BOOK ERRATA

p31 1 subscript wrong $\varepsilon_{k l}=a_{k i} a_{l j} \varepsilon_{i j}$
p92 Add parentheses round a^{3}
Ω is the crack density $\left(=(1 / V) \Sigma<a^{3}>\right)$ and v is the Poisson's ratio of the microcracked

$$
\begin{align*}
& \text { p117 }=\operatorname{sign} \text { missing } \quad \varepsilon_{r r}=\frac{\partial u_{r}}{\partial r} ; \quad \varepsilon_{\theta \theta}=\frac{\partial u_{\theta}}{r \partial \theta}+\frac{u_{r}}{r} ; \quad \varepsilon_{z z}=\frac{\partial u_{z}}{\partial z} ; \\
& 2 \varepsilon_{r \theta}=\frac{\partial u_{\theta}}{\partial r}-\frac{u_{r}}{r}+\frac{\partial u_{r}}{r \partial \theta} ; 2 \varepsilon_{\theta z}=\frac{\partial u_{z}}{r \partial \theta}+\frac{\partial u_{\theta}}{\partial z} ; 2 \varepsilon_{r z}=\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r} \tag{4.26}
\end{align*}
$$

p118 χ outside parentheses $\quad\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right)^{2} \chi=0$
P119 delete minus sign $\quad \sigma_{\theta \theta}=\frac{P_{a} a^{2}\left(r^{2}+b^{2}\right)}{r^{2}\left(b^{2}-a^{2}\right)}$
P120 Fig $4.16 r_{F}$ should be $2 r_{F}$
P121 change + to $-\quad\left(u_{r}{ }^{\prime}-u_{r}\right)=\frac{P\left(1-v_{f}\right) r_{f}}{E_{f}}+\frac{P\left(1+v_{m}\right) r_{f}}{E_{m}}$
p134 remove γ

$$
\begin{array}{r}
\frac{\mathrm{d} \gamma}{\mathrm{~d} t}=\alpha \tau \\
M=\frac{4 \pi L \eta \omega a^{2} b^{2}}{b^{2}-a^{2}} ; C=\frac{\omega b^{2}}{b^{2}-a^{2}} \tag{5.18}
\end{array}
$$

p173 For slip on $\{100\}$ planes (a to b), the distance between like ions is decreased and between opposite ions, it is increased. For slip on $\{110\}$ (c to d), the distance between like ions is also decreased but opposite ions are brought closer together, decreasing the overall electrostatic interaction energy.
p 213. Add U_{0}

$$
\begin{equation*}
U=\left(\frac{-\pi c^{2} \sigma^{2}}{E}\right)+4 c \gamma+U_{0} \tag{8.8}
\end{equation*}
$$

p215 2 and 3 switched $\quad W_{\mathrm{L}}=0 ; \quad U_{\mathrm{E}}=\left(\frac{E \delta^{2} h^{3}}{8 c^{3}}\right)$
p216 2 and 3 switched $\quad c_{0}=\left(\frac{3 E \delta^{2} h^{3}}{16 \gamma}\right)^{1 / 4}$
p 2812 should be superscript \quad Thermodynamic surface energy, $\mathrm{J} / \mathrm{m}^{2}$:
p 281. Insert text. In addition, determine the stresses $\left(\sigma_{11}, \sigma_{12}\right.$ and $\left.\sigma_{22}\right)$ in the crack plane $(\theta=$ 0) at distances of $1 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$ from the crack tip (see problem 4.6).
p295 remove $=$ sign
$\ln \frac{1}{1-F}=\left(\frac{S_{1}}{S_{0}^{*}}\right)^{m}$
p $296 \mathrm{~m} / \mathrm{n}-2$ is superscript

$$
\begin{equation*}
\ln R_{i j}^{\mathrm{F}}=\ln R_{i j}\left(\frac{\sigma_{i j}^{2} t_{f}}{B}\right)^{\frac{m}{n-2}} \tag{9.17}
\end{equation*}
$$

p325
HEXAGONAL $=$ should be,$+=$ is missing and $=$ should be negative in first two equations
$s_{11}+s_{12}=\frac{c_{33}}{c} ; \quad s_{11}-s_{12}=\frac{1}{c_{11}-c_{12}} ; \quad s_{13}=\frac{-c_{13}}{c} ; \quad s_{33}=\frac{c_{11}+c_{12}}{c} ; \quad s_{44}=\frac{1}{c_{44}}$
where $c=c_{33}\left(c_{11}+c_{12}\right)-2 c_{13}^{2}$
p326
TETRAGONAL Last term should be
$2 s_{25} a_{1} a_{3}\left(3 a_{2}^{2}-a_{1}^{2}\right)$
MONOCLINIC $9^{\text {TH }}$ term should be $2 s_{35} a_{1} a_{3}^{3}$

