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Abstract
Hydraulic fracturing pressure is one of the key criteria in defining the pumping schedule and in dimensioning surface plants 
for fracturing operations. However, it is difficult to predict at a practical field scale due to the complex determining factors, 
involving geological, hydrodynamic and rock mechanical parameters. This study proposes a synthetic data-driven work-
flow, integrating both hydrodynamic and rock mechanical models, to predict the pressure based on fracturing experience 
in neighboring wells. The data quality and performance of the geological, hydrodynamic and rock mechanical features are 
evaluated based on a backward elimination strategy and control variate method, using error evolutions as criteria. Relatively 
small errors (root mean square error 5.1 ~ 5.7 MPa and mean absolute error 5.6 ~ 8.3%) are returned for wells/cases within the 
same region as the training wells, demonstrating the superior performance of the workflow. The prediction errors increase 
significantly with increasing distance between training and testing wells – defining the range of applicability of the workflow. 
The rock mechanical feature (represented by the brittleness index) provides a larger contribution to the prediction than that of 
the hydrodynamic feature (represented by the proppant accumulation) in most of the testing cases. Young’s Modulus exhibits 
a higher performance (induces the smallest errors in pressure prediction) to characterize the rock mechanical feature of the 
formation, compared with the brittle mineral ratio and Poisson’s Ratio. The data quality of geological stresses and Pois-
son’s Ratio may require improvements based on the irregular error evolutions. The remaining errors and proximity/regional 
limitations of the data-driven workflow are critically discussed. This new method provides a platform for the prediction of 
pressures at field-practical scales, which may be significant for both hydraulic fracturing and geological storage of CO2 and 
H2 in depleted reservoirs with sufficient historical hydraulic fracturing records.

Highlights

•	 A data-driven workflow is built to predict fracturing pressure at field scales.
•	 Errors increase with the increasing distance between training and testing cases.
•	 Contribution of rock mechanical feature is larger than hydrodynamic feature.
•	 Young’s Modulus performs better in characterizing rock mechanical feature.
•	 Lower data qualities of geological stresses and Poisson’s Ratio are revealed.
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1  Introduction

Fracturing pressure is one of the core characterization param-
eters for massive hydraulic fracturing (Hou et al. 2019; Osi-
ptsov 2017; Wang et al. 2019), especially in stimulation of 
unconventional reservoirs where the pressure may approach 
the maximum capacity of surface components (such as the 
capacity of the wellhead, outputs of pumps, and others), thus 
leaving only a narrow safety window for the hydraulic injection 
operation (Baumgärtner and Zoback 1989; Jarvie et al. 2007; 
Roussel et al. 2012; Sun et al. 2022). It continues to increase as 
exploration for unconventional resources ever deepens (Mou 
et al. 2019; Xi et al. 2021) and as well patterns become pro-
gressively denser to maintain production (Gao and Gray 2019; 
Zhu et al. 2021). This trend keeps challenging the use of sur-
face equipment, the optimization of pump schedules and the 
safe injection of proppant – all essential concerns for pre-job 
design to control costs and ensure security (Nolte 1988; Qi 
et al. 2012). The fracturing pressure may be controlled by the 
rock mechanical features of formations (Hou & Elsworth 2021; 
Zhao et al. 2020), heterogeneous geological stresses (Gasparik 
et al. 2014; Wang et al. 2015; Zou et al. 2010), various injec-
tion parameters (Hu et al. 2018; Mao et al. 2021) and proppant 
accumulation and transport in underground fractures (Alotaibi 
and Miskimins 2015; Hou et al. 2017; Sahai et al. 2014; Sahai 
and Moghanloo 2019). Therefore, predicting the fracturing 
pressure at field practical scales is still challenging due to the 
complex determining parameters (geological, hydrodynamical, 
rock mechanical, and other parameters). The influence of each 
parameter on the fracturing pressure is also vague, especially 
for the rock mechanical parameters that are usually used to rep-
resent the “sweet point” and fracability, and then to optimize 
the fracturing strategy, such as the subsections.

Previous efforts on predictions of fracturing pressure 
mainly focussed on the estimation of the breakdown pressure 
based on experiments considering the mechanical properties 
of the reservoir rocks, for instance, using the limited-scale 
rock cylinders (5 × 10 cm) or blocks (30 × 30 cm) (Ha et al. 
2018; Ma et al. 2017; Wu et al. 2020). Numerical models 
extend the simulation scales, however, may encounter chal-
lenges in the reduction accuracy of in situ conditions, such 
as the existence of natural fractures (Ma et al. 2022; Yang 
et al. 2022; Yuan et al. 2023). The results of these simula-
tions typically only provide an approximate reference for 
the actual prototype well at scale, which is insufficient for 
the pre-fracturing optimization of a real treatment schedule 
that will typically extend over many hours. The applica-
tion of data science in petroleum engineering enables the 

study of hydraulic fracturing at the relevant field-practical 
scale (Al-Anazi & Gates 2010; Lin et al. 2020; Maity and 
Ciezobka 2019; Zhong et al. 2020). Real-time fracturing 
pressures have been predicted using neural network models 
trained on data from the first several minutes of fracturing 
operations and then applied to predict the evolving pressure 
for the next several minutes (Ben et al. 2020). These stud-
ies mainly used hydraulic injection parameters (proppant 
concentration, friction reducer concentration, pump rate and 
wellhead pressure), which may induce bias by neglecting 
the rock mechanical and geological features of the fractur-
ing well. Previous studies have also analyzed the error of 
the pressure predictions based on machine learning algo-
rithms, and then to improve the expressions for the brittle-
ness index and proppant accumulation (Hou et al. 2022b, 
2022c, 2022d). However, these studies focused on one spe-
cific feature class (hydrodynamic or rock mechanics) alone, 
by controlling the others, which may remove certain useful 
information and thus induce relatively large absolute errors 
(~ 20%) in the prediction of pressures (Hou et al. 2022c, 
2022d). Therefore, accurate predictions of fracturing pres-
sures are still challenging.

The other challenge is to reveal the effects of geological 
and rock mechanical parameters on the fracturing pressure, 
for instance, the maximum and minimum horizontal stresses, 
brittleness index, mineral components, Young’s Modulus 
and Poisson’s Ratio. These parameters are usually derived 
from core drilling, experimental tests and well logging, 
both of which are costly measuring techniques (Ban et al. 
2023; Haddad et al. 2023). Field engineers mainly rely on 
these parameters to evaluate the features of the target for-
mation, and then make decisions on the fracturing strategy 
(Taghichian et al. 2018; Zhang et al. 2016). However, the 
derivations of these parameters are limited within (for core 
drilling) or around the range of wellbore (for well logging). 
The bias always exists due to the scale differences (between 
the accessed scale around wellbore and the formation scale) 
and the spatial heterogeneity in formation (Kolawole and 
Oppong 2023; Mandal et al. 2023; West and Walton 2023). 
Moreover, the effects of geological and rock mechanical 
parameters on pressure evolutions may be overshadowed by 
the various pump schedules which may dramatically fluctu-
ate the fracturing pressure. Therefore, the qualities of these 
parameters and their contributions to the fracturing pressures 
are urgently to be defined at field practical scales, in order 
to improve both the measuring techniques and fracturing 
strategy in fields.
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This paper proposes a data-driven workflow to predict 
the fracturing pressure at field engineering scales based on 
operational experience from neighboring wells. Both hydro-
dynamic and rock mechanical models are integrated into 
the workflow to pre-process the field data and extract input 
features to train a deep learning algorithm, as well as inputs 
of geological stresses and characteristics of the wellbore and 
hydraulic injection. Errors in the predictions are analyzed to 
demonstrate the applicability of this workflow for increasing 
separations from the training wells. The qualities and con-
tributions of geological and rock mechanical features to the 
pressure prediction are analyzed based on error evolutions 
(using the backward elimination strategy and control variate 
method), based on which the black-box effect of the deep 
learning algorithm is also mitigated. This newly proposed 
method may significantly improve the pre-fracturing design 
and formation characterization for the efficiency and security 
of operations. Moreover, this method may also be applied 
to predict the injection pressure for the geological storage 
of CO2 and hydrogen, to estimate the storage capacity and 
control any leakage induced by overpressure.

2 � Methodology

We propose a machine learning (ML) based workflow to 
process field data from gas shale reservoir fracturing wells, 
which is then applied to predict the fracturing pressures for 
neighboring wells at various separation distances. Physics-
based hydrodynamic and rock mechanical models are used 
to pre-process the field data and extract features as the inputs 
for training the ML algorithm, through which these models 
are integrated into the workflow. The prediction errors are 
analyzed to test the applicability of the new method and the 
contributions of various input features (geological and rock 
mechanical parameters).

2.1 � Data Collection and Division

Field records from fractured wells in gas shale reservoirs 
are collected from the southeastern edge of the Sichuan 
basin. A square area of ~ 49 km2 is selected and denoted as 

testing region X in supplying the data. The shale gas wells 
are drilled and fractured in the form of a multi-well pad 
– namely several different wells (usually 3 ~ 5 wells in region 
X) are drilled from the same surface location to extend hori-
zontally in all azimuths to efficiently access the full under-
ground reservoir. The fracturing measurements of five wells 
from five different pads/sites within region X are collected 
for training the machine learning algorithm. These include 
67 stages of fracturing operations as presented in Table 1, 
containing 21,249 groups of data at one-minute intervals. 
Six more wells are set as the testing group, from which six 
stages of hydraulic fracturing are randomly selected. Three 
testing wells (X1 ~ X3) are located within region X, which 
are classified by the distance from the training wells. X1 and 
X2 are from the same pads and are defined as W1 and W2 
(training wells, Table 1), respectively. X3 is from a differ-
ent pad from these training wells, but is still located within 
region X. Correspondingly, three wells (Y1 ~ Y3) far from 
region X are collected for comparison. Y1 is a distant well 
within its region (< 50 km) close to region X. Both Y2 and 
Y3 are distant from (> 100 km) the training wells, as sum-
marized in Table 1. The regional distribution of the wells is 
designed to test the range of the applicability of the data-
driven method.

Notably, the hydraulic injection data are available at one-
minute intervals and are used to train the algorithm. We 
use data sampled at minute resolution rather than at one-
second resolution since the proposed method in this study is 
designed for pre-fracturing predictions. The injection param-
eters (mainly including the pump rate, proppant concentra-
tion, proppant and fluid types) before the fracturing opera-
tion are usually only scheduled at a single-minute resolution 
(Qi et al. 2012). We use the single-minute-resolution data 
(317 groups of data on average in each testing stage) to test 
the performance of the algorithm and ensure consistency in 
resolution between training and application data.

2.2 � Data Pre‑Processing

The original parameters collected from field records consist 
of the geological, wellbore, injection, and rock mechanical 
parameters. The geological category contains the principal 

Table 1   Division of training 
and testing stages for the data-
driven workflow

Stage number Well no Regional Notes

Training dataset 67 Stages W1 ~ W5 Within region X
Testing dataset 6 Stages

(1 Stage/well)
X1 From the same 

pads as training 
wells

X2

X3 From different pads
Y1 Beyond region X Distant well
Y2 Far distant wells
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features of the shale reservoir, including the vertical depth 
of the target formation, maximum and minimum horizontal 
stresses and pore pressures, as shown in Table 2. The well 
depth (length of the well trajectory), number of perforation 
holes and stage length are selected to represent the features 
of the wellbore. Hydraulic injection parameters include 
pump rate, viscosity and density of the mixture (proppant 
and fracturing fluid) and proppant diameter and concentra-
tion (Table 2). The rock mechanical parameters, used for 
calculating the brittleness index, include mineral composi-
tion (quartz, carbonate, clay, and total organic carbon) and 
mechanical properties derived from logging data (compres-
sional slowness and porosity) and elastic properties (density, 
Young’s modulus, and Poisson’s ratio).

Both hydrodynamic (Hou et al. 2022b; Patankar et al. 
2002; Wang et al. 2003) and rock mechanical models (Hou 
et al. 2022c) are applied to pre-process the field data, as 
presented in Appendix (Eqs. 1 ~ 10). The height of the slurry 
flowing layer within fractures (H1) and the brittleness index 
of the target formations (BI) are representative features/
parameters calculated by the numerical models. The use 
of the volume ratio of injected proppant/sand and fluid has 
been shown to significantly improve the prediction of ML 
algorithms (Hou et al. 2023) and is also included in our 
input features, as shown in Table 2. The friction impacting 

flow through the drill pipe and perforation, as well as the 
hydrostatic pressure of the wellbore, are also calculated 
based on the parameters of the hydraulic injection (Dont-
sov and Peirce 2014; Willingham et al. 1993) – a data aug-
mentation method is used to improve the performance of 
the machine learning algorithm. The original features and 
hydraulic frictional losses are mainly used for training the 
algorithm. The extracted features of H1 and brittleness index 
(BI) are further analyzed to evaluate their relative contribu-
tions to predictions of fracturing pressure. The qualities and 
contributions of the geological (maximum and minimum 
horizontal stresses) and rock mechanical features (brittle 
mineral ratio – proportion of quartz and carbonate, Young’s 
Modulus and Poisson’s Ratio) are also evaluated based on 
the control variate method.

2.3 � Machine Learning Workflow and Algorithm 
Tuning

An ML-based workflow is established to process the field 
data and produce the prediction of fracturing pressures at 
field engineering scales, as presented in Fig. 1. The Gated 
Recurrent Unit (GRU) algorithm, designed for the process-
ing of time-sequential data, is used for data processing, as 
based on previous experience (Hou et al. 2022a, 2023), which 

Table 2   Summary of the original and extracted features based on field records and numerical models

Vs/Vf – the volume ratio of injected proppant and fluid; H1 – the height of the slurry flowing layer in fractures; BI – brittleness index, calculated 
by combining brittle mineral ratio, Young’s modulus and Poisson's ratio. The parameters for evaluations include H1 and BI, geological stresses, 
brittle mineral ratio, Young’s modulus and Poisson's ratio

Inputs to ML Algorithm Output

Original features Geological Vertical depth of formation; Maximum and minimum horizontal 
stresses; Pore pressure

Wellhead pressure

Wellbore Well depth; Number of perforation holes; Stage length
Injection Pump rate; Mixture viscosity; Mixture density; Proppant diam-

eter and concentration; Vs/Vf

Extracted features Hydro-dynamics Pipe and perforation Frictions; Hydrostatic pressure
H1

Rock mechanics BI

Fig. 1   Structure of the data-
driven workflow for predictions 
of hydraulic fracturing
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is the pivot of the workflow (as highlighted in Fig. 1). The 
hyperparameters of the GRU are optimized to improve its 
performance based on tuning of the algorithm. The numeri-
cal models (Eqs. 1 ~ 10, Appendix) are integrated into the 
workflow for feature extractions and data pre-processing. 
Both the root mean squared error (RMSE) and mean absolute 
error (MAE) are used in evaluating the correspondence of the 
predicted pressure relative to the field measurements. The 
backward elimination strategy and control variate method are 
deployed to analyze the contribution of individual features, 
during which one feature at-a-time is sequentially eliminated. 
The error evolutions due to the tested feature are then used as 
the criterion for parameter analyses.

The GRU model with 3 layers (including the output layer) 
is built to predict the fracturing pressure, as based on previous 
experience (Hou et al. 2022a, 2023). A drop-out (drop rate is 
0.1) layer is set after the first and hidden layers, respectively, 
to avoid overfitting. The activation function (‘ReLu’) and 
optimizer (‘Adam’) are designed for the continuous output of 
pressures (Gal & Ghahramani 2015; Kingma & Ba 2014). The 
hyperparameters of the GRU algorithm are optimized by com-
bining the grid search and walk-forward validation techniques 
(Bergstra & Bengio 2012; Hu et al. 1999). The candidate 
hyperparameters are the neural nodes in each layer [50, 100, 
200], the epochs [20, 40] and the batch size [50, 100, 150]. A 
total of 18 combinations of the hyperparameters are set for tun-
ing the deep learning algorithm. RMSE is used as the criterion 
for optimization, which has the same unit (MPa) as the predic-
tion. The errors based on different combinations are summa-
rized in Table 3. The root mean square error (RMSE) of the 
fracturing pressure approaches a minimum value of ~ 3.30 MPa 
based on the combination [200, 20, 150] for the neural nodes in 
each layer, epochs and batch size, respectively, which are used 
for the hyperparameters of the GRU algorithm.

3 � Results

The optimized GRU algorithm (Table 3) produces a pre-
diction of fracturing pressures based on the input features 
(Table 2) from region X (Table 1). The results are presented 

in Figs. 2 and 3. In general, the deviations between predicted 
pressures and measured pressures are much smaller in cases 
within the same region as the training wells. The close loca-
tions between these testing and training wells may constrain 
the geological uncertainties and then mitigate errors in the 
predictions. The predicted pressure varies around the meas-
urements in Fig. 2, showing relatively small errors in pre-
dictions. X1 and X2 are the same-pads wells as the training 
wells, and X3 is a neighbor well within region X. The RMSE 
in the nearby cases varies between 5.1 MPa and 5.7 MPa 
(5.3 MPa on average), and the MAE varies between 5.6% 
and 8.3% (6.9% on average), which demonstrates the perfor-
mance of the machine learning workflow.

However, the applicability of this data-driven method 
should be restricted to within the same region as the train-
ing wells (region X) since the performance of the ML-based 
workflow decreases for cases far from the training wells 
(beyond region X), as shown in Fig. 3. Apparent deviations 
are observed between predictions and field-measured pres-
sures, which increase with increasing distance between the 
training and testing wells, as apparent in the deviations in 
Y1 (< 50 km) and Y2 and Y3 (> 100 km). The shale forma-
tion is relatively continuous between the training wells and 
Y1 next to region X. The formation containing Y2 and Y3, 
distant from region X, however, is geologically disconnected 
by faulting and folding. Different subsurface conditions may 
result in large errors between predictions and measurements. 
Noteworthy, the patterns (variations and trends) of predicted 
pressure curves are similar to the field records. Specifically, 
the pressure variations earlier than 100 min into the stimula-
tion (Fig. 3) are mainly induced by pump rate adjustments, 
which are recognized by the trained algorithm and thus pre-
dict similar fluctuations in pressures compared with field 
records.

This new method is especially useful for multi-well pad 
fracturing, during which the fracturing pressure of target 
wells may be predicted by prior experience from fracturing 
adjacent wells from the same or neighboring pads. Then, the 
parameters of hydraulic injection (proppant volume, fluid 
viscosity, and others) may be optimized for higher fracturing 
efficiency and better stimulation results. This new workflow 

Table 3   Summary of results for 
algorithm tuning

Tested 
hyperpa-
rameters

RMSE/MPa Tested hyperparameters RMSE/MPa Tested hyperparameters RMSE/MPa

50, 20, 50 8.18 50, 20, 100 8.18 50, 20, 150 8.18
50, 40, 50 8.14 50, 40, 100 4.22 50, 40, 150 8.18
100, 20, 50 8.18 100, 20, 100 4.03 100, 20, 150 5.50
100, 40, 50 4.94 100, 40, 100 4.21 100, 40, 150 6.33
200, 20, 50 4.43 200, 20, 100 3.57 200, 20, 150 3.30
200, 40, 50 3.72 200, 40, 100 4.50 200, 40, 150 3.73
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can also be significant for fracturing the infilled wells that 
are drilled between the pattern of previously fractured wells. 
The prior fracturing records provide useful data in train-
ing the GRU algorithm that is then applied to predict the 
required/desired operational pressures for the new infilled 
wells. Moreover, this new strategy may also be useful for 
predicting the injection pressure for CO2 and hydrogen stor-
age in depleted oil and gas reservoirs, with a sufficient docu-
mented history of previously fractured wells.

4 � Discussion

The data-driven workflow is further applied for sensitivity 
analyses using the prediction errors as criteria. Different 
input combinations are designed in the workflow based on the 
backward elimination strategy and control variate method, as 
presented in Table 4. The parameter’s quality and contribu-
tion to pressure prediction are analyzed based on the error 
evolutions resulting from different input combinations in the 
training and prediction algorithms. This also mitigates the 

“black-box effect” by illuminating the internal characteristics 
of the deep learning algorithm. The results are summarized 
in Table 4, where both RMSE and MAE are used for error 
analyses. Six groups of errors are generated from all test-
ing wells (X1 ~ X3 and Y1 ~ Y3) based on seven groups of 
combinations of input features. The all-features combination 
(Table 4) synthesizes the errors in Figs. 2 and 3, which are 
used as a lower-limit reference.

The maximum and minimum stress, H1 and BI are 
excluded one at a time from the inputs of the training and 
testing datasets to compare the error evolutions – the back-
ward elimination strategy (Table 4). The larger induced error 
indicates a more significant contribution of the eliminated 
feature to the fracturing pressure. In contrast, the larger 
induced error indicates a lower quality/performance of the 
tested parameter using the control variate method (Table 4). 
This method replaces BI successively by the brittle mineral 
ratio (proportion of quartz and carbonate, Eq. 6 in Appen-
dix), Young’s Modulus and Poisson’s Ratio, to test the qual-
ity and performance of the representative rock mechanical 
parameters in fields. The replacement strategy is applied to 

Fig. 2   Predictions of fracturing pressures and field measurements of a well X1, b well X2 and c well X3 within region X
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mitigate the parametric interference because the BI (calcu-
lated by Eqs. 5 and 6 in the Appendix) involves all of the 
tested parameters. In general, lower errors are reported in 
the backward-elimination group (using extracted features) 
than the errors in the control-variate group (using original 
parameters), which indicates the importance of the inte-
grated numerical models. The elimination of BI generates 
the largest errors in most cases in the backward-elimination 
group, which demonstrates the largest contribution of BI. In 
contrast, the larger errors induced by Poisson’s Ratio indi-
cate its lower quality and performance compared with the 
brittle mineral ratio and Young’s Modulus.

4.1 � Comparison Between Hydrodynamic and Rock 
Mechanical Features

The proppant accumulation in fractures (H1) and brittleness 
index of formation (BI) are selected as the representative 
hydrodynamic and rock mechanical features for comparison. 
The evolutions of RMSE and MAE excluding H1 and BI 

are compared in Fig. 4. Both of the errors increase relative 
to the lower reference limit based on all features. Similar 
trends in variation are observed in RMSE and MAE curves. 
Larger increases in error are obtained for far-distant cases 
(Y2 and Y3) beyond region X, compared with the increases 
in error for cases within (X1 ~ X3) and close to (Y1) region 
X. However, both increasing and decreasing trends in errors 
are observed due to the feature eliminations in nearby cases 
(X1 ~ X3). A single error-increasing trend is obtained in dis-
tant cases (Y1 ~ Y3), in which both RMSE and MAE are one 
magnitude larger than the errors in nearby cases.

The evolution of RMSE is furthermore analyzed to 
define the contributions of the hydrodynamic (H1) and rock 
mechanical (BI) features to the predictions of fracturing 
pressures, as shown in Fig. 5. Generally, the growth rates 
of RMSE are larger when eliminating the BI (the red bar in 
Fig. 5) than the rates when eliminating the H1 (the blue bar 
in Fig. 5). The larger growth rates of errors (~ 60%) indicate 
the greater importance of BI in the predictions, compared 
with the H1 (~ 25% of the growth rate of errors). Notably, a 

Fig. 3   Predictions of fracturing pressures and field measurements of wells beyond region X. a Y1 is a distant well next to region X (< 50 km); b 
Y2 and c Y3 are wells distant (> 100 km) from region X
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negative growth rate in the error is reported in the case of 
X3 after the BI is excluded from the inputs, which indicates 
that the BI induces extra error when predicting the fracturing 
pressure. This anomalous evolution may be explained by the 
presence in the reservoir of fully developed fractures with 
sufficient width to accommodate proppant injection. Thus, 
the behavior of proppant transport (represented by H1 in 
this study) may dominate the pressure variation rather than 
the propagation of the fracture (BI) and thus be reflected in 

the prediction of pressures. The lowest fracturing pressure 
(~ 50 MPa) and declining trend of the pressure curve in the 
case of X3 bolsters this interpretation, as shown in Fig. 2 (c).

4.2 � Performance of Geological Stresses

The evolution of RMSE and MAE, excluding geological 
stresses (the maximum and minimum horizontal stresses) 
from input features, are shown in Fig. 6. The effects of 

Table 4   Summary of error evolutions for parameter evaluations

* Geological stresses, H1 and BI are evaluated by eliminating them one at a time from the inputs – a backward elimination strategy. The larger 
induced error by the tested parameter indicates a more significant contribution to pressure prediction
** The brittle mineral ratio, Young’s modulus and Poisson's ratio are used, one at a time, to replace the BI. Other inputs are set as the control 
variables to compare the error evolutions– the control variate method. The small error by the tested parameter indicates a higher performance to 
characterize the rock mechanical feature of the formation

Well No Errors All features Backward elimination strategy* Control variate method**

Eliminate stresses Eliminate H1 Eliminate BI Brittle min-
eral ratio

Young’s modulus Poisson’s ratio

X 1 RMSE 5.122 5.74 5.18 8.151 9.831 6.315 29.074
MAE 0.067 0.082 0.053 0.107 0.131 0.094 0.481

X 2 RMSE 5.694 10.17 7.09 7.912 11.047 7.45 31.344
MAE 0.056 0.113 0.07 0.079 0.125 0.074 0.414

X 3 RMSE 5.122 5.026 6.049 4.793 4.409 4.546 22.986
MAE 0.083 0.081 0.112 0.084 0.069 0.074 0.504

Y1 RMSE 12.054 17.717 13.323 16.233 19.738 15.87 22.96
MAE 0.122 0.185 0.136 0.168 0.208 0.163 0.248

Y2 RMSE 21.045 15.188 24.145 27.364 30.926 24.073 13.362
MAE 0.226 0.153 0.266 0.305 0.342 0.259 0.145

Y3 RMSE 23.277 16.401 26.033 29.564 32.457 27.614 10.463
MAE 0.242 0.162 0.291 0.329 0.356 0.293 0.106

Fig. 4   Increases in a RMSE and b MAE by excluding the hydrodynamic (H1) and rock mechanical (BI) features from the inputs
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geological stresses on prediction errors are irregular. Only 
small errors are generated after eliminating stresses in cases 
of X1 and X3. Significant increases in error are observed in 
X2 and Y1. However, errors for far-distant cases (Y2 and 
Y3) decrease after the eliminations, indicating an interfer-
ence characteristic of stresses in Y2 and Y3. The minimum 
horizontal stresses are also drawn in Fig. 6, which are usu-
ally used to evaluate fracture propagation pressures (Hu 
et al. 2019; Huang et al. 2019). High stresses are reported 
in X1, Y2 and Y3, but opposite trends in error evolution are 
observed in these cases, which exclude the dominant influ-
ence of stress difference. This anomalous phenomenon may 
result from difficulties in the accurate recognition of hetero-
geneous geological stresses. Moreover, the in-situ stresses 
recovered from the fracturing wells are usually assumed 
for neighboring wells as this saves the cost of additional 

well-logging, especially for production wells. This may fur-
thermore generate uncertainties in characterizing the in situ 
stresses, which constrains the data quality of stresses for 
predictions. In contrast, the spatial neighborhood between 
training wells and X1 ~ X3 within region X may constrain 
geological variations and uncertainties, which results in 
more accurate predictions (Fig. 3) and regularized rules for 
error evolution (Fig. 4).

4.3 � Evaluations of Rock Mechanical Parameters

The data quality and performance of the key rock mechani-
cal parameters are evaluated and compared, mainly includ-
ing the brittle mineral ratio (proportion of quartz and car-
bonate), Young’s Modulus and Poisson’s Ratio. The error 
evolution with a single rock mechanical parameter (by 
controlling other original and extracted features, Table 2) 
is used as the criterion for evaluation. The BI, involving 
all these parameters (Eqs. 5 and 6, Appendix), is replaced 
by the testing parameter, one at a time, to avoid parametric 
interference. The results of the error evolution are presented 
in Fig. 7. Larger induced error indicates a lower data qual-
ity or performance of the corresponding rock mechanical 
parameter. Generally, a similar evolution trend is obtained 
in error evolution curves of the groups of all-feature, brit-
tle-mineral-ratio and Young’s-Modulus. Young’s Modulus 
induces the smallest errors in most of the cases (except for 
the X3 case), indicating the most significant contribution 
of Young’s Modulus in pressure prediction, as well as its 
performance in characterizing the rock mechanical feature 
of the formation. Meanwhile, a decreasing error evolution 
curve, opposite to all other three increasing-trend curves, is 
observed in the Poisson’s-Ratio group. The Poisson’s Ratio 
and Young’s Modulus are paired parameters and usually are 
derived from well-logging or rock mechanical tests of the 

Fig. 5   Growth rate of RMSE in the field cases with a single hydrody-
namic or rock mechanical feature

Fig. 6   Evolution of a RMSE and b MAE by eliminating geological stresses (the maximum and minimum horizontal stresses) from inputs
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drilled core. The irregular error evolution in the Poisson’s-
Ratio group may be caused by the lower data quality, which 
may require improvements in evaluating technique.

The evolution of RMSE is furthermore analyzed to 
evaluate the data quality and the contribution of each rock 
mechanical parameter to pressure prediction, as shown in 
Fig. 8. The smallest growth rates of errors (~ 32%) indicate 
the greater importance of the Young’s Modulus in the pre-
dictions, compared with the brittle mineral ratio (~ 94%) and 
the Poisson’s Ratio (~ 468% of the growth rate of errors). 
The abnormal negative growth rate in errors in the X3 case 
is explained by the same reason as the observation in Fig. 5. 

The hydrodynamic feature may dominate the fracturing 
pressure, and the introduction of rock mechanical features 
may induce extra errors. In the Poisson’s Ratio group, sig-
nificant increases in errors are observed in the nearby cases 
(X1 ~ X3). However, the errors in the far-distant cases (Y2 
and Y3) are approximately halved by Poisson’s Ratio. This is 
because the predicted pressures in all six cases with a single 
Poisson’s Ratio are much larger than the predictions with a 
single brittle mineral ratio or Young’s Modulus, as presented 
in Figs I, II and III in Appendix. These positive deviations 
result in large error increases in nearby cases with lower 
field-measured pressures. However, these may diminish the 
errors, by coincidence, in far-distant cases with high-level 
pressures. The failures in predicting the pressure trends are 
observed before 100 min in cases of Y2 and Y3 (Fig. III). 
To sum up, Young’s Modulus exhibits a higher performance 
to characterize the rock mechanical feature of the formation. 
The improvement in the data quality of Poisson’s Ratio may 
be crucial according to its limited contribution to pressure 
predictions.

5 � Limitations and Implications

5.1 � Remaining Errors in Cases within Region X

The remaining errors in cases within region X (Fig. 2) are 
mainly present at the initiation (~ 50 min) of fracturing 
operations when pure fluids are initially injected and the 
pressures fluctuate dramatically due to the generation of the 
initial fracture networks. The heterogeneity of rock mechani-
cal properties and geological conditions may be dominant, 

Fig. 7   Evolutions in a RMSE and b MAE with a single rock mechanical parameter (the brittle mineral ratio, Young’s Modulus and Poisson’s 
Ratio) and controlling other input features

Fig. 8   Growth rate of RMSE in field cases with a single rock 
mechanical parameter, involving the brittle mineral ratio, Young’s 
Modulus and Poisson’s Ratio
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at this time, but requires more and separate investigation to 
confirm – and thus is beyond the scope of this study. More-
over, randomly present, reactivated and opening fractures 
generate extra uncertainties in the prediction of pressures 
(Baldini et al. 2018; Merry & Dalamarinis 2020). Addition-
ally, the clogging of the formation by drilling fluids near the 
wellbore may also reduce the permeability of the formation 
and result in anomalous high-fracturing pressures. Mineral 
acids (usually HCL) are often injected at the beginning of 
fracturing operations to remove plugging and “skin” present 
in the near-wellbore, which may also reduce the breakdown 
pressure of the formation (Guo et al. 2017). The pressure 
may drop rapidly and significantly as the acid approaches 
the formation, which is difficult to recognize and be learned 
by the algorithm and thus potentially generates additional 
errors. The deviation between predictions and records at the 
end of X2 (~ 250 min) may result from the use of large-size 
proppant (30/50 mesh) that is relatively rare in region X, 
which may be ignored by the algorithm because of the lim-
ited learning samples/data and thereby contribute to a local 
increase in error.

The other reason for the remaining error is due to infor-
mation loss through the use of only minute-resolution inter-
val data. The injection information is compressed to the min-
ute interval level by simple decimation, resulting in the loss 
of 59 data points per minute compared with second-based 
resolution interval data. The corresponding results can be 
observed apparently in the capped and rectangular pressure 
variations of the predictions compared with the smooth and 
continuous records of the actual pumping data, as shown 
at the end of operations (~ 225 min) in Fig. 2 (b) and (c). 
However, we use minute-resolution data rather than second-
resolution to maintain consistency between training and 
application data when we use this method for pre-fracturing 
design (during which the pump schedule is usually at the 
minute-interval-resolution) (Qi et al. 2012). Although rec-
tified and coarse during fracturing, the deviations between 
field pressure records and predictions are small, indicating 
a relatively high accuracy that will benefit the pre-fracturing 
design. Moreover, the prediction errors can be improved by 
continuously updating the algorithm with new data, which 
is the very essence of the data-driven method (Goodfellow 
et al. 2016).

5.2 � Regional Limitations of the Data‑Driven 
Method

The data-driven method proposed in this study may be effec-
tively used to predict the fracturing pressure for wells located 
in the same region as the training wells. The applicability 
of this new method should follow this regional limitation to 
constrain the impact of geological uncertainties and ensure 
the performance of the machine learning algorithm. The 

applicable range of this method may depend on the require-
ment of accuracy, based on the rule that the prediction error 
increases with increasing distance between the training and 
subject/prediction wells. Therefore, this new method may be 
most useful for the intensive development of gas shale fields 
with a sufficient documented history of previously fractured 
wells. For instance, the fracturing operation for an infill well 
that is drilled between an existing well pattern, as well as for 
multi-well-pad fracturing may benefit from the best predic-
tions. The developments of infill wells and multi-well-pad 
fracturing are currently essential strategies used to main-
tain shale gas production in the southeastern Sichuan basin 
and elsewhere. This new strategy may also be applicable for 
the prediction of injection pressures for CO2 and hydrogen 
storage by learning the hydraulic fracturing history of the 
depositing formation.

6 � Conclusions

A synthetic data-driven workflow is proposed to process 
field data from shale gas fracturing wells and to predict the 
fracturing pressure of new wells by learning from the opera-
tional experience of neighboring wells. A GRU algorithm is 
applied in this workflow, for which the hyperparameters are 
optimized by combining grid search and walk-forward vali-
dation techniques. Numerical models are also integrated into 
the workflow for data pre-processing, which significantly 
improves the accuracy of prediction. The importance of 
geological and rock mechanical features is analyzed at field 
practical scales based on the increased errors induced by 
the individual and successive elimination of corresponding 
features. This data-driven workflow predicts the hydraulic 
injection pressure at field-practical scales for pre-fracturing 
design – especially useful in fracturing on multi-well pads 
and for infilled wells and may be also useful for predict-
ing the injection pressure for geological storage of CO2 and 
hydrogen. The major conclusions are generalized as:

(1)	 The deviations between predicted pressures and field 
records are relatively small in cases from the same 
region as the training wells – resulting in small errors 
in RMSE (5.1 MPa ~ 5.7 MPa) and MAE (5.6% ~ 8.3%). 
The predictions, therefore, can be used as an impor-
tant reference in the pre-fracturing design of pump 
schedules and dimensioning of surface equipment. The 
errors, however, increase significantly with increasing 
separation between training and testing wells, which 
are ~ 5 times larger than errors for wells within the 
same region. The heterogeneity of geological condi-
tions (currently difficult to precisely characterize) may 
constrain the performance of the algorithm. Therefore, 
the applicability of this data-driven method is recom-
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mended to be restricted within the same region as the 
training data source;

(2)	 The contribution of rock mechanical features (repre-
sented by BI) is more significant than the contribution 
of hydrodynamic features (represented by H1) to the 
fidelity of the predictions in most of the testing cases, 
based on the larger increases in RMSE when elimi-
nating BI. However, an anomalous decrease in RMSE 
is reported in the case of X3 (Fig. 5), indicating an 
interference characteristic of BI. This may be attrib-
uted to the potential reactivation or opening of fracture 
networks with sufficient fracture width and volume 
to readily accept proppant. The fracturing pressure, 
therefore, mainly reflects the proppant accumulation 
and variation (represented by H1) in fractures, which 
forestalls the effect of BI on the prediction of pressures. 
The lowest fracturing pressure and a declining trend of 
the pressure history in the case of X3 (as presented in 
Fig. 2) bolster such an interpretation;

(3)	 Anomalously decreasing errors are reported for increas-
ingly distant wells (> 100 km as in Y2 and Y3) when 
eliminating the maximum and minimum horizontal 
stresses from the input features – thus indicating the 
interference characteristics of stresses for these cases. 
The high heterogeneity and low quality of the data 
characterizing the in situ stresses may induce extra 
errors. For instance, the measured stresses of neigh-
boring pre-fractured wells are often applied directly to 
represent the stress condition of the new wells for cost 
savings. Therefore, advances in well-logging and inter-
pretation techniques are urgent to control the invest-
ment and promote the data quality of stresses;

(4)	 The performance of the most commonly used rock 
mechanical parameters is evaluated based on the con-
trol variate method. Young’s Modulus induces the 
smallest errors in most cases (~ 32% of the growth rate 
of errors compared with the error using BI as the input 
feature), followed by the brittle mineral raito (~ 94% 
of the growth rate) and Poisson’s Ratio (468% of the 
growth rate), which indicates a higher performance of 
Young’s Modulus to characterize the rock mechanical 
feature of the formation. An abnormal decreasing error 
evolution trend, along with the increasing distance 
between training and testing wells, is observed using 
Poisson’s-Ratio as the input feature. This decreasing 
trend is opposite to the trend of error evolution curves 
based on all other inputs, which indicates a lower data 
quality of Poisson’s Ratio that may require improve-
ments.
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