- OOIP = 2207-2282 MSTB(12% of which has been recovered by primary recovery)
- Cumulative Oil recovery after 10 years
 - > 406.614MSTB(18% of OOIP)
- Amount of CO2 injected per year
 - > 43859MMcf
- Amount of CO2 produced per year:
 - > 733.35Mcf

Cost analysis FOR 10 YEARS period of CCS W/O EOR

VARIOUS COSTS	PER WELL PER YEAR(\$)	TOTAL(MM\$)
reworking on existing wells	181968.75(constant for 1 well)	.9098
operating & maintenance costs	111863.75	5.593
CO2 recycle cost	-	-
CO2 recycle O&M cost	-	-
Lifting costs	-	-
G&A costs	-	-
MONITORING COST		
total		6.5028

W/O TAKING TAX INCENTIVES, TRANSPORTATION AND CAPTURE COST INTO ACCOUNT

CCS with in CO2-EOR cost analysis for 1st 10 years

Oil price=90\$ per bbl

- Oil production=406.614 MSTB
- Total income from oil production=36.595MM\$
- Total expenses over 10 years= 23.6396MM\$
- Capture cost =.00305\$/scf
 - > Total for 10 years period=1664.946MM\$
- transportation cost=
- Monitoring cost=
- Tax incentives: 90\$ per ton for first 5 years and 50 \$ per ton for next five years
 Total tax incentives for 10 years period=2408.00MM\$

Environmental Health and Safety

Associated Hazards > Induced Seismicity > Ground Deformation > Aquifer Intrusion > Reservoir Changes > Leakage Monitoring > Pre-Injection > Post-Injection

Department of Energy

Monitoring Tools

Lidar

- > Monitor Ground Deformation
- > Monitor CO₂ Leakage
- Optical Borewell Sensors
 - > Monitor in Reservoir Properties
- Water Monitoring
 - > Monitor Reservoir Geochemical Reactions
- Biomonitoring
 - > Leakage Detection

Monitoring Partnership

Geologic Hazards

Regional Faults and Fractures
Avenues for CO₂ migration
Changes in reservoir pressures may caused subsidence or activation of faults

Saint Peter and Rose Run formations are other deep saline rock targets for carbon sequestration.

National Energy Technology Laboratory

United States Geological Survey
Abandoned Oil and Gas Wells

07/16/2009

PA DCNR

Reservoir Modeling

- Develop Monitoring Network
- Utilize abandoned wells (reduced cost)
- If necessary, drill our own monitoring wells (expensive)
- Insert borewell sensors
 - Sensors measure reservoir properties.

Water Quality Hazards

Pennsylvania Department of Environmental Protection Leakage Hazard > Changes in pH can mobilize heavy metals > Impact regional aquifers

PA DCNR

Geochemical Changes

Fig. 7. Total aqueous lead concentration profile along x-axis at y = 0 m at different times.

Fig. 11. Computed total adsorbed lead (a) and total aqueous lead (b) after 100 years of CO₂ intrusion in sensitivity run (logKgalena = -13.97) and base model (logKgalena = -14.4).

Zheng et al., 2009

Light Detection and Ranging (LiDAR)

- Airborne Laser Swath Mapping (ALSM)
- Orbiting Carbon
 Observatory (OCO)
 - > Launch failure February 24, 2009
 - > \$250 million loss
 - > 2010 \$170 million budget approval
 - > 2-year mission life
- Greenhouse Gases
 Observing Satellite (GOSAT)
 - > Launched January 23, 2009
 - Centimeter scale resolution
 - > 5-year mission life

Japan Aerospace Exploration Agency

Pennsylvania Land-use

Pennsylvania Bureau of Forestry

Biomonitoring

- Trees are susceptible to changes in soil pH
- +400,000 acres available for reforestation
 - > \$3.23/tree
 - > 440 trees/acre
 - > 176,000,000 tree potential
 - > 80,000 tons of biomass created
 - Harvest
 - > Job creation

PA DCNR

Monitoring Costs

Monitoring Device		Cost (\$)		Benefit (\$)	
Lidar		1,612,274		0	
Borewell Sensors		80,000,000		0	
Biomonitoring		336,000,000		568,480,000	
DEP Water Network		0		0	
Total Costs		-		+150,867,726	
McCoy & Rubin (2005)	Hi	igh Cost (\$/ton)	Average Cost (\$/ton)		Low Cost (\$/ton)
Monitoring Costs	0.10		0.07		0.03
CO2 Injected (tons)	3.	.366,000	3,366,000		3,366,000
Total Costs (\$)	13	3,348,000	9,440,000		4,040,000

Should we do this?

- Happy Earth Day
- Problem Statement:
 - Examining the implementation of retrofitting and sequestration technologies on a 572MW coal plant in Shawville, PA for Carbon Capture and Storage (CCS) and Enhanced Oil Recovery (EOR) to make the project viable while reducing associated costs.
- Triple Bottom Line 3-B-L
- People
 - Not in My Back Yard (NIMBY)
- In Planet
 - > Reduced output of Greenhouse Gases
- Profit
 - > Expensive project

ECONOMIC ANALYSIS FOR YEARS 0-10 FOR CO2 EOR

VARIOUS COSTS	PER WELL PER YEAR(\$)	TOTAL(MM\$)
Transportation Costs	\$31 million	-310
Capture Costs	0.003264 per scf	-1746.04
Tax Incentives	\$90 years 0-5 \$50 years 5-10	+2408
reworking on existing wells	181968.75(constant for 1 well)	6377
operating & maintenance costs	111863.75	-10.06
Co2 recycle cost	700,000Per MMcf/d	-5.13
Co2 recycle O&M cost	1 per Mcf	073
Lifting costs	0.3per bbl	-0.12
G&A costs	27965.9.2+0.2*(0.3per bbl)	-2.04
royalties	12.5% of total oil production	-4.57
Income from Oil		+36.59
Monitoring Costs		292.5
total		77.42

Economic analysis OVER 30 years period

VARIOUS COSTS	PER WELL PER YEAR(\$)		TOTAL(MM\$)
Co2 capture cost	. 0.003264per scf	-	-5232.1
Transportation cost	31MM		-930
Tax incentives	\$90 years 0-5 \$50 years 5-10		+2408
Income from Oil Production	-		+36.59
reworking on existing wells	181968.75(constant for 1 well)		-1.64
converting production well into injection well	78391.25(constant for 1 well)		-0.31
operating & maintenance costs	111863.75		-19.02
Co2 recycle cost	700,000Per MMcf/d		-5.131
Co2 recycle O&M cost	1 per Mcf		-0.073
Lifting costs	0.3per bbl		-0.12
G&A costs	27965.9.2+0.2*(0.3per bbl)		-2.03
royalties	12.5%		-4.57
Monitoring cost	8.7		-552.5
total			-4,302.90

Final Conclusions

 The project is economically feasible in first 10 years

- After that period, EOR incentives decline and project runs in the red
- \$46.87/ton CO₂ captured (30 year levelized cost)

Future Work

• Policies

- > Pipeline transportation
- > Underground injection
- Long-term storage
- > ETA: End of 2010
- Capture
- Transportation
 - Focusing on many-to-many sources-to-sinks matching
 - Near sequestration sites VS electricity consumers(cities)
 - Competition among large CO2 source facilities to seek the best local sequestration sites before others do
 - CO2 transportation costs could raise electricity prices even higher above the national average electricity prices even higher above the national average
- EOR/Sequestration
 - > Injection well technology
 - > Calcium hydroxide injection
- Monitoring
 - > Long term sensors
 - > Implications of leakage

