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a b s t r a c t

Westudy the physical controls on the scatter of exponents in the critical power law relation
that describes an acceleration in precursory signals of deformation (displacements) or
seismicity (damage) in the vicinity of failure time. Based on the time-dependent fiber
bundlemodel and equal load share (ELS) rule, we find that the critical power law exponents
range from −0.5 to −1.0. And values of the critical power law exponents depends on a
parameter ρ, which defines the sensitivity of damage growth in a fiber to the local stress.
Both the simulation results and theoretical analysis demonstrate that the critical power
law precursor exponent −β has a relationship −β = −(1 − 1/ρ) with ρ. Thus, our results
illustrate a physical mechanism of variation of the critical power law exponent that is
determined by the degree of the local stress controlling the damage evolution of a fiber.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring the critical acceleration of measurable quantities such as displacements or (micro-)seismicity is widely
accepted as a proxy for a precursor for failure and for the prediction of time-to-failure [1–8]. This is often analyzed as a
critical phenomenon [9–12]with a power-law divergence of physical quantities at failure time tf . In the vicinity of the failure
time, the critical acceleration exhibited by a measurable quantity can be described as a power law relation [1–3,7,8,13–15]
with respect to the time to failure

Ω̇ = k
(
tf − t

)−β
. (1)

whereΩ represents ameasurable quantity and the overscripted dot represents the derivative ofΩ with respect to time.−β

is the critical power law exponent. Eq. (1) can be deduced from the Voight relation [1,2,7,8,13]

Ω̇−α Ω̈ − A=0 (2)
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that describes the behavior of materials in their terminal stage of failure, with k = [A(α−1)]1/(1−α) and β =1/(α−1)[1].
Where A and α are constants recovered from curve-fitting of observations.

Eq. (1) can be rewritten in a linearized form [14]

Ω̇−1/β
= k−1/β (

tf − t
)
. (3)

Then the failure time can be determined by linearly extrapolating the curve of Ω̇−1/β versus time to its intersection with
the time axis. This application of Voight’s relation is known as the Failure Forecast Method (FFM) [14–17]. This method has
been demonstrated to work well in the retrospective prediction of laboratory experiments [18,19], landslides [20,21], and
volcanic eruptions [2–5,22]. In application of the FFM, the linearization of the power law trend is usually used to predict the
failure time. This leads to a biased and imprecise prediction compared to a fully nonlinear fitting method because the error
structure is no longer Gaussian after the transformation of the rate data [23].

However, the uncertainty resulting from the scatter of the critical exponent −β is a key difficulty in using such method
[24]. For example, Voight [1] discovered that −β is approximately −1.0 for soils. For creep-relaxation experiments on rock,
Hao et al. [25] found that the exponent −β is approximately −2/3. Smith and Kilburn [22] found that −β took values
of approximately −0.43 for 3 data points for the 1991 Mount Pinatubo eruption (Philippines) and tend to −0.91 for 7
data points. Analysis [8,26–28] based on fiber bundle models and global mean-field approximations demonstrated that
−β = −0.5. It has also been observed that precursory signals may evolve with time from conditions for α ≈ 1 to conditions
forα≈2(−β = −1.0) [5,6,20]. Thus, it is particularly important to understand the underlyingmechanisms for themagnitude
and variation of critical power-law exponents.

In materials science and engineering, the fiber bundle model has been widely used [29–31] to analyze the failure
properties of heterogeneous materials. A time-dependent implementation of this method was first proposed by Coleman
[31], representing the response of fiber bundles where each fiber has an independent lifetime drawn from some distribution.
According to the load sharing rules, the fiber bundle models can be divided into two extreme types: equal load sharing (ELS)
and the local load sharing (LLS) models [32–34].

The local load-sharing (LLS) fiber bundle model was introduced by Harlow and Phoenix [32,33]. In this model, when a
fiber fails, the load it carried is redistributed equally onto its two nearest surviving neighbors. Hence, a survival fiber carries
the load

σ = K σ0, (4)

with the stress concentration factor

K = 1 + (l + r) /2. (5)

where l and r represent the number of broken fibers on the left or right of this survival fiber respectively. σ0 is the load on
every fiber at the initial state when all fibers are intact.

In the ELS model, the load is shared equally by all surviving elements in the system. Thus if Nb fibers have broken, every
surviving fiber has the same stress concentration factor

K =
N

N − Nb(t)
=

1
1 − Nb/N

(6)

and carries the same stress σ = K σ0. Nb(t) is the number of broken fibers up to time t. ELS model has a merit to give a
theoretical analysis of continuous cases because some closed form analytic results can be obtained.

In this paper, we perform an analytical derivation about the critical power law precursor based on the ELS rule. We
illustrate that the critical power law exponents change from −0.5 to −1.0. The relationship between the critical exponent
with the parameter that reflects the nonlinear relationship between damage rate of a fiber and the local stress, is derived.
Then, Monte Carlo simulations are performed to explicitly show the magnitude and variation of the critical exponent.

2. Bundle geometry and stochastic fiber lifetime model

We consider a fiber bundle consisting of N fibers that are arranged around the circumference of a circle, with each of
them with two adjacent neighbors. We apply a fixed load Nσ0 to the bundle; that is, initially each fiber is intact and carries
load σ0. As time progresses, fibers break and thus surviving fibers share load according to the desired load redistribution
rule.

When a fiber is subjected to a load history σ (t), t > 0, its consumed lifetime during this loading process is described by
[31,34]

T (t) =

∫ t

0
κ (σ (s)) d s. (7)

where κ(σ ) is usually referred to as the breakdown rule [30,33], and is usually described by a power law relation [34–36]

κ(σ ) = κ0

(
σ

η

)ρ

. (8)
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where κ0 and η are constants. σ is the local stress on a fiber and ρ is the parameter that accounts for the sensitivity of damage
growth of a fiber on the local stress σ . ρ must be greater than 1 to have a non-linear, accelerating relation of break rate.

Every fiber is assumed to have a specific lifetime Ts, and follows the Weibull distribution, i.e.

P (Ts) = 1 − exp[−Ψ (Ts)]. (9)

where Ψ (x) (x≥0) is the hazard function that can be expressed as

Ψ (x) = x θ . (10)

and θ is the Weibull parameter. Models [8,26–28] where the effects of the load history on the consumption of lifetime are
neglected result in the critical power law exponent −β = −0.5. In these models, the breaking of every fiber element is
totally determined by its specific strength threshold. Thus, these cannot describe the nonlinear dependence of lifetime of
each fiber on the history of local stress.

3. Critical scaling law of break-rate with time to failure under ELS

3.1. Analytical results under ELS

In order to demonstrate the critical power law behavior of break rate and the variation of the critical exponents, we
perform an analytical derivation based on a continuous case under ELS.

Based on Eqs. (7) and (9), the broken fraction, i.e. P = Nb/N the ratio of the number Nb(t) of broken fibers with respect to
the total number N of fibers is

P (t) = 1 − exp

[
−

(∫ t

0
κ (σ (s)) d s

)θ
]

. (11)

From Eq. (6), the true load on every surviving fiber is

σ (t) =
σ0

1 − P(t)
. (12)

Then, the break rate can be expressed as

1
N

dNb

dt
=

dP
dt

= exp

[
−

(∫ t

0
κ (σ (s)) d s

)θ
]

θ

(∫ t

0
κ (σ (s)) d s

)θ−1

κ (σ (t)) . (13)

Substituting Eq.(8) into (13) gives

dP
dt

= θ

(∫ t

0
κ (σ (s)) d s

)θ−1

κ0

(
σ0

η

)ρ (
1

1 − P

)ρ−1

. (14)

Consequently, when ρ = 2, 3, 4,. . . . . . , that the bundle approaches the complete failure, i.e. P → 1 leads to dP
dt → ∞ and

dt
dP → 0. Further, Eq. (14) indicates that the λ<ρ order derivatives of t with respect to P , d

λt
dPλ is a function of (1 − P)ρ−λ.

Noting that, at the point of complete failure, P = 1 leads to the requirement that dλt
dPλ is equal to zero.

To clearly demonstrate the critical power law behavior of break rate, we turn to the series expansion of t(P) as a function
of P in the vicinity of failure time tf and omit the terms higher than the ρ one, that is

t ≈ tf +

(
dt
dP

)
f

(
P − Pf

)
+ · · · +

1
(ρ − 1)!

(
dρ−1t
dPρ−1

)
f

(
P − Pf

)ρ−1
+

1
ρ!

(
dρ t
dPρ

)
f

(
P − Pf

)ρ
. (15)

Because dλt
dPλ = 0 (λ<ρ) at tf , we get

P ≈ Pf −

[
−

1
ρ!

(
dρ t
dPρ

)
f

]−
1
ρ (

tf − t
) 1

ρ . (16)

And thus

dP
dt

≈
1
ρ

[
−

1
ρ!

(
dρ t
dPρ

)
f

]−
1
ρ (

tf − t
)−

(
1− 1

ρ

)
. (17)

So the break rate has a critical power law relation

dP
dt

∝
(
tf − t

)−β
. (18)
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with respect to the time-to-failure with an exponent

−β=−

(
1 −

1
ρ

)
. (19)

Thus, −β ranges from −1/2 to −1 when ρ ranges from 2 to infinity. Lennartz-Sassinek et al. [37] define a relationship –
β = −γ /(γ + 1) of the critical exponent β with the exponent γ that describes the time-dependent weakening of local
strength. Different from the present model that describes a non-linear dependence of lifetime of each fiber on the history of
its local stress, this priormodel [37] assumes a time-dependent nonlinearweakening of local strength, which in turn controls
the inter-event time.

In fact, accelerating failure could occur for all values of the exponent ρ > 1, thus β ranges from 0 to 1.0 [13].When ρ is less
than 2, Eq. (4) leads to (d t/d P)f = 0 and

(
d2t/d P2

)
f is infinite at the failure time. As a consequence, the curve has infinite

curvature at the failure point. Thus, the transition of the values of ρ to ρ < 2 (β < 1/2) could represent a transition between
two different failure modes.

It has been noted [34] that the subcritical crack growth rate model could correspond to the power-law breakdownmodel
of Eq. (8) for fiber elements. Then Charles’ [38] power law

V=V0 exp(−h/RT )Kρ . (20)

that describes subcritical crack growth [36] can be analogous to the breakdown rule (Eq. (8)) of a single fiber, where V is
the crack velocity, K is the stress intensity factor, h is the activation enthalpy, R is the gas constant and T is the absolute
temperature. Values of the exponent ρ have been experimentally observed to range from 9.5 to as large as 170 for some
rocks ruptured under tension [34,36], so that the value of the critical exponent −β is close to −1.0. This has a significant
implication that the failure time can be predicted by linearly extrapolating the curve of the inverse rate to zero [1–4].

3.2. Numerical results under ELS

We performed Monte Carlo simulations of the breaking process of the time-dependent fiber-bundle model under ELS to
explicitly show themagnitude and variation of critical power law exponents. First, random lifetimes are generated according
to the Weibull distribution of Eq. (9). The first break occurs at the fiber with the shortest lifetime among the distribution of
generated lifetimes. The consumed lifetime in this step of every surviving fiber is calculated from Eq. (7). Then, the fiber with
theminimumremaining lifetime is then found and scrutinized to define its failure. The load concentration factor is calculated
from Eq. (6), and the actual loads on all surviving fibers are recalculated according to Eq. (4). This process continues until the
fiber bundle has totally failed.

The break-rate of the bundle in the numerical simulations is defined as ζ (t) =
dP
dt . Fig. 1 illustrates the evolution with

time of the number of broken fibers Nb for the cases with different values of ρ. It is clear that higher value of ρ leads to a
sharper increase in the number of broken fibers nearby the failure time tf . As examples, Fig. 2 shows the log–log plots of the
break rate ζ (t) with time to failure in the vicinity of failure for ρ = 2.0, 2.5, 3.0, 5.0 and ρ = 10. It is shown that the general
trend of the breaking rate ζ (t) agrees well with the critical power law relation, Eq. (18) in the vicinity of failure time. In
practical application, the inconsistency of the error structure of the rate data after the transformation [23] could lead to bias
in the regression fits of the exponent β .

The linear least squares fit to the data of the log–log curves (Fig. 2) shows that the critical exponent −β = −0.50 for
ρ = 2.0, −β = −0.60 for ρ = 2.5, −β = −0.67 for ρ = 3.0, −β = −0.80 for ρ = 5.0, and −β = −0.90 for ρ = 10.0.
Fig. 3 shows that the evolution of the simulated results of β with a change in ρ under ELS, which illustrates that β has a
relationship with ρ as β = 1 − 1/ρ. This agrees well with the analytical derivation.

4. Summary and conclusions

Based on the ELS rule and the series expansion in the vicinity of failure time, we find that the critical power law exponent
−β ranges from−0.5 to−1.0. The curve has an infinite curvature at the failure pointwhenβ < 1/2, which could represent the
transition to a different failure mode. The variation of the critical power law exponents observed in field and laboratory data
has its intrinsic physical controls, but not only due to the fluctuation in the measurement data. The parameter ρ that defines
the dependence of the damage of a fiber on the local stress, has an important influence on the critical power law exponent.
The simulation results show that the critical power law exponent−β has a relationshipwith ρ that−β = −

(
1 −

1
ρ

)
. This is

confirmed by an analytical derivation based on a continuous model. Thus, in time-dependent failure, the value of the critical
exponent of the power law precursor is determined by the degree to which the local stress controls the damage evolution.
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Fig. 1. Evolution of the number of broken fibers versus time for different ρ in the ELS model. The results were obtained by Monte Carlo simulation with
θ = 2, σ0/η = 1.0, κ0 = 1.0 and a total number of fibers N = 30,000.

Fig. 2. Critical power law behavior for different ρ in the ELS model. Monte Carlo simulation with θ = 2, σ0/η = 1.0, κ0 = 1.0 for total number of fibers N
= 30,000.

Fig. 3. Curves of β versus ρ and (1 − 1/ρ).
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