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A B S T R A C T   

Defining precursory phenomena that forewarn the onset of stick slip events remains an elusive but central goal in 
earthquake and other failure forecasting. We present a method to define the timing of instability by separately 
decoupling velocity and inertial effects in a spring-slider system. System state is defined in phase-space by ve
locity and inertia that in turn control critical stiffness and define the onset of instability while sliding velocity V 
= VLk/(k + dF/du) remains finite. A general energy analysis defines velocity and inertial effects (coefficients) 
that act against each other to promote/suppress instability by respectively increasing/decreasing critical stiff
ness. Repetitive stick-slip experiments define features of stick-slip cycles and identify a precursory trend in 
accelerating slip that precedes the onset of unstable sliding. We represent this precursory acceleration (dV/dt) 
immediately preceding instability by a general power-law relation dV/dt = AVα that reduces to V = B(ci + ti-t)-β. 
This represents the “true” timing of the onset of stick slip, ti relative to that “projected” from the linearization of 
the precursory data, tf, with tf=ci + ti. ci represents the small offset between the “predicted” and “true” timing of 
the onset of stick slip resulting from velocity and inertial effects and may be considered as the error in prediction. 
This error is one-order of magnitude smaller (~3 ms) than the lead-time that forewarns of the event (~40 ms) in 
our experiments and thus is useful as a predictor. Three independent methods using power-law, linear and 
criticality relationships confirm the fidelity of the timing of the slip instability transition evident in the stick slip 
data. This theoretical treatment suggests that the underlying physical meaning of the parameter c in the modified 
Omori law R~(c + tM-t)-q is the time of the main shock in advance of the timing of the singularity predicted for an 
ideal response.   

1. Introduction 

Stick-slip instabilities (Rabinowicz, 1956; Brace & Byerlee, 1966; 
Shimamoto et al., 1980; Baumberger et al., 1994; Cui et al., 2017) are a 
characteristic feature of earthquake nucleation and as such are impor
tant in understanding mechanisms of material failure in general 
(Gnecco, 2018; Xing & Han, 2020; Lin et al, 2020; Fávero Neto et al., 
2020; Kasyap et al., 2021) and natural earthquakes (Brace & Byerlee, 
1966; Scholz, 1998) in particular. Such frictional phenomena are also 
common in engineering systems over a wide range of length-scales 
(nanostructures to engineered systems) (Rabinowicz, 1956; Urbakh 
et al., 2004; Bhushan, B. 2013). Describing trends in sliding in the 
approach to the slip instability transition is undoubtedly significant in 
understanding sliding behaviors and in exploring methods to predict 
imminent instability – viz. earthquakes and other catastrophic rupture. 

Earthquakes result from instability of a natural fault under far-field 
loading in elastic crust where the surrounding elastic rock mass accu

mulating strain until the fault slips – and the stored strain energy is 
rapidly ejected. Frictional instability is often explored by examining 
contacting surfaces or gouge in relative motion – such as in direct-shear 
– and represented by a spring-slider system (Fig. 1). The slider in Fig. 1 
represents frictional resistance between two surfaces and the spring 
represents the elastic behaviour of the surrounding rock and the accu
mulation of stress that will eventually overcome that resistance. Sliding 
is driven by a driving force, F that extends the spring at a constant rate. 
Static analysis predicts that the frictional slip instability occurs when the 
tangent to the slope (dF/du) of force-versus-sliding-displacement curve 
is equal to the (negative) system stiffness, where u represents the sliding 
displacement. For a dynamic system, both analytical (Rice and Ruina, 
1983; Gu et al., 1984; Rice and Tse, 1986; Gu and Wong, 1991; Im et al., 
2017; 2019) and numerical results (Im et al., 2019) based on rate and 
state laws (Dieterich, 1979; Ruina, 1983) show that two distinct dy
namic regimes exit. These regimes are defined as “stick–slip” in the 
quasi–static (slowly loaded) regime and as “quasi–harmonic 
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oscillations” in the dynamic (rapidly loaded) regime. These regimes are 
defined by the dynamic frictional instability coefficient (Im et al., 2019) 

η =
MV2

σaDc
(1) 

that highlights the effects of mass and velocity (V) on the slip 
instability transition. In this, M is mass per unit area (kg/m2), σ is normal 
stress, Dc is a critical slip distance that characterizes the evolution of 
friction following a perturbation and a is a nondimensional parameter 
that defines the magnitude of the direct velocity-dependent effect in the 
rate and state friction law. But rate and state laws are phenomenological 
models and most ‘state variables’ cannot yet be quantitatively related to 
physical system properties (Urbakh et al., 2004; Ruina, 1983; Carlson 
and Batista, 1996). Here, we demonstrate the effects of mass and ve
locity on the slip instability transition using detailed experimental 
measurements and a detailed analysis of velocity and inertial effects. 

In this paper, we present a theoretical explanation of slip instability 
transition based on energy equilibrium, rather than rate and state laws, 
and decouple velocity and inertial effects. We report detailed measure
ments of shear displacement on interfaces in granite showing typical 
stages of stick-slip events. Specifically, we: 1) Characterize impacts of 
both load point velocity and inertia on the evolving slip instability and 
provide order-of-magnitude evaluations of these two effects; 2) Identify 
robust precursors to the onset of stick-slip from detailed but generic 
laboratory observations; and 3) Define relationships linking the dynamic 
slip instability transition to an idealized singularity to use in forewarn
ing of the nucleation of stick-slips. 

2. Theoretical analysis of frictional slip instability 

2.1. Slip instability criterion 

We analyze frictional instability as a one-dimensional spring-slider 
system (Fig. 1) loaded by a constant velocity load point. Here, the slip 
instability is controlled by loading conditions and frictional behavior. 
Following peak force, that is the maximum force in each stick-slip cycle, 
a change in the load-point force (dF) resulting from an increment of the 
load point displacement (dX) induces a sliding increment of du, and 
involves a recovery in deformation (RID) of the elastic spring as due =

-dF/k. Here, k represents the stiffness of the elastic spring, F is the 
external force and the sign of dF is negative after peak force corre
sponding to a reduction with increasing displacement. 

The change in work dW is given by the product of the mean force as it 
changes from F to F + dF (i.e., F+(dF/2)) and the distance du moved 
while it is applied, or [F+(dF/2)]du. A stability analysis of sliding de
pends on the interplay between three energetic quantities: the increment 
of work dW=(F + dF/2)dX done by the external load, the release of 
energy dWe=(F + dF/2)due from the elastic spring as it contracts and the 
work dWb=(F + dF/2)du required to displace the slider by an increment 
du. The work dWb generally comprises two components, viz. the work 
consumed by the frictional force and the change in kinetic energy of the 
slider. 

The system is out-of-equilibrium and unstable if  

dWb < dW + dWe                                                                            (2) 

or  

du < dX + due.                                                                               (3) 

Physically, these two equations state that the instability is defined 
such that the available energy is larger than the work required to pro
mote sliding, or that the sliding response du cannot keep-up with the 
total imposed displacement defined as the combination of dX and due. 

Differentiation of equation (3) with respect to time defines that 
instability occurs when 

1 <
VL

V
−

1
k

d F
d u

(4) 

where VL = dX/dt is the velocity of the load point, and V = du/dt is 
the sliding velocity of the slider. For static loading, VL = 0, and the 
critical condition for the slip transition from stability to instability is 

d F
d u

= − k (5) 

and the critical stiffness kc = − d F/d u. Otherwise, the critical 
condition for the instability transition becomes 

1 −
VL

V
= −

1
k

d F
d u

(6) 

i.e. the tangential slope dF/du of the force (F) to the sliding 
displacement (u) is equal to –k(1-VL/V). 

2.2. Velocity and inertial effects 

Note that the load-point force F is the sum of both frictional resis
tance f and inertial component m V̇, i.e. 

F = f +m V̇ (7) 

Where m is the mass of the slider, and 

dF
du

=
df
du

+m
dV̇
du

(8) 

Combining equations (6) and (8) gives 

d f
d u

+m
dV̇
du

= − k
(

1 −
VL

V

)

(9) 

This can be rewritten in a non-dimensional form as 

1 − χ = λ (1 − ζ) (10) 

And sliding is stable when 

1 − χ < λ (1 − ζ) (11) 

where 

λ = k/kesl (12) 

representing the ratio of spring stiffness with respect to the equiva
lent stiffness kesl of the slider’s resistance with  

kesl = -df /du.                                                                                (13) 

Post peak force, df /du becomes negative so that λ is positive. 
We define “load velocity effect coefficient” ζ and “inertial effect 

coefficient” χ as 

ζ = VL/V (14) 

and 

χ = − m
d V̇/d u
d f/d u

(15) 

According to equation (10), the critical stiffness kcd of the spring for 
the dynamic instability can be expressed as 

kcd = kesl ( 1 − χ) /(1 − ζ) (16) 

The dimensionless parameter ζ describes the effect of the velocities 

Fig. 1. Single degree of freedom elastic spring-slider system.  
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VL for the applied load and V of the slider: ζ tends to infinity when VL 
dominates, and ζ tends to 0 when the slider moves much faster than the 
load point. After exceeding the peak force F, the elastic spring releases its 
stored energy as it restores its deformation. As a consequence, the sliding 
velocity of the slider is faster than the load-point velocity, i.e. V > VL so 
that ζ decreases from 1 as force changes from its peak to the value at the 
slip instability transition. 

Eqn. (16) shows that load-point velocity plays a key role in the 
instability transition to frictional sliding. The effect of VL on kcd is 
negligible when VL is very small, but becomes significant when VL is 
large so that the ratio of VL/V is large. Under this condition, the velocity 
effect ζ becomes significant and cannot be neglected in determining the 
transition to instability. 

The dimensionless parameter χ represents the ratio of the rates of 
change of inertial force to frictional force, each normalized with respect 
to sliding displacement. The negative sign for Eqs. (13) and (15) indicate 
that the value of d f/d u is negative after peak force prior to the slip 
instability transition point but d ü/d u > 0 (see following section on 
experimental results). Thus, the sign of d V̇/d u

d f/d u is negative so that the 
value of χ must be positive. This parameter has the form of a surrogate 
“Reynolds Number for solids” and ranges from 0 (low inertia) to 1 (high 
inertia). 

Rewriting Eqn. (15) by eliminating the common normalizing 
parameter of displacement yields 

χ = − m
d V̇
d f

(17) 

Thus χ represents the ratio of the change in inertial force to frictional 
force. When mass is fixed, the reciprocal of χ represents the rate of 
change of frictional resistance with respect to acceleration. χ is large 
when acceleration changes rapidly with respect to frictional resistance 
and must then be accommodated in any analysis of the instability 
transition. 

Eqn. (10) gives that the critical value of d f/d u at the point of 
instability such that 
(

−
d f
du

)

cd
= k (1 − ζ)/(1 − χ) (18) 

Post-peak force, the slope d f/d u of the frictional force (f) versus the 
sliding displacement (u) becomes negative and values of ( − d f/d u)
increase towards a maximum. When the elastic stiffness k is fixed, Eqn. 
(18) indicates that the “load velocity coefficient” ζ predicts that unstable 
sliding will occur earlier because it decreases the critical value 
( − d f/d u)cd for the initiation of unstable sliding from k /(1 − χ) to 
k (1 − ζ)/(1 − χ). 

Fig. 2 illustrates stable and unstable regimes of sliding behaviours in 
χ versus ζ phase space. It should be mentioned that the slip instability 
occurs in the phase ranging from the point of peak force to the point 
when (-df/du) reaches its maximum value where λ has its minimum 
value (λmin). Thus, we plot stable and unstable regimes according to two 

the cases when λmin ≤ 1 or λmin ≤ 1. Sliding is stable when the values of χ 
and ζ are located in the area under the critical boundary line. 

2.3. Instability transition and singularity points 

Equation (4) can be rewritten as V < VLk/(k + dF/du) implying that 
the sliding velocity response cannot keep-up with the required velocity 
that is driven by the available work. The condition where 
− dF/du = k(1 − VL/V) or V = VLk/(k + dF/du) represents the 
critical point where unstable slip initiates. Post peak-force, dF/du 
decreases from zero, so that the slip instability transition occurs before it 
evolves to the condition dF/du = − k. 

From static analysis, at the transition to instability dF/du = − k 
the sliding velocity tends to infinity. Thus, the transition point where 
dF/du = − k is also a singularity. In a static analysis, the shear force 
F must equate to the frictional force f. In practice, the sliding velocity is 
finite but not so rapid that unstable slip always initiates before it reaches 
the point of singularity. The separate velocity (ζ) and inertial (χ) effects 
distinguish the timing of the onset of the dynamic slip instability from 
the timing of the (ideal) singularity point. Thus, the relative magnitudes 
of these two parameters control the difference in timing between the 
(real) dynamic slip instability and the (ideal) singularity. 

The following experimental results confirm that the accelerating 
phase may indeed be divided into two stages separated by this instability 
transition point. Accelerated sliding in the earlier stage is a stable pre
cursory acceleration process that is then followed by unstable slip – 
enabling a rational precursor to forewarn of the impending instability. 

3. Typical stages transitioning from precursory acceleration 
through unstable slip to arrest 

3.1. Experimental procedure and materials 

Stick slip experiments are conducted in a biaxial loading apparatus 
under double direct shear configuration at room temperature (~20 ◦C) 
and humidity (~31 % relative humidity). All tests are performed in the 
Mechanics Laboratory of Yanshan University, China. Two fault zones 
delineate three prismatic blocks of granite (see inset in Fig. 3a) allowing 
shearing between the roughened surfaces. The nominal frictional con
tact area is 36 mm × 40 mm. Shear stresses are applied by the vertical 
ram of the Instron 5982 testing machine with normal stresses applied 
horizontally. Normal stresses are applied by a gas compression actuator 
set at a controlled constant gas pressure. The vertical load system with 
an elastic stiffness of ~ 144 kN/mm in the current experiments is 
analogous to the elastic spring in Fig. 1. Eqn. (10) indicate its significant 
effects on sliding behaviours and the transition from stable to unstable 
slip. 

The granite sample comprises 46.5 % diopside, 19.5 % albite, 33.9 % 
anorthite and 0.2 % quartz based on X-ray diffraction (XRD) analysis. 
The mean crystal size of the rock is ~ 680 μm (Hao et al., 2017), the 
uniaxial compressive strength is ~ 222 MPa, and Young’s modulus is ~ 
38 GPa. We use granite as a typical host of crustal faults and represen
tative of stick slip behavior common in other igneous and basement 
rocks. This is a common and typical analog for such behavior. 

Sliding displacement in the experiments, u, is monitored by a linear 
variable differential transformer (LVDT) attached under the central 
sliding block. The load point displacement (X) combines the deforma
tion of the loading apparatus and that of the sliding displacement (u). 
Shear force F, load point displacement and sliding displacement are 
recorded digitally and synchronously stored at a sampling rate of 1000 
Hz. In calculations of velocities and accelerations based on differential 
calculations, we control the sampling rate in each incremental time step 
so that the data differences are larger than the fluctuations. It should be 
noted that the frictional resistance f on contacting surfaces is somewhat 
different from the shear force F and is difficult to directly measure in 
experiments. Fig. 3 defines shear stress as τ = F/A, where A is the total 

Fig. 2. Stable and unstable regimes of sliding behaviours in a χ versus ζ phase 
plot when (a) λmin ≤ 1; (b) λmin ≥ 1. λ is the ratio of spring stiffness k with 
respect to the equivalent stiffness of the slider’s resistance (-df /du). λmin is the 
minimum value when (-df /du) reaches its maximum. The stable regime 
is shaded. 
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area of the contacting frictional surfaces. 

3.2. Typical stages 

A typical sequence of repetitive stick-slips generated when the 
normal stress is 3.4 MPa and the loading velocity VL = 1 mm/min is 
shown in Fig. 3. After the first two stick slip events the stick slip behavior 
becomes near-periodic. In each stick-slip cycle, a slip instability transi
tion occurs (Fig. 3d) post peak force. Sliding velocity and acceleration 
are shown continuously in Fig. 3b and 3c for the full experimental 
sequence and indicate that maximum velocities and accelerations for all 
stick-slip cycles are mono-periodic and highly repeatable. 

Phase diagrams for shear force evolving with changes in sliding ve
locities V and accelerations V̇ are shown in Fig. 3e and 3f to define 
repetitive and repeatable stick-slip cycles. During each “stick” period, 
the acceleration remains near-zero and the sliding velocity changes only 
very slowly. During this, the shear force increases linearly with sliding 
velocity. 

In the unstable cycle the system transits from acceleration to decel
eration with key points characterizing first the initiation of the insta
bility transition (point I in Fig. 4), the maximum acceleration (point D in 

Fig. 4), the maximum velocity (point E in Fig. 4), the minimum accel
eration (point L in Fig. 4) and then the minimum shear force (point G in 
Fig. 4). Consequently, evolution of sliding during individual stick-slip 
event shows several stages characterized by changes in velocity and 
acceleration (Fig. 4). The first stage is an acceleration characterized by 
monotonic increases in sliding accelerations until reaching the 
maximum value denoted by point D in Fig. 4. During the next phase (D to 
E) the acceleration decreases until the velocity of sliding reaches its 
maximum. At the maximum velocity (point E) the acceleration is zero 
and the shear force is equal to the frictional force. This is followed by an 
“undershoot” in accelerations with decelerating sliding velocity char
acterized by negative acceleration until point H. Point G is where the 
shear force is a minimum and represents the end of the unstable slip 
cycle. 

Following the unstable slip cycle, sliding and deceleration continue 
but the shear force, frictional force and the deformation of the system all 
increase. This stage is represented between points G and H in Fig. 4. This 
is characterized by lower sliding velocity than that during unstable 
sliding and represents a stage of intermediate adjustment, returning 
from acceleration “undershoot” to a quasi-static state. It is during this 
transition that sliding transits from unstable state to quasi-steady where 

Fig. 3. Experimental data showing progress of a sequence of repetitive stick–slip events when the normal stress is 3.4 MPa. Shear stress τ = F/A, where A is the total 
area of the contacting frictional surfaces. (a) Shear stress, τ, and sliding displacement, u, (b) sliding velocity, (c) acceleration during repetitive stick slip failures under 
monotonically increasing load point displacement, X. Insets (a): schematic of double-direct shear configuration. (d) Zoom-in on a single stick slip event. Phase 
diagram showing shear stress evolution against sliding (e) velocity and (f) acceleration during stick slip cycles. 
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the sliding velocity reaches its minimum at point H. The sliding velocity 
V at point H is again equal to the loading velocity VL, the shear force 
again equal to the frictional force and the system returns to a quasi- 
steady state - ready to begin the next stick-slip cycle. 

4. Precursory acceleration approaching the slip instability 
transition - power law 

An acceleration in the rate of change (dΩ/dt) of some response 
quantity (Ω) (such as displacement or AE counts) may be used as a 
fundamental index of a system approaching instability point (Voight, 
1988, 1989; Kilburn, 2003, 2012). This may be described by Voight’s 
relation (Voight, 1988, 1989) as 

d2Ω /d t2 = A(dΩ/d t)α (19) 

where A and α are constants. 
Fig. 4b illustrates the log–log relation between sliding acceleration 

and velocity representative of our data. The linear trend to the left 
(Fig. 4b) in the proximity of the instability transition indicates that this 
power law relationship adequately characterizes the dynamic slip 
instability, i.e. 

V̇ = A Vα (20) 

However, beyond the slip instability transition (point I) a deviation 
from this linear trend is clearly apparent. This transition distinguishes 
the precursory accelerating sliding from the forthcoming unstable 
acceleration. 

We examine the utility of this power law relationship (Eqn. (20)) as a 
bona-fide and robust precursory trend – that may be used to forewarn of 
the onset of stick slip. Fig. 5 shows the data for four other unstable slip 
events, confirming the ubiquity of this signature. Following low-sliding- 
velocity and accelerating stages, the distinct and repeatable power law 
form of the precursory acceleration in the sliding velocities in the 
proximity of the slip instability transition indicates that Voight’s relation 
indeed also holds for the stick slip events. 

From rearrangement of Voight’s relation (equation (19)), we recover 

the relation [Hao et al., 2016, 2017] 

V/ V̇ = (α − 1)
(
tf − t

)
(21) 

to describe the time to failure, where tf represents the failure time 
where the ratio of rate to acceleration V/ V̇ tends to zero, i.e. where 
acceleration tends to infinity. V and V̇ represent velocity and accel
eration, respectively. In stick slip cycles, neither acceleration nor ve
locity tend to infinity and the slip instability transition can be defined as 
the time when V/ V̇ is a minimum. Experimental results (Fig. 6) 
confirm that this method indeed returns consistent results to define the 
timing of the slip instability transition. The approximately linear portion 
of the velocity-versus-acceleration relation in proximity to the insta
bility transition point (Fig. 6) shows that this linear relation of Eqn. (21) 
faithfully represents the current experiments. 

The critical slip instability condition of Eqn. (6) may be defined as 

− d F/d u = k (1 − VL/V) (22) 

at the point of slip instability. Fig. 6 shows zoomed-in data for four 
typical experiments for both –dF/du and k(1-VL/V) over the transition 
time separating peak force from unstable sliding. The intersection be
tween these two curves (where –dF/du = k(1-VL/V)) following peak 
force identifies the instability transition point. After this transition to 
instability, the magnitude of –dF/du decreases below that of k(1-VL/V), 
as suggested by Eqn. (4). The observation that (i) this instability tran
sition may also be determined from Fig. 6 by using Eqn. (21) and that (ii) 
this conforms with the definition of criticality defined by Eqn. (22) 
confirms that the precursory power law indeed conforms to the Voight 
relation of Eqn. (20). 

Based on Voight’s relation, a power law relationship in the velocity V 
with respect to time to failure can be deduced (Voight, 1988, 1989; 
Voight and Cornelius, 1991; Kilburn and Voight, 1998; Main 1999; 
Kilburn, 2003, 2102; Bell et al., 2011; Hao et al., 2016, 2017) as 

V = B ( tf − t)− β (23) 

where B is a constant and β = 1/(α-1) is the power law exponent. 

Fig. 4. Details of a single stick slip event (e.g. from Fig. 3d) illustrating typical stages. (a) Typical evolutions of shear stress, sliding displacement, velocity and 
acceleration. Ordinates represent - D: maximum acceleration, E: Maximum velocity, G: minimum shear stress, H: approaching rest state before next cycle. (b) Log-log 
curve of accelerations versus velocity showing Voight’s relation well representing behavior in the proximity of the slip instability transition point I (above) and on the 
corresponding curve of velocity versus time (below). Inset: entire phase-space cycle of acceleration versus velocity. Red line in (b) shows a linear fitted line. The 
unstable acceleration process after point I clearly deviates from the linear trend. Phase IG: unstable process. 
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Equation (23) shows that the velocity becomes infinite at the time of 
failure tf. The prior theoretical analysis indicates that the singularity 
does not necessarily coincide with the slip instability transition time. 
Thus, for the slip instability defined as Eqn. (6) for which the velocity is 
finite, we rewrite the power law acceleration of Eqn. (23) as 

V = B ( ci + ti − t)− β (24) 

where tf = ci +ti) where ti is the timing of the actual onset of 
instability (e.g. point I in Fig. 4), and tf is the projected timing of this 
onset recovered from the linearization. Thus parameter ci is the small 
offset between projected and actual timing ( ci = tf − ti). In our experi
ments, the power law exponent for the precursory accelerations β is ~ 
0.42 with α ≈ 3.4 (Figs. 4 and 5). 

A similar power law relationship is represented by the modified 

Omori (or Omori-Utsu) law (Hainzl et al., 1999; Jones and Molnar, 
1979, Utsu et al., 1995) 

R ∼ (c + tM − t)− q (25) 

and has been suggested to describe the occurrence rates R of pre
cursory foreshocks before a main shock. Where tM is the timing of the 
main shock and c is a small constant. Our findings suggest that the un
derlying physical meaning of the parameter c may be the time of the 
main shock in advance of the timing of the singularity point for an ideal 
response. 

From Eqn. (24), it can be deduced that 

V − 1/β = B− 1/β ( ci + ti − t) (26) 

thus, V− 1/β is linear in time. The linear trend of V− 1/β with time for 

Fig. 5. Four events selected to illustrate Voight’s relation (red line) in fitting accelerations in the proximity of the slip instability transition. After an initial slow 
acceleration, the more rapid accelerations due to sliding are well described by Voight’s relation. Red line: linear fitted line for the Voight relation with slope equal to 
the exponent α with values of 2.89 ~ 3.71. Following unstable acceleration the data clearly deviate from the trend of Voight’s relation. 

L. Gu et al.                                                                                                                                                                                                                                       



International Journal of Solids and Structures 264 (2023) 112119

7

stick slip events, as shown in Fig. 7, confirms again that the power law 
representation of the precursory acceleration performs well as a pre
dictor to the real onset of stick slip events. ci defines the difference be
tween the real ti and projected tf onset of stick slip and in current 

experiments is very small - of the order of ci ~ 3 ms. In particular, this 
difference is small in comparison to the advance warning, of the order of 
~ 40–80 ms (Figs. 6 & 7), given of this onset – making the linearized 
relation a potentially robust and useful precursor. 

Fig. 6. Defining slip instability transition point. Dash line denote instability transition time, ti, defined by minimum value of ratio of slip velocity and acceleration 
and critical slip instability condition. It is shown that these two methods present consistent results determining the slip instability transition point. Straight yellow 
lines in above figures are fitted lines to linear relation of Eqn. (20), and tf denotes the time of the predicted singularity in acceleration. 

Fig. 7. Curves of V− 1/β versus time confirming the precursory power law acceleration and evaluating time difference between the true slip instability transition point 
ti and that projected from where the linearized approximation becomes singular tf. Red line: linear fitted line, and the intersection point tf of this linearized 
extrapolation with the time axis is the projected singularity point. Compared with the vertical dashed line denoting the true initiation time of the slip instability, ti. 
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These findings, including precursory power law behavior (Eqn. 
(21)), definition of dynamic instability (Eqn. (10)) with velocity and 
inertial effects and consistent predictions of three methods, are vali
dated by experimental results when the normal stress is higher, e.g. 
normal stress is 6.8 MPa (Fig. 8). 

5. Discussion 

5.1. Transition to rupture 

Brittle rupture may be analyzed in terms of a singularity in response 
to a finite increment of a driving variable (Salamon, 1970; Hudson et al., 
1972; Hao et al., 2013; 2016; Xue et al., 2018; Wang et al. 2020). 
Typically, instability occurs at a singular point where an infinitesimal 
increment of the controlling variable induces a finite increment in 
response. Such perturbation analysis concludes that the tangent to the 
slope of the force versus displacement curve for a specimen must be 
equal to the negative stiffness of loading system (Salamon, 1970; Hud
son et al., 1972; Hao et al., 2013; 2016; Xue et al., 2018; Wang et al. 
2020). 

Our results demonstrate that a limiting response velocity results in 
that the instability occurs in advance of the singular response. This 
instability transition leads to an increase in acceleration of the sliding 
after the instability transition that presents a distinctly different pattern 
to the precursory trend approaching it. 

5.2. Velocity and inertial effects on slip instability 

Our findings indicate that load velocity and m d V̇/d f all exert 

significant influence on the form of the sliding velocity and the transi
tion to slip instability. Dynamic influences on the slip instability tran
sition may be represented by two dimensionless parameters – defined in 
this work as representing velocity ζ and an inertial χ effects. 

In the foregoing we do not recourse to rate and state friction, instead, 
basing the analysis on considerations of general energy balance. Our 
results decouple the separate effects of inertia and velocity on the 
transition to unstable slip. Our findings confirm that inertial effects 
impacting unstable slip are related to mass m and the ratio d V̇/d f . 

From accelerations and the known mass of the central sliding block, 
the instantaneous frictional resistance may be recovered from force 
balance as f = F − m V̇. f is the sum of frictional resistance on the 
parallel laboratory faults of the double-direct shear sample. In our ex
periments, both the mass (m ~ 0.3 kg) of the sliding block and accel
erations are small - so that the inertial force can be neglected. During 
individual stick slip events, the value of d V̇/d f is ~ 1.4 mm⋅s2/N 
(Fig. 3f) at the slip instability transition point. As a consequence, the 
magnitude of the inertial coefficient χ is very small (of the order of 10-4). 
The sliding velocity V is ~ 0.07 mm/s at the slip instability point (Fig. 4b 
and 5) and the load velocity VL is 1 mm/min - thus the critical value of 
the velocity coefficient ζ is ~ 0.24. Therefore, in comparing the 
competing influences of velocity and inertia, that of velocity, embodied 
in ζ, is the more influential. Inertial effects (indexed by the coefficient χ) 
are important only when mass and change in acceleration become large. 

Fig. 9 shows the variation of (1-ζ) versus [(1-χ)/λ] to illustrate the 
stable and unstable regimes in the current experiments defined by ve
locity and inertial effect coefficients of ζ and χ and where λ is the 
equivalent stiffness ratio shown in Eqn. (12). When (1-ζ) is equal to [(1- 
χ)/λ], this defines the critical boundary between stable and unstable slip 

Fig. 8. Experimental results when the normal stress is 6.8 MPa. (a) Shear stress, τ, and sliding displacement, u. (b) Zoom-in on a single stick slip event. (c) One 
stick–slip event selected as an example to illustrate Voight’s relation (red line) in fitting accelerations in the proximity of the slip instability transition I (upper) and 
the corresponding curve of velocity versus time (lower). (d),(e) Defining slip instability transition point through three methods. 
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regimes, with the stability regime defined as the regime where (1-ζ) >
[(1-χ)/λ]. At the point of peak force, both (1-ζ) and [(1-χ)/λ] are equal to 
zero. Then, both values of (1-ζ) and [(1-χ)/λ] in the current experiments 
increase in the stable regime until the trajectory of the response surface 
transits into the unstable regime. This is consistent with the theoretical 
instability condition defined in Eqn. (11). Conversely, sliding must 
remain stable if the trajectory is limited to below this boundary line. 

5.3. Accelerating trend of precursory power law 

Voight’s relation (Voight, 1988; 1989) describes an acceleration in 
response quantities (displacements, AE) as a system approaches a sin
gular/catastrophic point. For stick-slip instabilities the form of this ac
celeration divides across an instability transition point – these represent 
a precursory constant acceleration followed by an unstable accelerating 
phase of sliding. 

This bifurcation in response occurs as the system evolves from stable 
sliding before the instability transition to accelerating sliding (Fig. 4b 
and 5) after it. We have demonstrated that a power law definition of 
acceleration (Eqns. (20) and (26)) represents the characteristics of the 
system as it approaches the instability transition point. 

5.4. Implication for earthquake mechanics 

As applied to earthquake mechanics, these current experimental re
sults illustrate, in detail, the various processes of sliding from static, 
evolving to the onset of acceleration, unstable slip, deceleration and 
finally back to the static state. Our findings highlight five typical stages 
involved in stick-slip cycles defined by evolutions in velocity, acceler
ation, frictional and shear forces. These are, incrementally: 1) mono
tonic increases in sliding acceleration; 2) decrease in acceleration; 3) 
deceleration; 4) “undershoot” occurring until a minimum shear force 
results that represents the end of the unstable slip cycle; 5) intermediate 
adjustment stage or a return from acceleration “undershoot” to the 
quasi-static state. Distinguishing these processes of fault sliding is a 
foundational in understanding the earthquake cycle and its arrest. 

Our experiments give direct measurements of sliding through the 
direct measurement of displacement of the slider. Experimental results 
charting the evolution of the frictional strength and sliding yield 
fundamental constraints on the description of constitutive laws repre
senting fault sliding and its contribution to earthquake mechanics. 

Defining instability of faults and identifying reliable precursors 
(Geller, 1997; Bowman et al., 1998) based on the rational evaluation of 
monitored quantities is central in building a reliable model of earth
quake processes. Our findings define a criterion separating stable and 
unstable regimes of sliding behaviours through the velocity and inertial 
effect coefficient phases. This criterion is cross-validated against pre
cursory power law accelerating slip in our experiments through the 

monitoring of deformation and force evolution. This yields insights in 
understanding the instabliliy transition of faults and suggests a way to 
explore mechanisms of natural earthquakes by monitoring such 
measurable signals. 

6. Conclusions 

The prior analysis indicates that both velocity and inertia impact the 
timing of the slip instability transition relative to that predicted from a 
static analysis. These velocity ζ and inertial χ effects impact critical 
stiffness defining the slip instability transition by respectively increasing 
or decreasing critical stiffness. The velocity effect coefficient ζ repre
sents the ratio of sliding velocity to load velocity and the inertial effect 
depends on mass and the relative change in acceleration with respect to 
frictional resistance. The inertial effect becomes important only when 
mass or the change in acceleration are very large, resulting in χ being of 
the order of unity. In the current experiments, ζ is ~ 0.24 and χ is of the 
order of 10-4. 

The entire unstable sliding process transits successively through ac
celeration to deceleration with characteristic features on this repetitive 
stick-slip path of instability successively representing maximum accel
eration, then maximum velocity followed by a minimum acceleration to 
a minimum force point - with this then followed by a return to stable 
sliding to reset behavior ready for the initiation of the next cycle. 

The evolving trend of sliding velocity in the proximity of the slip 
instability transition point is accurately described by Voight’s relation 
and follows a power law relationship of the form V = B ( ci + ti − t)− β. 
ci represents the time difference between the dynamic slip instability 
transition point ti and the ideal singularity point. The power law expo
nent β in experiments presented here is ~ 0.42 with the exponent of α ~ 
3.4. This power law behavior clearly distinguishes the precursory ac
celeration from the subsequent unstable accelerating process. 

Three independent methods are used to define the stability transi
tion, including (i) linear V/ V̇ = (α − 1)

(
tf − t

)
, (ii) criticality condi

tions − d F/d u = k (1 − VL/V) and (iii) power law V =

B ( ci + ti − t)− β. All three methods provide consistent and confirma
tory results in determining the timing of the slip instability transition, as 
confirmed by the stick slip data. The error between the projected time of 
onset of stick slip and the real timing is small in comparison to the lead 
time afforded by the fitting of the velocity data, suggesting that this 
characterization may be used to forewarn of the onset – as a precursory 
signal with potentially sufficient time to mitigate impacts. 
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Fig. 9. Experimental curves of (1-ζ) versus [(1- 
χ)/λ] showing unstable and stable regimes. Four 
representative experimental curves are shown (see 
Fig. 6) as examples, illustrating the transition from 
the point of peak force to the point where [(1- 
χ)/λ] reaches its maximum as a result fo the post- 
peak instability. The right sub-plot is an enlarge
ment of that to the left, to zoom-in on the transi
tion from stable to unstable regimes. Shaded area 
defines the stable regime and the dashed line the 
boundary in the transition from stable to unstable 
slip.   
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